

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
CPC502	Operating System	4	-		4	-		4
		Examination Scheme						
		ISE		MSE	ESE			
		10		30	100 (60% Weightage)			

Pre-requisite Course Codes		CPC403(Computer Organization and Architecture)			
At end of successful completion of this course, student will be able to					
	CO1	Describe the functions of Operating Systems.			
	CO2	Compare and contrast common algorithm used for			
		preemptive and non-preemptive scheduling.			
Course Outcomes	CO3	Demonstrate potential run time problems arising from the			
		concurrent operations and many separate tasks.			
	CO4	Defend the different ways of allocating memory tasks.			
	CO5	Demonstrate file system operations.			

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Introduction to Operating System: Objectives and Functions of	1	4
		O.S., OS Services, Special purpose systems, Types Of OS,		
	1.2	System Calls, types of system calls,	1	
	1.3	Operating system structure, System Boot	1,2	
2	2.1	 Process Management :Process concept, operations on process, Process scheduling: basic concepts, scheduling criteria, scheduling algorithms, Preemptive, Non-preemptive, FCFS, SJF, SRTN, Priority based, Round Robin, Multilevel Queue scheduling, Operating System Examples. Synchronization: Background, the critical section problem, 	1,2	5
	2.2	Peterson's Solution, Synchronization Hardware Semaphores, classic problems of Synchronization: The Producer Consumer Problem:Readers writers problem, Semaphores, Dinning Philosopher Problem	1,2	
	2.3	Deadlock : Deadlock Problem, Deadlock Characterization, Deadlock Prevention. Deadlock avoidance Banker's algorithm for single & multiple resources , Deadlock recovery , Deadlock Detection,	1,2	4

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		Networking, Programmer Interface		
	5.0	components , environmental subsystems , File System,		
	5.3	Case study: Windows 7 : History, Design Principles , System	1	4
		,Input and Output, Inter process communication, Network structure, Security		
		management, Scheduling, Memory management, File Systems		
		History , Design Principles , Kernel Modules , Process		
	5.2	Case Study of Linux	4,5	5
),Process scheduling , Memory management , Shell programming		
		states and State Transitions, Using the System(Booting and login		
3	5.1	File System, Data structures for process/memory management, Process	+,5	0
5	5.1	Case Study of UNIX: History of UNIX, Overview of UNIX, UNIX	4.5	8
	4.3	Input Output Management: Overview , I/O Hardware , Application I/O Interface	1,2	2
		SSTF, SCAN, CSCAN, LOOK, Disk Management		
	4.2	Secondary storage : structures: Disks Scheduling Algorithm: FCFS,	1,2	2
		space management.		
		contiguous allocation, linked list allocation, indexed allocations, Free		
-	7.1	implementation, Directory implementation, Allocation Methods	1,2	-
4	4.1	Based, , Allocation of frames , ThrashingFileManagement:Files-SystemStructure,FileSystem	1.2	4
		replacement, FIFO, Optimal, LRU, LRU Approximation, Counting		
	3.2	Virtual memory management: Demand paging , copy-on write,Page	1,3	2
		tables, segmentation		
		, swapping ,contiguous memory allocation, paging , structure of page		
3	3.1	Memory Management : Memory management strategies: background	1,3	3

References:

- [1] Silberschatz A., Galvin P., Gagne G. "Operating Systems Principles", Willey Eight edition
- [2] William Stallings,"Operating System-Internal & Design Principles", Pearson
- [3] Andrew S. Tanenbaum, "Modern Operating System", Prentice Hall.
- [4] Maurice J. Bach,"The Design of Unix Operating System", Prentice Hall.
- [5] Unix and Shell Programming by B. M. Harwani Oxford