

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
ETC601	Digital Communication	4	-		4	-		4
		Examination Scheme						
		ISE		MSE	ESE			
		10		30	100 (60% Weightage)			

Pre-requisite Course Codes	ETC4	05 Signal and System,			
1	ETC502 Analog Communication,				
	ETC503 Random Signal Analysis				
After successful completion of	r successful completion of the course, student will be able to CO1 Ability to model various entities of digital communication system mathematically				
	CO1	Ability to model various entities of digital communication			
		system mathematically			
	CO2	2 Identify and analyse methods of various digital			
		communication sub-blocks and compare their performance.			
Course Outcomes	CO3	Ability to Perform the time and frequency domain analysis			
Course Outcomes		of the signals in a digital communication system.			
	CO4	Explain receiver techniques for detection of a signal in			
		AWGN channels.			
	CO5	Provide sound evaluation of digital communication			
		applications in terms of their performance			

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	Inform	nation theory and source coding	1,2,3	06
	1.1	Block diagram and sub-system description of a digital		
		communication system, measure of information and properties,		
		entropy and it's properties		
	1.2	Source Coding, Shannon's Source Coding Theorem, Shannon-Fano		
		Source Coding,Huffman Source Coding		
	1.3	Differential Entropy, joint and conditional entropy, mutual		
		information and channel capacity, channel coding theorem, channel		
		capacity theorem		
2	Baseb	and Modulation and Transmission	2,4	06
	2.1	Discrete PAM signals and it's power spectra		
	2.2	Inter-symbol interference, Nyquist criterion for zero ISI, sinusoidal		
		roll-off filtering, correlative coding, equalizers, and eye pattern		
3	Base k	oand Detection	2,4	05
	3.1	Orthogonality, representation of signals		
	3.2	Maximum likelihood decoding		
	3.3	Correlation receiver, equivalence with matched filter		
4	Band	bass Modulation and Demodulation	1,2,4	12

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

8.190		(Autonomous institute Ammated to Oniversity of Mumbar)	1	
	4.1	Bandpass digital transmitter and receiver model, digital modulation		
		schemes		
	4.2	Generation, detection, signal space diagram, spectrum,		
		bandwidth efficiency, and probability of error analysis of:		
		Amplitude Shift Keying (ASK), Frequency Shift Keying		
		(FSK)Modulations, Binary Phase Shift Keying (BPSK)		
		Modulation, Quaternary Phase Shift Keying QPSK), Mary PSK		
		Modulations, Quadrature Amplitude Modulation (QAM), Minimum		
		Shift Keying (MSK)		
	4.3	Comparison between bandwidth and bit rate, applications of digital		
		modulation schemes		
5	Error	Control Systems	2,5	17
	5.1	Types of error control, error control codes, linear block codes,	· ·	
		vector spaces ,vector sub spaces, generator matrix, systematic linear		
		block codes, parity check matrix,		
		syndrome testing ,error correction, and decoder implementation.		
	5.2	Cyclic codes: Algebraic structure of cyclic codes, binary cyclic		
		code properties, encoding in systematic form, circuits for dividing		
		polynomials, systematic encoding with shift register and error		
		detection.		
	5.3	Convolution Codes: Time domain and transform domain		
		approach, graphical representation, code tree, trellis, state diagram,		
		decoding methods, maximum likelihood decoding, and free		
		distance		
	5.4	Viterbi decoding, hard decision Viterbi decoding, decoding		
		window, soft decision Viterbi decoding, code spectra, recursive		
		systematic codes, code transfer function, and application areas		
6	Sprea	2,5,6	06	
	6.1	Spread Spectrum (SS) concept, PN Sequences, Direct	, , -	
		Sequence(DS), Frequency Hopping (FH), and Time Hopping		
	6.2	Comparison of Spread Spectrum Methods, SS Communication		
		System, DSSS with Coherent BPSK, Processing Gain, Probability		
		of Error of FHSS Transmitter and		
		VI MILVI VI I I MIN I I MINIMUM MIM		
		FHSS Receiver.		

References

1. Sklar B, and Ray P. K., *"Digital Communication: Fundamentals and applications,"* Pearson, Dorling Kindersley (India), Delhi, Second Edition, 2009.

2. Haykin Simon, "Digital Communication Systems," John Wiley and Sons, New Delhi, Forth Edition, 2014.

3. H. Taub, D. Schlling, and G. Saha, "*Principles of Communication Systems*," Tata Mc- Graw Hill, New Delhi, Third Edition, 2012.

4. Lathi B P, and Ding Z., "*Modern Digital and Analog Communication Systems*," Oxford University Press, Forth Edition, 2009.

5. T L Singal, "Analog and Digital Communication," Tata Mc-Graw Hill, New Delhi, First Edition, 2012.

6. P Ramakrishna Rao, "Digital Communication," Tata Mc-Graw Hill, New Delhi, 1e.