

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	P	L	Т	Р	Total
ETC 605	Operating System	4	-		4	-		4
		Examination Scheme						
		ISE		MSE	ESE			
		10		30	100 (60% Weightage)			

Pre-requisite Course Codes Basic concepts of computer systems				
After successful completion of the course, student will be able to				
	CO1	Comprehend and describe the role of an operating		
		system, its functions and issues.		
	CO2	Compare between different algorithms used for		
Course Outcomes		management and scheduling of processes, Memory		
		and input-output operation.		
	CO3	Appreciate, compare and contrast the various features of		
		typical operating systems through case study approach.		

Module	Unit	Topics		Hrs.
No.	No.			
1	Funda	amental of Operating System(OS)		06
	1.1	Definition, objectives, functions, evolution, services, types, and		
		different views of OS		
	1.2	Operating System as a resource manager, system calls, and shell		
	1.3	Monolithic systems, layered systems, client server model,		
		monolithic kernel and microkernel		
2	Proces	ss Management and Memory Management		10
	2.1	Process, process creation, process control block, process states,		
		process state transition diagram		
	2.2	Scheduling queues and schedulers, preemptive and non- preemptive		
		scheduling algorithms, types of threads, multithreading models		
	2.3	Race condition, critical section, mutual exclusion, semaphores,		
		monitors		
	2.4	Multiprogramming with fixed and variable partitions, memory		
		allocation strategies		
	2.5	Logical and physical address space, paging and segmentation		
	2.6	Concept, performance of demand paging, page replacement		
		algorithms.		
	2.7	Deadlock Problem, deadlock characterization, deadlock prevention		
		and deadlock avoidance deadlock detection and recovery		
3	File M	lanagement and Input Output Management	1,3,6	10
	3.1	File Naming, File Structure, File Types, File Access, File		

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

13.42		(
		Attributes, File Operations, Memory Mapped Files, Implementing		
		Files, contiguous allocation, linked list allocation, indexed		
		allocations, Inode	_	
	3.2	Single level directory system, Two level directory system,		
		Hierarchical Directory System		
	3.3	Principles of Input/output H/W: I/O Devices, Device Controllers,		
		Direct Memory Access.		
	3.4	Principles of Input/output S/W: Goals Of I/O S/W, Interrupt		
		Handler, Device Driver, Device Independent I/O Software		
	3.5	Disks : RAID levels, Disks Arm Scheduling Algorithms		
	3.6	Management of free blocks.		06
4	Unix (Operating System	2,7	
	4.1	History of UNIX, UNIX Goals, Unix Shell, interfaces to Unix,		
		UNIX utility programs		
	4.2	Traditional UNIX Kernel, Modern UNIX Systems		
	4.3	Unix process management: Concept, Scheduling in Unix		
	4.4	Unix Memory management: Paging, Page replacement strategies		
	4.5	Unix file management: I-node, File allocation, I/O management		
	4.6	Unix Security measures		
5	Linux	Operating System	2,7	10
	5.1	History, Linux Processes and Thread management		1
	5.2	Scheduling in Linux, Linux System calls		1
	5.3	Memory management: Virtual memory, Buddy Algorithm, Page		
		replacement policy		
	5.4	Linux File System		1
	5.5	I/O management: Disk Schedulin		
	5.6	Advantages of Linux and Unix over Windows		
6	Real 7	Fime Operating System(RTOS)	1,4	10
	6.1	Introduction, Characteristics of real-time operating systems		1
	6.2	Real Time task Scheduling, Modeling Timing constraints, Table-		1
		driven scheduling		
	6.3	Cyclic schedulers		1
	6.4	Earliest Deadline First (EDF) scheduling		
	6.5	Rate Monotonic Algorithm(RMA)	-	
			Total	52

References

1. Tanenbaum, "Modern Operating Systems", IIIrd Edition, PHI

2. Silberschatz A., Galvin P., and Gagne G, "Operating Systems Concepts", VIIIth Edition Wiley.

3. William Stallings, "Operating System-Internal & Design Principles", VIth Edition, , Pearson

4. Rajib Mall, "Real-Time Systems: Theory and Practice," Pearson, 2008.

5. Maurice J. Bach, "The Design of Unix Operating System", Prentine Hall

6. Achyut S. Godbole, "Operating Systems", 2nd edition, Tata McGraw Hill7. Richard Blum and

Christine Bresnahan, "*Linux Command Line & Shell Scripting*", 2nd edition, Wiley.