

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total
TEITC502	Operating Systems	4	-	-	4	-	-	4
		Examination Scheme						
		ISE		MSE	ESE			
		10		30	100 (60%Weightage)			

Pre-requisite Course Codes		
After successful completion of the course, student will be able to:		
_	CO1	Describe the basic functions of operating systems.
	CO2	Implement various process scheduling algorithm.
	CO3	Design inter process communication solution
Course Outcomes	CO4	Categorize various memory management techniques.
Course Outcomes	CO5	Apply disk scheduling algorithms.
	CO6	Differentiate among various file systems.
	CO7	Explore functions of operating systems in different
		Environment.

Module	Topics	Ref.	Hrs.
No.			
1	Overview of Operating System		4
	Operating system objectives and functions, Evolution of OS,		
	Characteristics of modern OS, Basic concepts: Processes, Files,		
	System calls, Shell, Kernel architectures: Monolithic, Micro-kernel,		
	Layered, Kernel mode of operations.		
2	Process Management	1,2,4,5	10
	Process description: Process, Process States, Process Control Block		
	(PCB), Threads, Thread management. Process Scheduling: Types,		
	Comparison of different scheduling policies		
3	Process Co-ordination	1,2	10
	Principles of Concurrency, Race condition and critical section,		
	Mutual Exclusion- Hardware and Software approaches,		
	Semaphores, Monitors, Message Passing, Producer Consumer		
	Problem.		
	Deadlock: Principles of Deadlock, Deadlock Detection, Deadlock		
	Avoidance, Deadlock Prevention.		
4	Memory Management	1,2	6
	Memory Management Requirements, Memory Partitioning, Virtual		
	memory: Paging; Segmentation; Page replacement policies, page		
	faults.		

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

5	Input Output Management I/O Devices, Organization of the I/O Function, Operating System Design Issues, I/O Buffering, Disk Scheduling and disk scheduling algorithms, Disk cache.	1,2	6
6	File Management: Overview, File Organization, File Sharing; Record Blocking; Secondary Storage Management.	1,2	6
7	Case Studies Producer Consumer Problem, Multithreading, RAID, File systems of Windows and Linux, Overview of Android OS.	1,2,3	6
	Total hours of instructions		48

References:

- 1. Silberschatz A., Galvin P., Gagne G. "Operating Systems Principles", Willey Eight edition.
- 2. William Stallings "Operating System-Internal & Design Principles", Pearson.
- 3. Andrew S. Tanenbaum, "Modern Operating System", Prentice Hall.
- 4. Maurice J. Bach "The Design of Unix Operating System", Prentice Hall.
- 5. B. M. Harwani "Unix and Shell Programming" by Oxford.