

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total
	Digital Communication	4			4			4
EXC505		Examination Scheme						
		ISE		MSE	ESE			
		10		30	100 (60% Weightage)			tage)

Pre-requisite Course Codes		se Codes	Knowledge of Probability Theory and Signals and Systems			
After success	After successful completion of the course, student will be able to					
	e nature of random signal and its statistical characteristics					
	CO2	, , , , , , , , , , , , , , , , , , , ,				
Course	CO3					
Outcomes	Outcomes CO4 Describe digital modulation formats and its properties		digital modulation formats and its properties			
	CO5	Demonstr	rate the use of error control and spread spectrum techniques in wired			
		and wirel	ess communication.			

Module No.	Unit No.	Topics		Hrs.	
1		Application of Probability Theory in Communication Systems		07	
	1.1	Introduction to digital communication system, significance of AWGN	1,2,3		
		channel, pulse dispersion in the channel			
	1.2	Introduction to probability and sample space , Baye" s rule,			
		conditional probability and statistical independence, random variables,			
		probability functions, mean and variance of random variables and sum			
		of random variables			
	1.3	Probability Models : Binomial Distribution, Poisson Distribution,			
		Gaussian PDF, Rayleigh PDF and Rician PDF, Central-Limit Theorem			
	1.4	Binary Synchronous Channel(BSC), development of optimal receiver			
2		Information Theory and Source Coding		05	
	2.1	Measure of Information, Entropy, Information rate, Channel capacity	1,2,3		
	2.2	Capacity of a Gaussian channel, bandwidth, S/N trade-off, Shannon,,s			
		source coding theorem			
	2.3	Coding to increase the average information per bit, Huffman coding,			
		Lempel Ziv coding, examples and applications of source coding			
3		Pulse Shaping for Optimum Transmission		08	
	3.1	Line codes and their desirable properties, PSD of digital data.	1,2,3		
	3.2	Baseband PAM transmission: Concept of inter channel and inter			
		symbol interference, eye pattern			
	3.3	Concept of equalizer to overcome ISI, Nyquist" s Criterion for			
		distortion less transmission			
	3.4	Duo-binary encoding and modified duo-binary encoding			
4		Digital Modulation Techniques		15	
	4.1	Digital modulation formats, coherent and non- coherent reception	1,2,3		

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	4.2	Binary modulation techniques: BPSK, BFSK, BASK		
	4.3	M-ary Modulation techniques: QPSK, M-ary PSK, MSK, M-ary FSK, M-ary QAM, Differential encoded BPSK & D-QPSK		
	4.4	Optimal Reception of Digital Data: A baseband signal receiver and its Probability of error		
	4.5	Optimum receiver and its transfer function, matched filter and its properties		
5		Error Control Codes		12
	5.1	Need for channel encoding, discrete memory-less channel, redundancy, code rate, code efficiency and hamming bound	1,2,3	
	5.2	Linear block codes, cyclic codes, block interleaving		
	5.3	Convolution codes: State diagram, code tree, trellis diagram		
	5.4	Decoding of Convolutional codes using Viterbi algorithm		
6		Spread Spectrum Modulation		05
	6.1	Need for spread spectrum modulation, pseudo noise sequence generation, direct-sequence spread spectrum (DSSS)	1,2,5	
	6.2	Processing gain and jamming margin, frequency—hop spread spectrum (FHSS)		
	6.3	Application of spread spectrum : DS-CDMA		
	•		Total	52

References:

- [1] Simon Haykin, "Communication System", John Wiley And Sons, Fourth Edition
- [2] Taub Schilling And Saha, "Principles Of Communication Systems", Tata Mc-Graw Hill, Third Edition
- [3] Amitabha Bhattacharya, "Digital Communication", Tata Mcgraw Hill, Edition 2006
- [4] Lan A. Glover and Peter M. Grant, "Digital Communications", Pearson, Second Edition.
- [5] John G. Proakis, "Digital Communications", Mcgraw Hill, Fifth Edition.