

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
IT42	Computer Organization and Architecture	3	-	-	3	-	-	3
		Examination Scheme						
		ISE			MSE	ESE		
		10			30	100 (60%weightage)		

Pre-requisite Course Codes	IT32	T32 (Digital Logic Design and Analysis)			
After successful completion of the course, student will be able to:					
	CO1	Describe basic structure of computer.			
	CO2	Apply arithmetic algorithm for solving problems.			
	CO3	Compare different processor architectures.			
Course Outcomes	CO4	Describe the memory mapping techniques.			
	CO5	Apply I/O concept for simulating I/O device operations.			
	CO6	Analyze different parallel processing and pipelining			
		concepts.			

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Overview of Computer Architecture & Organization:		
	1.1	Introduction of Computer Organization and Architecture, Basic	1,4	4
		organization of computer and block level description of the		
		functional units, Evolution of x86 Computers, Von Neumann		
		model, Harvard Model, Embedded system, ARM architecture		
	1.2	Performance Issues: Designing for performance, Multicore, Mics,	1,4	2
		GPGPU		
2		Data Representation and Arithmetic Algorithms:		
	2.1	Number representation: Floating-point representation,	5,7	2
		Floating point arithmetic, IEEE 754 floating point number		
		representation		
	2.2	Integer Data computation: Addition, Subtraction. Multiplication:	5,7	2
		Signed multiplication, Booth's algorithm.		
	2.3	Division of integers: Restoring and non-restoring division	5,7	2
3		Processor Organization and Control Unit:		
	3.1	CPU Architecture, Register Organization,	2,4,6	4
		ISA categories: Complex Instruction Set Computing ISA Features,		
		Reduced Instruction Set Computing ISA Features. Instruction		
		formats, basic instruction cycle. Instruction interpretation and		
		sequencing.		

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	3.2	Control Unit:Soft wired (Micro-programmed) and hardwired	2,3	4
		control unit design methods. Microinstruction sequencing and		
		execution Micro operations concepts of nano programming		
		execution. Where operations, concepts of hand programming.		
	2.2	DISC and CISC: Introduction to DISC and CISC architectures and	2	1
	3.3	KISC and CISC. Introduction to KISC and CISC architectures and	3	1
		design issues.		
4		Memory Organization:		
	4.1	Introduction to Memory and Memory parameters. Classifications of	3	3
		primary and secondary memories. Types of RAM and ROM,		
		Allocation policies, Memory hierarchy and characteristics.		
	4.2	Cache memory: Concept, architecture (L1, L2, L3), mapping	2,3	4
		techniques. Cache Coherency. Interleaved and Associative		
		memory.		
	4.3	Virtual Memory: Concept, Segmentation and Paging, Page	4,5	4
		replacement policies. LRU, FIFO		
5		I/O Organization and Introduction to Parallel Processing:		
	5.1	Buses: Types of Buses, Bus Arbitration, BUS standards	5,7	3
	5.2	I/O Interface, I/O channels, I/O modules and IO processor, Types	2,5,7	4
		of data transfer techniques: Programmed I/O, Interrupt driven I/O		
		and DMA.		
	5.3	Introduction to parallel processing concepts, Flynn's classifications,	5	3
		pipeline processing. Pipeline stages, Hazards		
	1		Total	42
1			IVIAI	

References:

- 1. Carl Hamacher, ZvonkoVranesic and Safwat Zaky, "Computer Organization", 5th edition, Tata McGraw-Hill, 2011.
- 2. John P. Hayes, "Computer Architecture and Organization", 3rd edition, Tata McGraw-Hill, 2012.
- 3. William Stallings, "*Computer Organization and Architecture: Designing* for *Performance*", 9th edition, Pearson, 2012.
- 4. B. Govindarajulu, "Computer Architecture and Organization: Design Principles and Applications", 2nd edition, Tata McGraw-Hill, 2010.
- 5. Dr. M. Usha, T. S. Srikanth, "Computer System Architecture and Organization", 1st edition, Wiley India, 2012.
- 6. Ramesh Gaonkar, "Microprocessor architecture ,Programming and application with 8085", 5th Edition, Penram
- 7. Nicholas P Carter Adapted by Raj Kamal, "*Computer Architecture and Organization*", 2nd edition, Schaum's Outline, Tata McGraw Hill,2010.