

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
Code		L	Т	Р	L	Т	Р	Total	
	Elective-IOperations Research	-	-	2+2*	-	-	2	2	
CPE6011		Examination Scheme							
		ISE		ESE				Total	
]	Practical	0)ral			
		50		-	-			50	

Pre-requisite Course Codes		e Codes	(Applied Mathematics)			
At end of successful completion of this course, student will be able to						
	CO1	Model and	solve problem using linear programming techniques			
Course	CO2	Implement algebric solution using simplex method				
Outcomos	CO3	Define trans	portation model and apply transportation algorithm in a known situation.			
Outcomes	CO4	Use monteca	rlo simulation technique.			
	CO5	Use the sprea	adsheet as a tool effectively for OR topics			

Module	Topics	Ref.	Hrs.
No.			
1	What is Operations Research	1, 2	02
	Introduction.		
2	Modeling with Linear Programming	1, 2	07
	Two-Variable LP Model		
	Graphical LP Solution		
	Solution of a Maximization Model		
	Solution of a Minimization Model		
	Computer Solution with Solver and AMPL		
	LP solution with Excel Solver		
	LP Solution with AMPL		
	Linear Programming Applications		
	Investment		
	Product Planning and Inventory Control		
	Manpower Planning		
	Urban Development Planning		
	Blending and Refining		
	Additional LP Applications		

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

3	The Simplex Method and Sensitivity Analysis	1, 2	06
	LP Model in Equation Form		
	Transition from Graphical to Algebraic Solution		
	The Simplex Method		
	Iterative Nature of the Simplex Method		
	Computational details of the Simplex algorithm		
	Summary of the Simplex Method		
	Artificial Starting Solution		
	M-Method		
	Two-Phase Method		
	Special Cases in the Simplex Method		
	Degeneracy		
	Alternative Optima		
	Unbounded Solution		
	Infeasible Solution		
	Sensitivity Analysis		
	Graphical Sensitivity Analysis		
	Algebraic Sensitivity Analysis – Changes in the Right-hand side		
	Algebraic Sensitivity Analysis – Objective function		
	Sensitivity Analysis with Tora, Solver, and Ampl		
	Computational issues in Linear Programming		
4	Duality and Post-Optimal Analysis	1, 2	05
	Definition of the Dual Problem		
	Primal-Dual Relationships		
	Review of Simplex Matrix Operations		
	Simplex Tableau Layout		
	Optimal Dual Solution		
	Simplex Tableau Computations		
	Economic Interpretation of Duality		
	Economic Interpretation of Dual Variables		
	Economic Interpretation of Dual Constraints		
	Additional Simplex Algorithms		
	Dual Simplex Algorithm		
	Generalized Simplex Algorithm		
5	Transportation Model and Its Variants	1, 2	05
	Definition of the Transportation Model		
	Nontraditional Transportation Models		
	The Transportation Algorithm		
	Determination of the Starting Solution		

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		Total	35
9	Introduction to spreadsheet model	1, 2	02
	Quadratic Programming		
	Separable Programming		
	Constrained Algorithms		
	Gradient Method		
	Direct Search Method		
	Unconstrained Algorithms		
8	Nonlinear Programming Algorithms	1, 2	03
	Sampling from Probability Distributions		
	Generic Definition of Events		
	Elements of Discrete Event Simulation		
	Types of Simulation		
-	Monte Carlo Simulation	, —	-
7	Stimulation Modeling	1,2	02
	Decision under Uncertainty		
	Variants of the Expected Value Criterion		
	Decision Tree-Based Expected Value Criterion		
	Decision Making under Risk		
0	Decision Making under Certainty – Analytic Hierarchy Process (AHP)	1, 2	05
6	Decision Analysis	1.2	03
	Simpley Exploration of the Hungarian Mathed		
	The User series Method		
	Simplex Method Explanation of the Method of Multipliers		
	Iterative Computations of the Transportation Algorithm		
	Iterative Computations of the Transportation Algorithm		

References:

- [1] Taha, Hamdy A. "Operations Research" Pearson, 2011.
- [2] N.D. Vhora "Quantitative Techniques in Management" TMH , 3rd edition