

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	P	L	Т	Р	Total
EXC 605	Digital Signal Processing and Processors	4			4			4
		Examination Scheme						
		ISE		MSE	ESE			
		10		30	100 (60% Weightage)			

Pre-requisite Course Codes		se Codes		
After successful completion of the course, student will be able to				
	CO1	Apply DFT Properties and Illustrate FFT algorithms		
Course	CO2	Design and Realize Digital IIR & FIR Filters		
Outcomes	CO3	Analyze the effect of hardware limitations		
	CO4	Justify the need and use of DSP processor		

Module No.	Unit No.	Topics		Hrs.
1		Discrete Fourier Transform and Fast Fourier Transform		10
	1.1	Discrete Fourier Series : Properties of discrete Fourier series, DFS representation of periodic sequences.	1,2,7	
	1.2	Discrete Fourier transforms : Properties of DFT, linear convolution of sequences using DFT, computation of DFT, relation between Z-transform and DFS	1,2,7	
	1.3	Fast Fourier Transforms : Fast Fourier transforms (FFT), Radix-2 decimation in time and decimation in frequency FFT algorithms, inverse FFT, and composite FFT	1,2,7	
2		IIR Digital Filters		10
	2.1	Mapping of S-plane to Z-plane, impulse invariance method, bilinear Z transformation (BLT) method, frequency warping, pre-warping	1,3,7	
	2.2	Analog filter approximations: Butter worth and Chebyshev, design of IIR digital filters from analog filters, design examples	3,7	
	2.3	Analog and digital frequency transformations		
3		FIR Digital Filters		10
	3.1	Characteristics of FIR digital filters, frequency response, location of the zeros of linear phase FIR filters	1,3,7	
	3.2	Design of FIR digital filters using window techniques, Gibbs phenomenon, frequency sampling technique, comparison of IIR and FIR filters	1,3,7	
4		Finite Word Length Effects in Digital Filters		08
	4.1	Number representation, fixed point, sign-magnitude, one" s complement, two" s complement forms, floating point numbers	3,4	
	4.2	Quantization, truncation, rounding, effects due to truncation and rounding, Input quantization error, Product quantization error, co-	3,4	

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		efficient quantization error, zero-input limit cycle oscillations,			
		overflow limit cycle oscillations, scaling			
	4.3	Quantization in Floating Point realization IIR digital filters, finite word			
		length effects in FIR digital filters, quantization effects in the			
		computation of the DFT- quantization errors in FFT algorithms			
5		Introduction to DSP Processors		08	
5	= 1		4	vo	
	5.1	Introduction to fixed point and floating point DSP processor, multiplier	4		
		and multiplier accumulator (MAC), modified bus structures and			
		memory access schemes in DSPs, multiple access memory, multiport			
		memory, VLIW architecture, pipelining, special addressing modes, on-			
		chip peripherals			
	5.2	Features of TMS 320c67xx DSP processor, architecture of TMS	4		
		320c67xx DSP processor, architecture features: computational units.			
		bus architecture memory, data addressing, address generation unit,			
		program control, program sequencer, pipelining, interrupts, features of			
		external interfacing, on-chip peripherals, hardware timers, host			
		interface port, clock generators, SPORT			
6		Applications of DSP Processors		06	
	6.1	Speech Processing: Speech analysis, speech coding, sub band coding,	5		
		channel vocoder, homomorphic vocoder, digital processing of audio			
		signals.			
	60	Dadan gignal processing: Dadar principles rader system and	5		
	0.2	Kauar signal processing . Kauar principles, radar system and	3		
		parameter considerations, signal design			
			Total	52	

References:

[1] Proakis J., Manolakis D., "Digital Signal Processing", Pearson Education, Fourth Edition

[2] Oppenheim A., Schafer R., Buck J., "Discrete Time Signal Processing", Pearson Education, Second Edition.

[3] Babu R., "Digital Signal Processing", Scitech Publications, Fourth Edition

[4] B. Venkata Ramani and M. Bhaskar, "Digital Signal Processors, Architecture, Programming and Applications", Tata McGraw Hill, Edition 2004.

[5] L. R. Rabiner and B. Gold, "Theory and Applications of Digital Signal Processing", Prentice-Hall of India, Edition 2006.

- [6] B. Kumar, "Digital Signal Processing", New Age International Publishers, Edition 2014.
- [7] S.Salivahanan, A Vallavaraj, C Gnanapriya, "Digital Signal Processing", Tata McGraw Hill Edition Private Limited, New Delhi, Edition 2010