

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	P	L	Т	Р	Total
ETC602	Discrete Time Signal Processing	4	-		4	-		4
		Examination Scheme						
		ISE		MSE ESE				
		10		30	30 100 (60% Weightage)			tage)

Pre-requisite Course Codes		rse Codes	ETC 405: Signals and System		
After successful completion of the course, student will be able to					
	CO1	Able to compute various Transform Analysis of Linear Time Invariant System.			
	CO2	Ability to apply engineering problem solving strategies to DSP problems.			
Course	CO3	Ability to Design and simulate digital filters.Ability to Design and test signal processing algorithms for various			
Outcomes	CO4				
		applications.			
	CO5	Ability to Rec	cover information from signals.		

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	Trans	form Analysis of Linear Time Invariant System	1,2	04
	1.1	Review of Z transform and its properties, response to sinusoidal and		
		complex exponential signals, steady-state response to periodic input		
		signals, response to		
		aperiodic input signals, relationships between the system function		
		and the frequency response function, computation of the frequency		
		response function		
	1.2	LTI systems as frequency-selective filters like; low pass, high pass,		
		band pass, notch, comb, all-Pass filters, and digital resonators.		
	1.3	Invertibility of LTI systems, minimum-phase, maximum-phase,		
		mixed-phase systems		
2	The D	iscrete Fourier Transform and Efficient Computation.	1,2	12
	2.1	Frequency domain sampling and reconstruction of discrete time		
		signals, discrete Fourier transform (DFT), DFT as a linear		
		transformation, properties of the DFT, relationship of the DFT to		
		other transforms		
	2.2	Fast Fourier Transform: Radix-2 and split-radix fast Fourier		
		transform (FFT) algorithms and their applications		
	2.3	Quantization effects in the computation of the DFT		
3	Design	n of Digital filters and Implementation		12
	3.1	Design of Infinite Impulse Response (IIR) filters using impulse		
		invariant method and bilinear transformation method, Butterworth		
		and Chebyshev filter approximation.		
	3.2	Concepts of Finite Impulse Response (FIR) filter, symmetric and		

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		-		
		anti symmetric FIR filter, FIR filter design using window method		
		and frequency sampling method.		
	3.3	Realization structures for IIR and FIR filters using direct form		
		structures, cascade, parallel structures, and lattice, ladder structure		
		(only conceptual understanding)		
4	Multi	rate Signal Processing	1,2,3	08
	4.1	Decimation by a factor <i>D</i> , interpolation by I, sampling rate		
		conversion by a rational factor I/D		
	4.2	Polyphase filter structures, interchange of filers and down		
		samplers/up samplers, sampling rate conversion with cascade		
		integrator comb filters, polyphase structures for		
		decimation and interpolation filters, structures for rational sampling		
		rate conversion.		
	4.3	Multistage implementation of sampling rate conversion.		
	4.4	Sampling rate conversion of band pass signals		
	4.5	Sampling rate conversion by an arbitrary factor – arbitrary re-		
		sampling with polyphase interpolators, narrow band filter		
		structures.		
	4.6	Application of Multirate Signal Processing for design of phase		
		shifters, interfacing of digital systems with different sampling rates,		
		implementation of narrowband low pass filters, sub band coding of		
		speech signals.		
5	Analy	sis of Finite Word length effects	1,2	08
	5.1	Quantization process and errors, quantization of fixed-point		
		numbers, quantization of floating-point numbers, analysis of		
		coefficient quantization effects		
	5.2	A/D Conversion Noise Analysis, Analysis of Arithmetic Round-Off		
		Errors and dynamic range scaling		
6	Applic	cations of Digital Signal processing:	2,5	08
	6.1	Dual – Tone multi frequency signal detection, spectral analysis of		
		sinusoidal signals, spectral analysis of non stationary signals, and		
		spectral analysis of random signals		
	6.2	Musical sound processing, digital music synthesis, discrete time		
		analytic signal generation.		
	6.3	Trans-multiplexers, oversampling ADC and DAC and sparse		
		antenna array design		
			Total	52

References

1. Alan V. Oppenheim and Ronald Schafer, "Discrete Time Signal Processing", Pearson Education 2. J. Proakis, D. G. Manolakis, and D. Sharma, "Digital Signal Processing: Principles, Algorithms and Applications", Pearson Education.

3. P.P. Vaidyanathan, "Multirate Systems and Filter Banks", Pearson.

4. Robert Schilling and Sandra Harris, "Fundamentals of Digital Signal Processing using MATLAB", Cengage Learning.

5. Sanjit K.Mitra, "Digital Signal Processing", McGrawHill education