

Sardar Patel Institute of Technology
Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India
(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Se	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total	
ETC606	VLSI Design	4	-		4	-		4	
		Examination Scheme							
		ISE		MSE	ESE				
		10		30	100 (60% Weightage)				

Pre-requisite Course Codes	ETC303: Digital Electronics		
_	ETC302: Analog Electronics-I		
	ETC402: Analog Electronics-II		
	ETC505: Integrated Circuits		
After successful completion of	the co	urse, student will be able to	
	CO1	To evaluate MOSFET fabrication techniques and scaling	
	CO2	To evaluate DC and transient analysis of CMOS logic.	
Course Outcomes	CO3	To illustrate MOS circuit design styles.	
Course Outcomes	CO4	To evaluate Semiconductor memories.	
	CO5	To illustrate Data path design.	
	CO6	To illustrate VLSI clocking and system design	

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	MOSFET Fabrication and Scaling		3,5	08
	1.1	Fabrication: Fabrication process flow for NMOS and CMOS,		
		CMOS Latch-up		
	1.2	MOSFET Scaling: Types of scaling, short channel effects, Level 1		
		and Level 2 MOSFET Models		
	1.3	Layout: Lambda based design rules, MOSFET capacitances		
2	MOSI	FET Inverters	1,3,5	10
	2.1	Circuit Analysis: Static and dynamic analysis (Noise, propagation		
		delay and power dissipation) of resistive load and CMOS inverter.		
		Comparison of all types of MOS inverters. Design of CMOS		
		inverters and its layout.		
	2.2	Logic Circuit Design: Analysis and design of 2-I/P NAND and		
		NOR using equivalent CMOS inverter.		
3	MOS Circuit Design Styles			10
	3.1	Design Styles: Static CMOS, Pass Transistor Logic, Transmission		
		Gate, Pseudo NMOS, Domino, NORA, Zipper, C2MOS		
•	3.2	Circuit Realization: SR Latch, JK FF, D FF, 1 Bit Shift Register,		
		MUX, Decoder using above design styles and their layouts		
4	Semic	onductor Memories	2,4	08

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	4.1	SRAM: ROM Array, SRAM (operation, design strategy, leakage		
		currents, read/write circuits), DRAM (Operation 3T, 1T, operation		
		modes, leakage currents, refresh operation, Input-Output circuits),		
		Flash (mechanism, NOR flash, NAND		
		flash), layout of SRAM and DRAM		
	4.2	Peripheral Circuits: Sense Amplifier, Decode		
5	Data l	Path Design	3,4,5	08
	5.1	Adder: Bit adder circuits, Ripple carry adder, CLA adder		
	5.2	Multipliers and shifter: Partial-product generation, partial-product		
		accumulation, final addition, Barrel Shifter		
6	VLSI	Clocking and System des	3,5	08
	6.1	Clocking: CMOS clocking styles, Clock generation, stabilization		
		and distribution.		
	6.2	Low Power CMOS Circuits: Various components of power		
		dissipation in CMOS, Limits on low power design, low power		
		design through voltage scaling.		
	6.3	IO pads and Power Distribution: ESD protection, Input circuits,		
		Output circuits, Simultaneous switching noise, power distribution		
		scheme		
	6.4	Interconnect: Interconnect delay model, interconnect scaling and		
		crosstalk.		
			Total	52

References

- 1. Sung-Mo Kang and Yusuf Leblebici, "CMOS Digital Integrated Circuits Analysis and Design", Tata McGraw Hill, 3rd Edition, 2012.
- 2. Jan M. Rabaey, Anantha Chandrakasan and Borivoje Nikolic, "*Digital Integrated Circuits: A Design Perspective*", Pearson Education, 2nd Edition.
- 3. John P. Uyemura, "Introduction to VLSI Circuits and Systems", Wiley, Student Edition, 2013.
- 4. Neil H. E. Weste, David Harris and Ayan Banerjee, "CMOS VLSI Design: A Circuits and Systems Perspective", Pearson Education, 3rd Edition.
- 5. R. Jacob Baker, "CMOS Circuit Design, Layout and Simulation", Wiley, 2nd Edition, 2013