

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	P	L	Т	Р	Total
ETC504	RF Modeling and Antennas	4	-		4	-		4
		Examination Scheme						
		ISE		MSE	ESE			
		10		30	100 (60% Weightage)			tage)

Pre-requisite Course Codes	e-requisite Course Codes ETC 404: Wave Theory and Propagation			
After successful completion of the course, student will be able to				
	CO1	Analyze and Design RF Filters		
	CO2	Analyze the radiation mechanism and fundamental		
		parameters of Antennas.		
	CO3	3 Able to Demonstrate knowledge of antennas in		
Course Outcomes		communication systems.		
	CO4	Able to discriminate between antennas on the basis of their		
		electrical performance.		
	CO5	Able to design different microstrip Antennas and Antenna		
		Arrays.		

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	Behav	Behavior of Active and Passive Components in RF range		
	1.1	Frequency Spectrum, hazards of Electromagnetic Radiations, and		
		fundamentals of radio frequency design		
	1.2	High Frequency behavior, equivalent circuit and frequency		
		response of resistor, capacitor, inductor, diode, BJT, and FET		
	1.3	Characteristics, structure and applications of coaxial line,		
		stripline, microstrip line, and coplanar lines		
2	Filter	Design		12
	2.1	Analysis of infinite periodic structures terminated Periodic		
		structures, k- β diagrams and wave velocities.		
	2.2	Image Parameter Method: Image impedances and transfer		
		functions for two port networks, constant-k filter sections, m-		
		derived filter sections, and composite filters		
	2.3	Insertion Loss Method: Characterization by power loss ratio,		
		maximally flat, equal ripple, and linear phase low pass filter		
		prototype.		
	2.4	Filter transformations: impedances, frequency scaling, and band		
		pass and band stop		
	2.5	Richard's transformation, Kuroda's identity, impedance, and		
		admittance inverters		
3	Funda	Fundamentals of Antenna		14
	3.1	Conceptual understanding and radiation mechanism		

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

			Total	52
		applications and limitations		
	6.2	Reflector Antennas and Horn Antennas: Characteristics,		
		limitations		
	U •1	antennas Microstrip Antennas: Characteristics, applications and		
	6.1	Frequency Independent Antennas: Log periodic and helical		50
6	Specia	l types of antennas	3	08
	5.5	Uda antenna		
	55	Antenna analysis using Binomial Dolph-Tschebyscheff Vagi		
	5.4	Linear arrays of n elements, broadside, radiation pattern,		
	5.ý 5.4	Linear arrays of a elements, broadside, rediction nottern		
	5.2	Array of two isotropic point sources, non-isotropic sources		
	5.1	Linear arrays, planner arrays, and circular arrays		
5	Anten	na Arrays:	1,5	04
	4.6	Loop antennas: Basic parameters	1.2	0.4
	4.5	Linear elements near or on infinite perfect conductors		
	4.4	Ground Effects		
	4.3	Monopole antenna		
		dipole, folded dipole		
	4.2	Finite Length dipole: Basic parameters of half wavelength		
		field, far field directivity, region separation		
	4.1	Infinitesimal dipole and small dipole: Radiation field, near		
4	Wire	Antennas		10
		sources, and concept of near and far field radiation.		
		for electric J and Magnetic M current		
	J.4	F for an magnetic current source M electric and magnetic fields		
	3.3 3.4	Vactor potential A for an electric current source L vactor potential		
	2.2	directivity and maximum effective areas.		
		antenna vector effective length and equivalent areas, maximum		
		bandwidth, input impedance, antenna radiation efficiency,		
		directivity, antenna efficiency, gain, beam efficiency,		
		radiation power density, radiation intensity , beam width,		
	3.2	Fundamental Parameters of Antennas: Radiation pattern,		

References

1. David M Pozar, "*Microwave Engineering*", John Wieley and Sons, Inc. Hobokenh, New Jersey, Fourth Edition, 2012

- 2. Costantine A. Balanis, "Antenna Theory Analysis And Design", John Wiley Publication
- 3. John D. Kraus, "Antennas", Tata McGraw Hill publication

4. Annapurna Das and Sisir K Das, "*Microwave Engineering*", Tata McGraw Hill, New Delhi, Second Edition, 2009

5. Reinhold Ludwig and Pavel Bretchko, "RF Circuit Design", Pearson Education Asia.