

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	Т	Р	L	Τ	Р	Total
EXL601	VLSI Design Laboratory			2			1	1
		Examination Scheme						
		ISE			ESE			
				Prac	tical Oral			
		4	0	-	-		20	60

Pre-requisite Course Codes						
After successful completion of the course, student will be able to						
	CO1	Make use of simulation tools to verify characteristics of				
		MOSFET based circuits				
	CO2	Set-up simulation environment for VLSI circuit simulation				
Course Outcomes	CO3	Observe characteristics of MOSFETS via simulation				
Course Outcomes	CO4	Discuss tradeoffs in VLSI circuits by observing simulation				
		results				
	CO5	Validate design of MOSFET based circuits				
	CO6	Reproduce the given abstract of the IEEE paper				

Exp.	Experiment Details I		Marks	
No.				
1	To Analyze NMOS and PMOS Transistor characteristics.	1,2	5	
2	To simulate Resistive Load Inverter and CMOS Inverter, verify the VTC.	1,2	5	
	Compare both the topologies. Comment on the Noise Margins.			
3	Implement CMOS NAND, NOR, AND, OR using Static CMOS Logic.	1,2	5	
4	Design and Implement AB+CD bar using different CMOS Logic styles.	1,2	5	
5	Simulate Pseudo NMOS Inverter and comment on the result.	1,2	5	
6	Simulate 6 Transistor SRAM and check the read and write stability	1,2	5	
7	Design and Implement given equation using Pseudo NMOS, Domino	1,2	5	
	Logic and C ² MOS Logic			
8	Simulate Clocked JK and D Flip Flop using Static CMOS Logic.	1,2	5	
Total Marks				

References:

[1] Sung-Mo Kang and Yusuf Leblebici, "CMOS Digital Integrated Circuits Analysis and Design", Tata McGraw Hill, 3rd Edition.

[2] Etienne Sicard and Sonia Delmas Bendhia, "Basics of CMOS Cell Design", Tata McGraw Hill, First Edition.