

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
IT41	Design and Analysis of Algorithms	3	-	-	3	-	-	3
		Examination Scheme						
		ISE			MSE	ESE		
		10			30	100 (60% weightage)		

Pre-requisite Course Codes		e Codes l	ES4 (Programming Methodology and Data structures)		
After successful completion of the course, student will be able to					
Course Outcomes	CO1	Analyze time and space complexity of an algorithm			
	CO2	Apply divide and conquer strategy to solve problems			
	CO3	Design an algorithm to illustrate the concept of dynamic programming			
	CO4	Apply the concept of greedy approach to solve problems			
	CO5	Apply backtra	acking, branch and bound strategy and string matching		
		algorithms to	solve some problems.		
	CO6	Apply the con	cept of linear programming to optimize the solution		

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1 Introduction to analysis of algorithm		1,2,3	10
		Performance analysis, space and time complexity		
		Growth of function – Big –Oh ,Omega , Theta notation		
		Mathematical background for algorithm analysis,		
		Analysis of selection sort, insertion sort.		
	1.2	Recurrences:	1	
		The substitution method		
		Recursion tree method		
		Master method		
	1.3	Divide and Conquer Approach:	1,5	
		General method		
		Analysis of Merge sort, Analysis of Quick sort, Analysis of Binary		
		search, Finding minimum and maximum algorithm and analysis,		
		Strassen's matrix multiplication.		
2	2.1	Dynamic Programming Approach:	1,2,3	12
		General Method		
		Assembly-line scheduling		
		0/1 knapsack		
		Travelling salesman problem		
		Longest common subsequence		
	2.2	Greedy Method Approach:	1,2,3	
		General Method		

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	Single source shortest path		
	Knapsack problem		
	Minimum cost spanning trees-Kruskal and prim's algorithm		
	Hamming code Algorithm		
3	Backtracking and Branch-and-bound:	1,4	06
	General Method		
	8 queen problem(N-queen problem)		
	Sum of subsets		
	Graph coloring		
	15 puzzle problem,		
	Travelling salesman problem.		
4	Linear Programming	1	08
	Standard and slack forms		
	Formulating problems as linear problems		
	The simplex algorithm		
	Duality		
	The initial basic feasible solution		
5	String Matching Algorithms:	1,5	06
	The naïve string matching Algorithms		
	The Rabin Karp algorithm		
	String matching with finite automata		
	The knuth-Morris-Pratt algorithm		
		Total	42

References:

- 1. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, "*Introduction to algorithms*", 3rd edition, PHI publication 2009.
- 2. Ellis Horowitz, Sartaj Sahni, S. Rajasekaran. "*computer algorithms*" 2nd edition, Computer Science Press, 1997
- 3. Sanjoy Dasgupta, Christos H. Papadimitriou, Umesh Vazirani, "*Algorithms*", 1st edition, Tata McGraw-Hill, 2006.
- 4. Jon Kleinberg, Eva Tardos, "Algorithm Design", 1st edition, Pearson, 2006.
- 5. Michael T. Goodrich, Roberto Tamassia, "*Algorithm Design and Application*", 1st edition , Wiley Publication, 2015.