

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

| Course<br>Code | Course Name            | Teaching<br>Scheme<br>(Hrs/week) |   |     | Credits Assigned    |   |   |       |
|----------------|------------------------|----------------------------------|---|-----|---------------------|---|---|-------|
|                |                        | L                                | Т | Р   | L                   | Т | Р | Total |
| ETC505         | Integrated<br>Circuits | 4                                | - |     | 4                   | - |   | 4     |
|                |                        | Examination Scheme               |   |     |                     |   |   |       |
|                |                        | ISE                              |   | MSE | ESE                 |   |   |       |
|                |                        | 10                               |   | 30  | 100 (60% Weightage) |   |   |       |

| Pre-requisite Course                                               | FEC105: Basic Electrical & Electronics Engineering |                                                                      |  |
|--------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------|--|
| Codes                                                              | ETC302: Analog Electronics-I                       |                                                                      |  |
|                                                                    | ETC303: Digital Electronics                        |                                                                      |  |
|                                                                    | ETC402: Analog Electronics-II                      |                                                                      |  |
| After successful completion of the course, student will be able to |                                                    |                                                                      |  |
|                                                                    | CO1                                                | Able to understand the areas of applications of the                  |  |
|                                                                    |                                                    | Operational Amplifier.                                               |  |
| Course Outcomes                                                    | CO2                                                | Able to analyze special purpose integrated circuits                  |  |
| Course Outcomes                                                    |                                                    | (IC 555, Regulators etc).                                            |  |
|                                                                    | CO3                                                | Able to select IC and design practical circuits that                 |  |
|                                                                    |                                                    | perform the desired operations (Using Counters and Shift Registers). |  |

| Module | Unit   | Topics                                                               | Ref.  | Hrs. |
|--------|--------|----------------------------------------------------------------------|-------|------|
| No.    | No.    |                                                                      |       |      |
| 1      | Review | Review of Operational Amplifier                                      |       | 04   |
|        | 1.1    | Operational amplifier overview: parameters, open loop and closed     |       |      |
|        |        | loop configurations                                                  |       |      |
| 2      | Applie | ications of Operational Amplifier                                    |       | 12   |
|        | 2.1    | Amplifiers: Current amplifier, difference amplifier,                 |       |      |
|        |        | instrumentation amplifier, and programmable gain amplifier           |       |      |
|        | 2.2    | <b>Converters:</b> Current to voltage converters, voltage to current |       |      |
|        |        | converters, generalized impedance converter, voltage to frequency    |       |      |
|        |        | converter, frequency to voltage converter, logarithmic converters    |       |      |
|        |        | and antilog converters                                               |       |      |
|        | 2.3    | Active Filters: Second order active finite and infinite gain low     |       |      |
|        |        | pass, high pass, band pass and band reject filters                   |       |      |
|        | 2.4    | Sine Wave Oscillators: RC phase shift oscillator, Wien bridge        |       |      |
|        |        | oscillator, Quadrature oscillator                                    |       |      |
| 3      | Non-L  | inear Applications of Operational Amplifier                          | 3,4,6 | 10   |
|        | 3.1    | <b>Comparators:</b> Inverting comparator, non-inverting comparator,  |       |      |
|        |        | zero crossing detector, window detector and level detector           |       |      |
|        | 3.2    | Schmitt Triggers: Inverting Schmitt trigger, non-inverting           |       |      |
|        |        | Schmitt trigger, and adjustable threshold levels                     |       |      |
|        | 3.3    | Waveform Generators: Square wave generator, triangular wave          |       |      |
|        |        | generator, and duty cycle modulation                                 |       |      |
|        | 3.4    | Precision Rectifiers: Half wave, full wave, and applications         |       |      |
|        | 3.5    | Peak detectors, sample and hold circuits                             |       |      |



## Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

| 4 | Specia | cial Purpose Integrated Circuits                                      |       | 08 |
|---|--------|-----------------------------------------------------------------------|-------|----|
|   | 4.1    | Functional block diagram, working, design and applications:           |       |    |
|   |        | Timer 555                                                             |       |    |
|   | 4.2    | Functional block diagram, working and applications: VCO               |       |    |
|   |        | 566, PLL 565, multiplier 534, waveform generator XR 2206,             |       |    |
|   |        | power amplifier LM380                                                 |       |    |
| 5 | Voltag | age Regulators                                                        |       | 08 |
|   | 5.1    | Functional block diagram, working and design of three terminal        |       |    |
|   |        | fixed (78XX,79XX series) and three terminal adjustable (LM 317,       |       |    |
|   |        | LM 337) voltage regulators.                                           |       |    |
|   | 5.2    | Functional block diagram, working and design of general purpose       |       |    |
|   |        | 723 (LVLC,LVHC, HVLC and HVHC) with current limit and                 |       |    |
|   |        | current fold-back protection, Switching regulator topologies,         |       |    |
|   |        | Functional block diagram and working of LT1070                        |       |    |
|   |        | monolithic switching regulator                                        |       |    |
| 6 | Count  | ters, Shift Registers and ALU (Logic Diagram and applications)        |       | 10 |
|   | 6.1    | MSI Counters: Ripple counters (7490 decade, 7492 modulus-12,          |       |    |
|   |        | 7493 4-bitbinary), synchronous counters (74162 decade, 74163 4-       |       |    |
|   |        | bit binary, 74169 4-bit up/down binary)                               |       |    |
|   | 6.2    | MSI Shift Registers: 74164 serial input parallel output, 74166        |       |    |
|   |        | parallel input serial output, 74191 serial input serial output, 74194 |       |    |
|   |        | universal shift register                                              |       |    |
|   | 6.3    | Arithmetic Logic Unit: 74181 ALU                                      |       |    |
|   |        |                                                                       | Total | 52 |

## References

1. Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits", Tata McGraw Hill, 3rd Edition

2. John F. Wakerly, "Digital Design – Principles & Practices", Pearson Education, 3<sup>rd</sup> Edition

3. J. Millman and A. Grabel, "Microelectronics", Tata McGraw Hill, 2nd Edition.

4. D. Roy Choudhury and S. B. Jain, "*Linear Integrated Circuits*", New Age International Publishers, 4th Edition

5. David A. Bell, "Operation Amplifiers and Linear Integrated Circuits", Oxford University Press, Indian Edition

6. Ramakant A. Gayakwad, "Op-Amps and Linear Integrated Circuits", Pearson Prentice Hall, 4th Edition

7. R. F. Coughlin and F. F. Driscoll, "*Operation Amplifiers and Linear Integrated Circuits*", Prentice Hall, 6th Edition

8. J. G. Graeme, G. E. Tobey and L. P. Huelsman, "*Operational Amplifiers- Design & Applications*", New York: McGraw-Hill, Burr-Brown Research Corporation