

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course Code	Cannas Nama		Teaching Scheme (Hrs/week)			Credits Assigned			
	Course Name	L	T	P	L	T	P	Total	
ITL41	Design and Analysis of Algorithms Lab	-	-	2	-	-	1	1	
		Examination Scheme							
		ISE			ESE			Total	
				Pra	actical Oral				
		4	40		10	-	10	60	

Pre-requisite Course Codes		ES4 (Programming Methodology and Data structures)		
		IT41 (Analysis of Algorithms)		
After successful completion of the course, student will be able to:				
	CO1	Compare time and space complexity of different sorting and searching		
		techniques		
	CO2	Solve various problems using dynamic programming approach		
Course	CO3	Illustrate the concepts of greedy approach		
Outcomes	CO4	Demonstrate the applicability of backtracking, branch and bound strategies to		
		solve problems in different domains		
	CO5	Demonstrate various string matching algorithms		

Exp. No.	Experiment Details	Ref.	Marks
_	(Implementation can be in C/C++ Language)		
1	Experiment on finding the running time of algorithm		5
	Selection sort		
	Insertion sort		
2	Experiment based on divide and conquer approach	2,3	5
	Merge sort		
	Quick sort		
	Binary search		
3	Experiment on finding minimum and maximum numbers using divide	1	5
	and conquer approach		
4	Experiment using dynamic programming approach	1,4	5
	Multistage graphs		
	single source shortest path		
	all pair shortest path		
	0/1 knapsack		
	Travelling salesman problem		
	Longest common subsequence		
5	Experiment based on greedy approach	1,5	5
	Single source shortest path		

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	Knapsack problem		
	Job sequencing with deadlines		
	Optimal storage on tapes		
6	Experiment on minimum spanning tree using Greedy approach	1,2,5	5
7	Experiment using Backtracking strategy	2,3	5
	8 queen problem (N-queen problem)		
	Sum of subsets		
	Graph coloring,		
	15 puzzle problem		
	Travelling salesman problem		
8	Implement string matching algorithms	1	5
	The naïve string matching Algorithm		
	The Rabin Karp algorithm		
	The knuth-Morris-Pratt algorithm		
Total Marks			

References:

- 1. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, "*Introduction to algorithms*", 3rd edition, PHI publication 2009.
- 2. Ellis Horowitz, Sartaj Sahni , S. Rajasekaran. "computer algorithms" 2nd edition, Computer Science Press, 1997
- 3. Sanjoy Dasgupta, Christos H. Papadimitriou, Umesh Vazirani, "*Algorithms*", 1st edition, Tata McGraw- Hill, 2006.
- 4. Jon Kleinberg, Eva Tardos, "Algorithm Design", 1st edition, Pearson, 2006.
- 5. Michael T. Goodrich, Roberto Tamassia, "*Algorithm Design and Application*", 1st edition ,Wiley Publication, 2015.