

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
ETC503	Random Signal Analysis	4	1		4	1		5
		Examination Scheme						
		ISE		MSE	ESE			
		10		30	100 (60% Weightage)			tage)

Pre-requisite Course Codes	ETC 405: Signals and Systems			
_	ETC 401: Applied Mathematics IV			
After successful completion of the course, student will be able to				
		ve mathematically and interpret statistical properties		
	that	that will be used in later semesters in the design and		
	ana	ysis of communication systems		
Course Outcomes		lyze statistical behavior of single and multiple		
Course Outcomes	rand	lom variables and be able to manipulate them.		
	CO3 Stu	lents can solve engineering problems using axiomatic		
	prol	pability theory, random variables, and random		
	pro	Cesses		

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	Overv	iew of Probability Theory and Basics of Random Variables	1,3	10
	1.1	Sample space, events, set operations, the notion and axioms of		
		probability.		
	1.2	Conditional probability, Joint probability, Baye's rule,		
		Independence of events, Sequential Experiments.		
	1.3	Notion of random variable.		
	1.4	Continuous random variables, probability density function,		
		probability distribution function, Uniform, Exponential and		
		Gaussian continuous random variables and distributions.		
	1.5	Discrete random variables, probability mass function, probability		
		distribution function, binomial, Poisson and geometric discrete		
		random variables and distributions.		
2	Operations on One Random Variable			07
	2.1	Functions of a random variable and their distribution and density		
		functions.		
	2.2	Expectation, Variance and Moments of random variable.		
	2.3	Transformation of a random variable, Markov, Chebyshev and		
		Chernoff bounds, characteristic functions, moment theorem		
3	Multi	ple of Random Variables And Convergence	1,4	08
	3.1	Vector random variables, Pairs of random variables, Joint CDF,		
		Joint PDF Independence, Conditional CDF and PDF, Conditional		

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

15.75-		Expectation		
	3.2	One function of two random variable, two functions of two random variables; joint moments, joint characteristic function, covariance		
		and correlation-independent, uncorrelated and orthogonal random variables.		
4	Seque	nce Of Random Variables And Convergence:	1,2,4	05
	4.1	Random sequences, Limit theorems; Strong and weak laws of large numbers,		
	4.2	Central limit theorem and its significance		
5	Random Process			10
-	5.1	Random process: Definition, realizations, sample paths, discrete and continuous time processes	1,5	
	5.2	Probabilistic structure of a Random process; mean, correlation and covariance functions, stationarity of random process.		
	5.3	Ergodicity, Transmission of WSS random process through LTI system		
	5.4	Spectral analysis of random processes, power density spectrum bandwidth, crosspower density spectrum.		
	5.5	Gaussian and Poisson random process		
6	Mark	ov Chains And Introduction To Queuing Theory	1,5,	12
	6.1	Markov processes		
	6.2	Discrete Markov chains, The n–step transition probabilities, steady state probabilities.		
	6.3	Introduction to Continuous time Markov chains.		
	6.4	Classifications of states.		
	6.5	Markovian models		
	6.6	Birth and death queuing models		
	6.7	Steady state results		
	6.8	Single and Multiple server Queuing models		
	6.9	Finite source models		
	6.10	Little's formula		
			Total	52

References

1. Alberto Leon Garcia, "Probability And Random Processes For Electrical Engineering", second edition Low price edition Pearson education.

2. Miller, "Probability And Random Processes-With Applications to Signal Processing and Communication", first edition 2007, Elsevier.

3. Papoulis and S. Unnikrishnan Pillai, "*Probability, Random Variables and Stochastic Processes*," Fourth Edition, McGraw Hill.

4. H. Stark and J. Woods, *``Probability and Random Processes with Applications to Signal Processing*,'' Third Edition, Pearson Education.

5. Hwei Hsu, "Probability Random Variable,s Random Process, Schaulm's Outlines, TMH, 2004.