

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	P	L	Т	Р	Total
EXC502	Design With Linear Integrated Circuits	4			4			4
		Examination Scheme						
		ISE		MSE	ESE			
		10		30	100 (60% Weightage)			tage)

Pre-requisite Course Codes		se Codes FEC105: Basic Electrical & Electronics Engineering			
_		EXC302: Electronic Devices			
		EXC303: Digital Circuits and Design			
		EXC402: Discrete Electronic Circuits			
After success	After successful completion of the course, student will be able to				
Course Outcomes	CO1	Discuss fundamentals of IC operational amplifier			
	CO2	Analyze the various applications and circuits based on particular linear			
		integrated circuit			
	CO3	Design linear application with the use of operational amplifier IC			
	CO4	Design non-linear application with the use of operational amplifier IC			
	CO5	Design an application with data converters, voltage regulator ICs and special			
		purpose ICs			

Module No.	Unit No.	Topics		Hrs.
1		Fundamentals of Operational Amplifier		06
	1.1	Ideal Op Amp, characteristics of op-amp, op-amp parameters, high frequency effects on op-amp gain and phase, slew rate limitation, practical determination of op-amp parameters, single supply versus dual supply op-amp	1,3,5	
	1.2	Operational amplifier open loop and closed loop configurations, Inverting and non-inverting amplifier	1,3,5	
2		Applications of Operational Amplifier		12
	2.1	Amplifiers: Adder, subtractor, integrator, differentiator, current amplifier, difference amplifier, instrumentation amplifier and application of Op-Amp in transducer measurement system with detail design procedure, single supply DC biasing techniques for inverting, non-inverting and differential amplifiers	1,3,5	
	2.2	Converters: Current to voltage and voltage to current converters, generalized impedance converter	1,3,5	
	2.3	Active Filters: First order filters, second order active finite and infinite gain low pass, high pass, band pass and band reject filters	1	
	2.4	Sine Wave Oscillators: RC phase shift oscillator, Wien bridge oscillator, Quadrature oscillator	4	

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

3		Non-Linear Applications of Operational Amplifier		
	3.1	Comparators: Inverting comparator, non-inverting comparator, zero		
		crossing detector, window detector and level detector		
	3.2	Schmitt Triggers: Inverting Schmitt trigger, non-inverting Schmitt		
		trigger with adjustable threshold levels		
	3.3	Waveform Generators: Square wave and triangular wave generator		
		with duty cycle modulation		
	3.4	Precision Rectifiers: Half and full wave precision rectifiers and their		
		applications		
	3.5	Peak detectors, sample and hold circuits, voltage to frequency converter,		
		frequency to voltage converter, logarithmic converters and antilog		
		converters		
4		Data Converters		06
	4.1	Performance parameters of ADC, single ramp ADC, ADC using DAC,	1,3,5	
		dual slope ADC, successive approximation ADC, flash ADC,		
		ADC0808/0809 and its interfacing		
	4.2	Performance parameters of DAC, binary weighted register DAC, R/2R	1,3,5	
		ladder DAC, inverted R/2R ladder DAC, DAC0808 and its interfacing		
5		Special Purpose Integrated Circuits		08
	5.1	Functional block diagram, working, design and applications of Timer 555	3,5	
	5.2	Functional block diagram, working and applications of VCO 566, PLL		
		565, multiplier 534, waveform generator XR 2206, power amplifier		
		LM380		
6		Voltage Regulators		08
	6.1	Functional block diagram, working and design of three terminal fixed	1,3,5	
		(78XX, 79XX series) and three terminal adjustable (LM 317, LM 337)		
		voltage regulators		
	6.2	Functional block diagram, working and design of general purpose 723	1,3,5	
		(LVLC, LVHC, HVLC and HVHC) with current limit and current fold-		
		back protection, Switching regulator topologies, functional block		
		diagram and working of LT1070 monolithic switching regulator		
			Total	52

References:

[1] Sergio Franco, "Design with operational amplifiers and analog integrated circuits", Tata McGraw Hill, Third Edition.

[2] William D. Stanley, "Operational Amplifiers with Linear Integrated Circuits", Pearson, Forth Edition

[3] D. Roy Choudhury and S. B. Jain, "Linear Integrated Circuits", New Age International Publishers, Forth Edition.

[4] David A. Bell, "Operation Amplifiers and Linear Integrated Circuits", Oxford University Press, Indian Edition.

[5] R. A. Gayakwad, "Op-Amps and Linear Integrated Circuits", Pearson Prentice Hall, Fourth Edition.

[6] R. P. Jain, "Modern Digital Electronics," Tata McGraw Hill, Third Edition.