Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai)

Revision: SPIT-4-17

Bachelor of Engineering/Technology (B.E./B.Tech) in Electronics Engineering

Final Year Engineering
(Sem. VII and Sem. VIII)

Effective from Academic Year 2017 -18

DUL

Principal
Sardar Patel Institute of Technology
Bhavans Andheri Campus
Bhavans Andheri (West)
Munshi Nagar, Andheri (West)
Mumbai - 400 058.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Preamble:

Concept of academic autonomy is based on the argument that Institutions can undertake the work expected of them by all stakeholders such as Students, Parents, University, Industry, Society in general, only if they have freedom of choice and action.

We at S.P.I.T. would like to believe that this freedom of choice and action as far as academics is concerned will make us more Proactive in our offerings.

An academic autonomy is as good as its Curricula and execution of it is as well as its faculty. S.P.I.T. is confident of succeeding on both the fronts.

In the first offering we have tried to pro-actively bridge the ever discussed "Industry-academic gap" by way of our SCOPE program. The issue about sensitizing students to social needs is being addressed by special activity based courses. Liberal arts courses have been introduced to enhance functionality of both sides of brain. In all this the professional core has not been overlooked. Thus the curricula are designed to achieve multi dimensional outcomes.

The evaluation mechanism is tuned for assessing the attainment of the designed outcomes and is designed as a fair mechanism.

As our learning cycle begins from July 2017, I wish to place on record that entire S.P.I.T. staff and faculty will work with singular focus and commitment towards the success of this endeavour.

Dr. Prachi Gharpure Principal, S.P.I.T.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

From the Desk of Dean Academics and Head of Electronics Engg. Dept.

Greetings and congratulations to all the students, teaching and supporting staff of Sardar Patel Institute of Technology for getting autonomous status to the institute from the year 2017-18. We look towards autonomy as a great opportunity to design and implement curriculum sensitive to needs of Indian Society and Industries.

In the proposed curriculum we have made an attempt to provide opportunity for students to develop themselves as competent engineering graduates with knowledge, skill and ethical behavior required for global career. Curriculum is designed to provide multiple learning opportunities for students to acquire

and demonstrate competencies for rewarding careers. The curriculum model is outcome based that focuses on learning by doing. This is achieved through activity based learning, minor projects, problem solving and innovative styles of pedagogy. Various steps are taken to transform teaching-learning process to make learning a joyful experience for students. Special laboratory based courses are introduced to give more practical exposure to the students.

To create socially responsible citizen curriculum offers courses like Constitution of India, Environmental Studies and Human Health Systems Approach. Also various activity based learning modules like 'Building Automation, Fire Safety and Electronic Security', 'Occupational Safety & Legal Studies for Engineers', 'Technical Presentation Skills', 'Technical Paper and Patent Drafting', 'Engineering Solution for Environmental Problems' and 'Financial Planning, Taxation Policies and Investment' are introduced. For overall development of the learner, various elective courses like Yoga Vidya, Music Appreciation, Dramatics, Industrial and Organizational Psychology, Law for Engineers, French Language, German Language etc. are introduced. To encourage interdisciplinary studies institute level Open Elective courses are offered.

One of the special feature of this curriculum is Skill development programme called SCOPE (Skill Certification for Outcome-Based Professional Education) planned to enhance employability, innovation and research culture in the institute. Every department is offering six domain specific tracks, each track containing six courses. Student will have an opportunity to enroll for more than 140 courses in any of the department of his choice. Some of the courses under SCOPE will be delivered in co-ordination with industries.

We believe that this curriculum will raise the bar of academic standards with the active involvement and cooperation from students, academic and administrative units. Faculty of S.P.I.T. deserves a special appreciation for their relentless efforts in designing curriculum and assessment instruments which will bring transformation in the quality and transparency in assessment of learners.

Looking forward for your active cooperation and constructive feedback to create vibrant and joyful learning environment at Sardar Patel Institute of Technology.

Dr. Surendra Singh Rathod Professor and Dean Academics

(Autonomous Institute Affiliated to University of Mumbai)

Sch	Scheme for B.E./B.Tech Electronics Engineering (SEM VII)								
,	SEM VII								
Course	Course Name	Teaching Scheme Cred							
Code		(Hr	S						
		L	T	P	Total				
EXC701	Embedded System Design	4			4				
EXC702	IC Technology	4			4				
EXC703	Power Electronics –II	4			4				
EXC704	Computer Communication Networks	4			4				
EXC 705X	Elective - I	4			4				
EXC 706	Project - I			4	2				
EXL701	Embedded System Design			2	1				
	Laboratory								
EXL702	IC Technology Laboratory			2	1				
EXL703	Power Electronics –II Laboratory			2	1				
EXL704	Computer Communication Networks			2	1				
	Laboratory				_				
EXL 705X	Elective - I Laboratory			2	1				
	Total	20		14	27				

$\boldsymbol{Elective-I}$

Code	Name of Elective
EXC7051	Digital Image Processing
EXC7052	Artificial Intelligence
EXC7053	ASIC Verification
EXC7054	Optical Fiber Communication

(Autonomous Institute Affiliated to University of Mumbai)

Sch	eme for B.Tech./B.Tech Electronics	Engineerin	g (Sl	EM VII	<u>I)</u>	
	SEM VIII					
Course Code	Course Name	Teaching Scheme (Hrs/week)				
		L	L T P			
EXC801	CMOS VLSI Design	4			4	
EXC802	Advanced Networking Technologies	4			4	
EXC803	MEMS Technology	4			4	
EXC804X	Elective -II	4			4	
EXC806	Project (Stage II)			4	4	
EXL801	CMOS VLSI Design Laboratory			2	1	
EXL802	Advanced Networking Technologies Laboratory			2	1	
EXL803	MEMS Technology Laboratory			2	1	
EXL804X	Elective -II Laboratory			2	1	
	Total	16		12	24	

Elective – I

Code	Name of Elective
EXC8041	Robotics
EXC8042	Mobile Communication
EXC8043	Digital Control System
EXC8044	Biomedical Electronics

(Autonomous Institute Affiliated to University of Mumbai)

Semester VII

Course Code	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned				
		L	T	P	L	T	P	Total		
		4			4			4		
EXC701	Embedded System Design	Examination Scheme								
		ISE MSE ESE			ESE					
		10		30	100 (60% Weightage)			tage)		

Pre-requisite	Course	e Codes EXC403: Microprocessor and Peripherals
_		EXC501: Microcontroller & Applications
After successi	ful com	pletion of the course, student will be able to
	CO1	Discuss the fundamentals of embedded systems and communication protocols
	CO2	Decide the use of MSP430, ARM and Reconfigurable hardware for given
Course		applications
Outcomes	CO3	Examine the working of Real time operating systems
	CO4	Compare Simulation, testing and debugging methods
	CO5	Design Embedded System for given application

Module No.	Unit No.	Topics	Ref.	Hrs.
1		Fundamentals of Embedded System		08
	1.1	Core of the embedded system, Memory, Sensors (resistive, optical, position, thermal) and Actuators (solenoid valves, relay/switch, opto-couplers), Communication Interface, Embedded firmware (RTOs, Drivers, Application programs), Power-supply (Battery technology, Solar), PCB and Passive components, Safety and reliability, environmental issues. Ethical practice.	1,5	
	1.2	Characteristics and quality attributes (Design Metric) of embedded system. Real time system's requirements, real time issues, interrupt latency.	1,5	
	1.3	Embedded Product development life cycle, Program modeling concepts: DFG, FSM, Petri-net, UML	1,5,3	
2		Embedded Serial Communication		04
	2.1	Study of basic communication protocols like SPI, SCI (RS232, RS485), I ₂ C, CAN, Field-bus (Profibus), USB (v2.0), Bluetooth, Zig-Bee, Wireless sensor network	1,5	
3		Embedded Hardware and Design		12
	3.1	Low power hardware design (MSP430 / Cortex-M3 based Real time clock and PWM dc motor control as a case study using on chip timers and watch-dog-timers).	11	
	3.2	Introduction to ARM-v7-M (Cortex-M3), Comparison of ARM-v7-A (CortexA8), ARM-v7-R (CortexR4), ARM-v7-M (Cortex-M3)	3,8,9	
	3.3	Direct digital solution using CPLD, FPGA, its advantages, and	3,8	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		introduction to related development methodology		
4		Embedded Software, Firmware Concepts and Design		16
	4.1	Embedded C-programming concepts (from embedded system point of view): Optimizing for Speed/Memory needs, Interrupt service routines, macros, functions, modifiers, data types, device drivers, Multithreading programming. (Laboratory work on J2ME Java mobile application).	1,5	
	4.3	Real time operating system: POSIX Compliance, Need of RTOS in Embedded system software, Foreground/Background systems, multitasking, context switching, IPC, Scheduler policies, Architecture of kernel, task scheduler, ISR, Semaphores, mailbox, message queues, pipes, events, timers, memory management, RTOS services in contrast with traditional OS.	1,5	
	4.4	Introduction to μ COS-II RTOS, study of kernel structure of μ COS-II, Synchronization in μ COS-II, Inter-task communication in μ COS-II, Memory management in μ COS-II, porting of RTOS on ARM-v7 (emulation) board, Application developments using μ COS-II.	4	
	4.5	Introduction Linux OS, Linux IPC usage, basic device (drivers) usage.		
5		Simulation, Testing and Debugging Methodology and Tools		04
	5.1	GNU Debugger (gdb), Boundary-Scan/JTAG interface concepts, Black-box, White-box testing, Hardware emulation, logic analyzer.	1,5	
6		Embedded System Designing		08
	6.1	Requirement analysis, Hardware blocks diagram, System model (like FSM, UML), Software architectures (modules, drivers). And Component/hardware selection, covering following cases: Hard real time/ Mission critical: Missile, Car cruise control, medical monitoring systems, process control system (temp, pressure) Soft real time: Automated vending machines, digital camera, mediaplayer. Communication: Embedded web servers, routers, Wireless (sensor) networks.	1,5,2	
	ı		Total	52

- [1] Embedded Systems, Rajkamal, TMH, Edition 2008.
- [2] Frank Vahid Embedded Systems, Wiley India, Edition 2002
- [3] ARM System-on-Chip Architecture, Steve Furber Pearson Edition 2005
- [4] Jean J Labrose MicroC / OS-II, Indian Low Price Edition 2002
- [5] DR.K.V.K.K. Prasad Embedded / real time system, Dreamtech
- [6] Iyer, Gupta Embedded real systems Programming, TMH

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

- [7] Embedded systems software primer, David Simon Pearson
- [8] ARM System Developers Guide- Sloss, Symes, Wright, ElsevierMorgan Kaufman, Edition 2005
- [9] LPC2148 Data Sheets www.arm.com
- [10] ARM Programers/architectural manual.
- [11] MSP430 architectural manual.
- [12] Embedded Microcomputer Systems Real Time Interfacing Jonathan W. Valvano; Cengage Learning; Third or later edition.

Course Code	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total	
	IC Technology	4			4			4	
EV.C702		Examination Scheme							
EXC702		ISE		MSE			ESE		
		10		30	100 (60% Weightage)			tage)	

Pre-requisite	Course	Codes EXC302: Electronic Devices	
_		EXC303: Digital Circuits and Design	
		EXC402: Discrete Electronic Circuits	
		EXC502: Design With Linear Integrated Circuits	
		EXC601: VLSI Design	
At the end of	success	ul completion of the course, student will be able to	
	CO1	Discuss integrated circuit fabrication processes	
	CO2	Illustrate the sequence of process of semiconductor device fabrication	
Course	CO3	Discuss the semiconductor parameter measurement techniques	
Outcomes	es CO4 Interpret the physical mechanism of novel semiconductor devices		
	CO5	Summarize features of novel semiconductor devices and justify use of these devices in an application	

Module No.	Unit No.	Topics	Ref.	Hrs.
1		Environment and Crystal Growth for VLSI Technology		08
	1.1	Environment: Semiconductor technology trend, Clean rooms, Wafer cleaning	1,2,3,4	
	1.2	Semiconductor Substrate: Phase diagram and solid solubility, Crystal structure, Crystal defects, Czochralski growth, Bridgman growth of GaAs, Float Zone growth, Wafer Preparation and specifications	1,2,3,4	
2		Fabrication Processes Part 1		10
	2.1	Deposition: Evaporation, Sputtering and Chemical Vapor Deposition	1,2,3,4	
	2.2	Epitaxy: Molecular Beam Epitaxy, Vapor Phase Epitaxy, Liquid Phase Epitaxy, Evaluation of epitaxial layers	1,2,3,4	
	2.3	Silicon Oxidation: Thermal oxidation process, Kinetics of growth, Properties of Silicon Dioxide, Oxide Quality, high κ and low κ dielectrics	1,2,3,4	
	2.4	Diffusion: Nature of diffusion, Diffusion in a concentration gradient, diffusion equation, impurity behavior, diffusion systems, problems in diffusion, evaluation of diffused layers	1,2,3,4	
	2.5	Ion Implantation: Penetration range, ion implantation systems, process considerations, implantation damage and annealing	1,2,3,4	
3	_	Fabrication Processess Part 2		10
	3.1	Etching: Wet chemical etching, dry physical etching, dry chemical	1,2,3,4	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		etching, reactive ion etching, ion beam techniques		
	3.2	Lithography: Photoreactive materials, Pattern generation and mask making, pattern transfer, Electron beam, Ion beam and X-ray	1,2,3,4	
	3.3	lithography Device Isolation, Contacts and Metallization: Junction and oxide	1,2,3,4	
	3.3	isolation, LOCOS, trench isolation, Schottky contacts, Ohmic contacts, Metallization and Packaging	1,2,3,4	
	3.4	CMOS Process Flow: N well, P-well and Twin tub	1,2,3,4	
	3.5	Design rules, Layout of MOS based circuits (gates and combinational logic), Buried and Butting Contact	1,2,3,4	
4		Measurements, Packaging and Testing		10
	4.1	Semiconductor Measurements: Conductivity type, Resistivity, Hall Effect Measurements, Drift Mobility, Minority Carrier Lifetime and diffusion length	7	
	4.2	Packaging: Integrated circuit packages, Electronics package reliability	9	
	4.3	Testing: Technology trends affecting testing, VLSI testing process and test equipment, test economics and product quality	10	
5		SOI, GaAs and Bipolar Technologies		8
	5.1	SOI Technology: SOI fabrication using SIMOX, Bonded SOI and Smart Cut, PD SOI and FD SOI Device structure and their features	5	
	5.2	GaAs Technologies: MESFET Technology, Digital Technologies, MMIC technologies, MODFET and Optoelectronic Devices	8	
	5.3	Silicon Bipolar Technologies: Second order effects in bipolar transistor, Performance of BJT, Bipolar processes and BiCMOS	8	
6		Novel Devices		6
	6.1	Multigate Device: Various multigate device configurations (device structure and important features)	6	
	6.2	Nanowire: Fabrication and applications	8	
	6.3	Graphene Device: Carbon nanotube transistor fabrication, CNT applications	8	
			Total	52

- [1] James D. Plummer, Michael D. Deal and Peter B. Griffin, "Silicon VLSI Technology", Pearson, Indian Edition.
- [2] Stephen A. Campbell, "The Science and Engineering of Microelectronic Fabrication", Oxford University Press, Second Edition.
- [3] Sorab K. Gandhi, "VLSI Fabrication Principles", Wiley, Student Edition.
- [4] G. S. May and S. M. Sze, "Fundamentals of Semiconductor Fabrication", Wiley, First Edition.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

- [5] Kerry Bernstein and N. J. Rohrer, "SOI Circuit Design Concepts", Kluwer Academic Publishers, First edition.
- [6] Jean-Pierre Colinge, "FinFETs and Other Multigate Transistors", Springer, First edition
- [7] M. S. Tyagi, "Introduction to Semiconductor Materials and Devices", John Wiley and Sons, First Edition.
- [8] James E. Morris and Krzysztol Iniewski, "Nanoelectronic Device Applications Handbook", CRC Press
- [9] Glenn R. Blackwell, "The electronic packaging", CRC Press
- [10] Michael L. Bushnell and Vishwani D. Agrawal, "Essentials of Electronic Testing for digital, memory and mixed-signal VLSI circuits", Springer

Course Code	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned				
		L	T	P	L	T	P	Total		
	Power Electronics II	4			4			4		
EVC702		Examination Scheme								
EXC703		ISE		MSE			ESE			
		10		30	100 (60% Weightage)			tage)		

Pre-requisite Course Codes		e Codes	EXC 604: Power Electronics – I				
			EXC 404: Principles of Control Systems				
After successf	ul comp	letion of t	he course, student will be able to				
	CO1	Analyze	nalyze different methods of power converters.				
Course	CO2	Describe	e power electronic applications.				
Outcomes	CO3	Analyze	different power electronic application in DC Drives.				
	CO4	Analyze	different power electronic application in AC Drives.				

Module No.	Unit No.	Topics	Ref.	Hrs.
1		Rectifiers and Inverters:		12
	1.1	Effect of source inductance in 1-phase and 3-phase rectifiers, distortion	3	
		in line current waveforms, voltage distortion for diode and SCR based		
		rectifiers		
	1.2	PWM for 3-phase voltage source inverters, Space Vector Modulation	3	
		(SVM) technique for 3-phase voltage source inverters, hysteresis		
		control.		
2		DC-DC Converters:		10
	2.1	Average model, linearized and transfer function models, state-space	7	
		average models of basic buck, boost and buck-boost converters,		
		Feedback control of these converters (PI and PID).		
3		Power Electronic Applications		6
	3.1	Use of power electronic systems in SMPS, Battery charging systems,	2	
		UPS and Induction heating.		
4		Power Electronic Applications in DC Drives		10
	4.1	Various schemes of DC motor speed control, single-phase half-wave	1,4	
		semi converter & full converter drive for separately excited DC motor,		
		Dynamic and Regenerative braking of DC motor		
5		Power Electronic Applications in AC Drives		14
	5.1	Introduction to speed control of three-phase induction motor methods:	1, 4	
		i) Stator voltage		
		ii) Variable frequency		
		iii) Rotor resistance		
		iv) V/f control		
		v) Regenerative braking.		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Total 52

- [1] M. Rashid, Power Electronics: Circuits, Devices, and Applications, PHI, Third Edition.
- [2]. By M. D. Singh, K. B. Khanchandani, Power Electronics, Tata McGraw Hill, Second Edition.
- [3]. Mohan, Undeland and Riobbins, Power Electronics: Converters, Applications and Design, Wiley (Student Edition), Second Edition.
- [4]. P. S. Bimbhra, Power Electronics, Khanna Publishers, Edition 2012.
- [5]. R. W. Erickson, D. Maksimovic, Fundamentals of Power Electronics, Springer, Second Edition.
- [6]. J. P. Agrawal, Power Electronics Systems: Theory and Design, Pearson Education, Edition 2002.
- [7]. S. Bacha, I. Munteanu and A. Bratcu, Power Electronic Converters: Modeling and Control, Springer-Verlag, Edition 2014.
- [8]. H. Sira-Ramírez, R. Silva-Ortigoza, Control Design Techniques in Power Electronics Devices, Springer-Verlag, Edition 2006

Course Code	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned				
		L	T	P	L	T	P	Total		
	Computer Communication and Networks	4			4			4		
EVC704				Exami	ination Scheme					
EXC704		ISE		MSE	ESE					
		10		30	100 (60% Weightage)			tage)		

Pre-requisite	Course	e Codes EXC 405: Fundamentals of Communication Engineering
		EXC:504: Digital Communication
After success:	ful com	pletion of the course, student will be able to
	CO1	Name different types of communication networks and modes of data transmission in digital transmission systems.
	000	ÿ ,
	CO2	Identify error control techniques and protocols associated with data link
		layer of the OSI model
Course	CO3	Summarize various routing and routed protocols associated with network
Outcomes		layer
	CO4	Summarize congestion control mechanisms used in circuit and packet
		switched communication networks associated with transport layer.
	CO5	Demonstrate the significance of software layer protocols and IP addressing
		schemes used in networking using software tools

Module No.	Unit No.	Topics	Ref.	Hrs.
1		Introduction to Network Architectures, Protocol Layers, and		10
		Service models		
	1.1	Network Hardware: Topologies, LAN, MAN, WAN, Wireless	1,2,3	
		network, Home Network, Internetworks, Virtual LANs		
	1.2	Network Software: Protocol Hierarchies, Design Issues for the layers,		
		Connection oriented and connectionless Services		
	1.3	Reference Models: Layers details of OSI, TCP/IP Models, Protocol		
		Layers and Their Service Models		
2		Physical-layer Services and Systems		8
	2.1	Introduction to physical media, Coax, fiber, twisted pair, DSL, HFC	1,2,3	
	2.2	Data link layer services and protocols: Link-layer and its services,	1,2,3	
		Ethernet, hubs, bridges, and switches, Link- layer addressing, Error-		
		detection and error-correction. Parity, check-summing, CRC,		
		Manchester encoding. Aloha protocols, Control Access Protocol,		
		Carrier Sense		
	2.3	Multiple Access (CSMA), Local Area Networks - Ethernet, Token	1,2,3	
		ring, FDDI. WiMax, cellular, satellite, and telephone networks, Bit		
		transmission, Frequency division multiplexing. Time division		
		multiplexing		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

3		Data Link Layer Protocol		10
	3.1	PPP, HDLC, Stop and wait protocol	1,2,3	
4		Network Layer Services and Protocols		10
	4.1	Switching fabric, Routing and forwarding, Queues and buffering,	1,2,3	
		Virtual-circuit and datagram networks, Internet protocol		
	4.2	IPv4 and IPv6, Tunneling, LS and DV algorithms. Routing in the		
		Internet, RIP, OSPF, and BGP		
	4.3	Broadcast and multicast, Handling mobility		
5		Reliable and Unreliable Transport-layer Protocols		8
	5.1	GBN and SR. TCP and UDP. Port numbers, Multiplexing and de-	1,2,3	
		multiplexing		
	5.2	Flow control and congestion control. Fairness, Delay, jitter, and loss in		
		packet-switched networks		
	5.3	Bandwidth, throughput, and quality-of-service		
6		Principles of Network Applications.		6
	6.1	Application layer protocols such as HTTP, FTP, and SMTP,	1,2,3	
	6.2	Peer-to-Peer File Sharing Protocols and Architectures, ISPs and	1,2,3	
		Domain name systems, Socket API and network socket programming		
			Total	52

- [1] B. A. Forouzan, "Data Communications and Networking", TMH, Fourth Edition.
- [2] S. Tanenbaum, "Computer Networks", Pearson Education, Fourth Edition.
- [3] Computer Networking: A Top-Down Approach, by J. F. Kurose and K. W. Ross, Addison Wesley, Fifth Edition.

Course Code	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned				
		L	T	P	L	T	P	Total		
	Digital Image Processing	4			4			4		
EV.C7051		Examination Scheme								
EXC7051		ISE		MSE			ESE			
		10		30	100 (60% Weightage)			tage)		

Pre-requisite Course Codes			EXS 401 : Applied Mathematics IV					
			EXC 504 : Signal and Systems					
After success	After successful completion of the course, student will be able to							
	CO1	Discuss	the fundamental concepts of digital image processing					
Course	CO2 Discuss image enhancement and segmentation techniques							
Outcomes	CO3	Apply su	uitable operators for binary image processing					
Outcomes	CO4	uitable transform techniques on digital image						
	CO5	Discuss	digital image compression and decompression techniques					

Module No.	Unit No.	Topics	Ref.	Hrs.
1		Digital Image Processing Fundamentals		06
	1.1	Introduction: Background, Digital Image Representation, Fundamental Steps in Image Processing, Elements of a Digital Image Processing System	1,2,3	
	1.2	Digital Image Fundamentals: Elements of Visual Perception, A Simple Image Model, Sampling and Quantization, Some Basic Relationships between Pixels, Imagining Geometry. Image File Formats: BMP, TIFF and JPEG. Colour Models (RGB, HSI, YUV)	1,2,3	
2		Image Enhancement		08
	2.1	Spatial Domain Methods, Frequency Domain Methods, Some Simple Intensity Transformations, Histogram Processing, Image Subtraction, Image Averaging, Background	1,2,3	
	2.2	Smoothing Filters, Sharpening Filters, Lowpass Filtering, Highpass Filtering, Generation of Spatial Masks from Frequency Domain Specifications. Homomorphic Filtering.	1,2,3	
3		Image Segmentation and Representation		08
	3.1	Detection of Discontinuities, Edge Linking using Hough Transform, Thresholding, Region based Segmentation, Split and Merge Technique	1,2,3	
	3.2	Image Representation and Description, Chain Code, Polygonal, Representation, Shape Number, Moments.	1,2,3	
4		Binary Image Processing		06
	4.1	Binary Morphological Operators, Hit-or-Miss Transformation, Boundary Extraction, Region Filling, Thinning and Thickening,	1,2,3	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		Connected Component Labeling, Iterative Algorithm and Classical		
		Algorithm		
5		Image Transform		12
	5.1	Introduction to the Fourier Transform, The Discrete Fourier	1,2,3	
		Transform, Some Properties of the Two-Dimensional Fourier		
		Transform Fast Fourier Transform(FFT),		
	5.2	Discrete Hadamard Transform(DHT), Fast Hadamard	1,2,3	
		Transform(FHT), Discrete Cosine Transform(DCT), Discrete Wavelet		
		Transform(DWT),		
6		Image Compression:		12
_		8 1		
	6.1	Fundamentals – Coding Redundancy, Interpixel Redundancy,	1,2,3	
	6.1		1,2,3	
	6.1	Fundamentals - Coding Redundancy, Interpixel Redundancy,	, ,	
		Fundamentals – Coding Redundancy, Interpixel Redundancy, Psychovisual Redundancy, Fidelity Criteria.	, ,	
		Fundamentals – Coding Redundancy, Interpixel Redundancy, Psychovisual Redundancy, Fidelity Criteria. Image Compression Models – The Source Encoder and Decoder,	, ,	
		Fundamentals – Coding Redundancy, Interpixel Redundancy, Psychovisual Redundancy, Fidelity Criteria. Image Compression Models – The Source Encoder and Decoder, Lossless Compression Techniques: Run Length Coding, Arithmetic	1,2,3	
	6.2	Fundamentals – Coding Redundancy, Interpixel Redundancy, Psychovisual Redundancy, Fidelity Criteria. Image Compression Models – The Source Encoder and Decoder, Lossless Compression Techniques: Run Length Coding, Arithmetic Coding, Huffman Coding, Differential PCM,	1,2,3	

- [1] Rafel C. Gonzalez and Richard E. Woods, 'Digital Image Processing', Pearson Education Asia, Third Edition.
- [2] S. Jayaraman, E.Esakkirajan and T.Veerkumar, "Digital Image Processing" TataMcGraw Hill Education Private Ltd.
- [3]. Anil K. Jain, "Fundamentals and Digital Image Processing", Prentice Hall of India Private Ltd, Third Edition.

Course Code	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned				
		L	T	P	L	T	P	Total		
	Artificial Intelligence	4			4			4		
EV.C7053		Examination Scheme								
EXC7052		ISE		MSE			ESE			
		10		30	100 (60% Weightage)			tage)		

Pre-requisite	Cours	e Codes	Knowledge of linear algebra, multivariate calculus, and probability theory Knowledge of a programming language (MATLAB /C/C ++ recommended)
After success:	ful com	pletion of	the course, student will be able to
CO1 Classify differ			different types of neural networks
Course	CO2	Identify	type of neural network algorithm for given application
Outcomes	Outcomes CO3 Design a neural network for a given application		
	CO4	Apply d	ifferent fuzzy operations to design fuzzy controller

Module	Unit	Topics	Ref.	Hrs.
No.	No.	-		
1		Fundamental Concepts of Neural Networks		08
	1.1	Difference between fuzzy and crisp sets and applications of fuzzy logic	4	
	1.2	Biological neurons, McCulloch and Pitts models of neuron, Important	3,2	
		Terms of ANNs, McCulloch-Pitts Neuron, Hebb Network, Supervised		
		learning		
	1.3	Applications and scope of Neural Network	3	
2		Supervised Learning Networks		12
	2.1	Perception Networks: Adaline, Madaline	3,2	
	2.2	Back Propagation Network	3	
	2.3	Function Network	3	
3		Unsupervised learning network		12
	3.1	Max Net, Mexican Hat, Kohonen Self-organizing Feature	3	
	3.2	Maps, Learning Vector Quantization, Adaptive Resonance Theory	3	
4		Associative networks		10
	4.1	Pattern Association, Auto-associative Memory Network, Hetero-	3	
		associative Memory Network, Bidirectional Associative Memory,		
		Discrete Hopfield Networks		
	4.2	Special networks:	3	
		Simulated annealing neural networks, Boltzmann machine, Brain-in-a-		
		Box		
5		Fuzzy Logic		10
	5.1	Fuzzy sets, Properties, Operations on fuzzy sets, Fuzzy relation	4,3	
		Operations on fuzzy relations,		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

5.2	The extension principle, Fuzzy mean Membership functions,	4,3	
	Fuzzification and defuzzification methods		
5.3	Fuzzy controllers, Adaptive neuro-fuzzy information systems (ANFIS)		
		Total	42

- [1] Simon Haykin, "Neural Network a Comprehensive Foundation", Pearson Education
- [2] Dr.S.N.Sivanandam, Mrs S.N. Deepa Introduction to Soft computing tool Wiley Publication
- [3] Satish Kumar Neural Networks: A classroom Approach Tata McGraw-Hill
- [4] Thimothy J. Ross, "Fuzz V Logic with Engineering Applications", McGraw -Hill
- [5] Rajsekaran S, Vijaylakshmi Pai, Neural Networks, Fuzzy Logic, and Genetic Algorithms, PHI
- [6] Hagan, Demuth, Beale, 'Neural Network Design', Thomson Learning
- [7] Christopher M Bishop Neural Networks For Pattern Recognition, Oxford Publication
- [8] William W Hsieh Machine Learning Methods in the Environmental Sciences Neural Network and Kernels Cambridge Publication
- [9] Dr.S.N.Sivanandam, Dr.S.Sumathi Introduction to Neural Network Using Matlab Tata McGraw-Hill

Course Code	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned				
		L	T	P	L	T	P	Total		
	ASIC Verification	4			4			4		
EV.C7052		Examination Scheme								
EXC7053		ISE		MSE			ESE			
		10		30	100 (60% Weightage)			tage)		

Pre-requisite	Course	
		EXC303: Digital Circuits and Design
After successi	ful com	pletion of the course, student will be able to
	CO1	Recognise trends in ASIC verification
	CO2	Apply SystemVerilog constructs for verification
Course	CO3	Create testbenches, threads and show interprocess communication
Outcomes	CO4	Create test cases under constrained environment
	CO5	Validate design with SystemVerilog assertions and functional coverage
	CO6	Interface SystemVerilog with other languages

Module No.	Unit No.	Topics	Ref.	Hrs.
1	1101	Programmable Devices and Verilog		08
	1.1	Programmable Devices: Architecture of FPGA, CPLD with an	6	
		example of Virtex-7 and Spartan -6 family devices		
	1.2	Verilog HDL: Data types, expressions, assignments, behavioral, gate	7	
		and switch level modeling, tasks and functions		
	1.3	Verification Basics: Technology challenges, Verification	1,5	
		methodology options, Verification methodology, Testbench creation,		
		testbench migration, Verification languages, Verification IP reuse,		
		Verification approaches, Verification and device test, Verification		
		plans, reference design of Bluetooth SoC, Verification Guidelines		
2		Data types, procedural statements and testbench		08
	2.1	Data Types: Built in, Fixed size array, dynamic array, queues,	1,2,4	
		associative array, linked list, array methods, choosing a storage type,		
		creating new types with typedef, creating user-defined structures, type		
		conversion, enumerated types, constants, strings, expression width		
	2.2	Procedural Statements and Routines: Procedural statements, tasks,	1,2,4	
		functions and void functions, task and function overview, routine		
		arguments, returning from a routine, local data storage, time values		
	2.3	Connecting the Testbench and Design: Separating the testbench and	1,2,4	
		design, the interface construct, stimulus timing, interface driving and		
		sampling, connecting it all together, top-level scope, program-module		
		interactions, system verilog assertions, the four port ATM router, the		
		ref port direction, the end of simulation, directed test for the LC3 fetch		

		block		
3		OOP and Randomization		10
	3.1	Basic OOP: Class, Creating new objects, Object deallocation, using	1,2,4	
		objects, variables, class methods, defining methods outside class,		
		scoping rules, using one class inside another, understanding dynamic		
		objects, copying objects, public vs. local, building a testbench		
	3.2	Randomization: Randomization in system Verilog, constraint details,	1,2,4	
		solution probabilities, controlling multiple constraint blocks, valid		
		constraints, In-line constraints, The pre-randomize and post-randomize		
		functions, Random number functions, Constraints tips and techniques,		
		common randomization problems, Iterative and array constraints,		
		Atomic stimulus generation vs. scenario generation, random control,		
4		random number generators, random device configuration		00
4	4.1	IPC and advanced OOP	1.0.4	08
	4.1	Threads and Interprocess Communication: working with threads,	1,2,4	
		disabling threads, interprocess communication, events, semaphores,		
	4.2	mailboxes, building a testbench with threads and IPC Advanced OOP and Testbench Guidelines: Inheritance, Blueprint	1 2 4	
	4.2	pattern, downcasting and virtual methods, composition, inheritance and	1,2,4	
		alternatives, copying an object, abstract classes and pure virtual		
		methods, callbacks, parameterized classes		
5		Assertions and Functional Coverage		12
	5.1	System Verilog Assertions: Assertions in verification methodology,	3	
		Understanding sequences and properties, SystemVerilog Assertions in		
		the Design Process, Formal Verification Using Assertions and		
		SystemVerilog Assertions Guidelines		
	5.2	Functional Coverage: Coverage types, strategies, examples, anatomy	1,2,4	
		of a cover group, triggering a cover group, data sampling, cross		
		coverage, generic cover groups, coverage options, analyzing coverage		
		data, measuring coverage statistics during simulation		
6		Advanced interfaces and interfacing with C	1.0 .	06
	6.1	Advanced Interfaces: Virtual interfaces with the ATM router,	1,2,4	
		Connecting to multiple design configurations, procedural code in an		
	(2	interface	1 2 4	
	6.2	A complete System Verilog Testbench: Design blocks, testbench	1,2,4	
	6.3	blocks, alternate tests Interfacing with C: Passing simple values, connecting to a simple C	1,2,4	
	0.3	routine, connecting to C++, simple array sharing, open arrays, sharing	1,2,4	
		composite types, pure and context imported methods, communicating		
		from C to system verilog, connecting other languages		
	1	1 nom o to system vernos, connecting other languages	Total	52
			1 otal	J4

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

- [1] Chris Spear, "System Verilog for Verification: A guide to learning the testbench language features", Springer, Second Edition
- [2] Stuart Sutherland, Simon Davidmann, and Peter Flake, "System Verilog for Design: A guide to using system verilog for hardware design and modeling", Springer, Second Edition.
- [3] Ben Cohen, Srinivasan Venkataramanan, Ajeetha Kumari and Lisa Piper, "SystemVerilog Assertions Handbook", VhdlCohen Publishing, Third edition
- [4] System Verilog Language Reference manual
- [5] S Prakash Rashinkar, Peter Paterson and Leena Singh, "System on Chip Verification Methodologies and Techniques", Kluwer Academic, First Edition.
- [6] Spartan and Virtex family user manuals from Xilinx
- [7] Verilog Language Reference manual

Course Code	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned				
		L	T	P	L	T	P	Total		
	Optical Fiber Communication	4			4			4		
EXC7054		Examination Scheme								
EXC/054		ISE		MSE			ESE			
		10		30	100 (60% Weightage)			tage)		

Pre-requisite	Course	e Codes EXC503: Electromagnetic Engineering					
_		EXC405: Fundamentals of Communication Engineering					
		EXC505: Digital Communication.					
After successf	ul comp	letion of the course, student will be able to					
	CO1	Discuss the fundamental principles of optics and light wave					
	CO2	Describe construction and working principle of optical fiber communication					
Course		system					
Outcomes	CO3	Outline transmission characteristics of optical fiber					
Outcomes	CO4	Discuss operational principle optical networks					
	CO5 Calculate link budget parameters and list several optical n						
		management functions					

Module No.	Unit No.	Topics	Ref.	Hrs.
1		Overview of Optical Fiber Communication		10
	1.1	The evolution of fiber optic systems, elements of an optical fiber	1,2,3	
		transmission link, block diagram, advantages of optical fiber		
		communication, applications		
	1.2	Ray theory transmission, total internal reflection, acceptance angle,		
		numerical aperture and skew rays		
	1.3	Modes, electromagnetic mode theory and propagation, single mode		
		and multimode fibers, linearly polarized modes		
	1.4	Fiber material, fiber cables and fiber fabrication, fiber joints, fiber		
		connectors, splicer		
2		Optical Sources and Detectors		10
	2.1	Coherent and non-coherent sources, quantum efficiency, modulation capability of optical sources	1,2,3	
	2.2	LEDs: Working principle and c haracteristics		
	2.3	Laser diodes: Working principle and characteristics		
	2.4	Working principle and characteristics of detectors: PIN and APD,		
		noise analysis in detectors, coherent and non-coherent detection,		
		receiver structure, bit error rate of optical receivers, and receiver		
		performance		
3		Components of Optical Fiber Networks		08
	3.1	Overview of fiber optic networks, trans-receiver, semiconductor optical amplifiers	1,2,3	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	3.2	Couplers/splicer, wavelength division multiplexers and demultiplexers	1,2,3						
	3.3	Filters, isolators and optical switches	1,2,3						
4	*								
	4.1 Attenuation, absorption, linear and nonlinear scattering losses, bending losses, modal dispersion, waveguide dispersion and pulse broadening,								
	4.2	Dispersion shifted and dispersion flattened fibers, and non linear effects							
	4.3	Measurement of optical parameters, attenuation and dispersion, OTDR							
5		Optical Networks		08					
	5.1	SONET and SDH standards, architecture of optical transport networks (OTNs), network topologies	1,2,3						
	5.2	Operational principle of WDM, WDM network elements and Architectures, Introduction to DWDM, Solitons.							
6		Network Design and Management		08					
	6.1	Point to point links system considerations, link power budget, and rise time budget	1,2,3,4						
	6.2	Transmission system model, power penalty-transmitter, receiver optical amplifiers, crosstalk, dispersion, wavelength stabilization.							
	6.3	Network management functions, configuration management, performance management, fault management, optical safety and service interface							
			Total	52					

- [1] John M. Senior, "Optical Fiber Communication", Prentice Hall of India Publication, Chicago, Third Edition.
- [2] Gred Keiser, "Optical Fiber Communication", Mc-Graw Hill Publication , Singapore, Fourth Edition.
- [3] G Agarwal, "Fiber Optic Communication Systems", John Wiley and Sons, Third Edition.
- [4] S.C. Gupta, "Optoelectronic Devices and Systems", Prentice Hall of India Publication, Chicago.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	T	P	L	T	P	Total	
	Project (Stage I)			4			2	2	
EXC706		Examination Scheme							
EAC/00		Term	Work	Prac	ctical	0	ral	Total	
		Phase	e-I:20	-			50	100	
		Phase-II:30							

Term Work:
The final year students have already under gone project assignment in their pre-final year in Mini Project
I and II. In final year group of maximum four students will be completing a comprehensive project work
based on the courses studied. The project work may be internally assigned or may be externally assigned
by the research institutes, industry etc. Each group will be assigned one faculty as a supervisor. This
project work in final year may be extension of the Mini Project work done in pre-final year.
The main intention of Project work is to enable students to apply the knowledge and skills learned out of
courses studied to solve/implement predefined practical problem. The Project work may be beyond the
scope of curriculum of courses taken or may be based on the courses but thrust should be
☐ Learning additional skills
□ Development of ability to define, design, analysis and implementation of the problem and lead to its
accomplishment with proper planning
☐ Learn the behavioral science by working in a group
☐ The project area may be selected in which the student intend to do further education and/or may be
either intend to have employment or self-employment
☐ The topic of project should be different and / or may be advancement in the same topic of Mini Project
☐ The students may use this opportunity to learn different computational techniques as well as some
model development. This they can achieve by making proper selection of Project work.
The college should keep proper assessment record of the progress of project and at the end of the semester
it should be assessed for awarding TW marks. The TW should be examined by approved internal faculty
appointed by the head of the institute on the basis of following:
☐ Scope and objective of the project work.
Extensive Literature survey.
Progress of the work (Continuous assessment)

An approved external examiner and internal examiner appointed by the head of the institute together will assess during oral examination. The oral examination is a presentation by the group members on the project along with demonstration of the work done. In the examination each individual student should be assessed for his/her contribution, understanding and knowledge gained.

☐ Report in prescribed University format.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			C	ned		
Code		L	T	P	L	T	P	Total
				2			1	1
EXL701	Embedded System Design Laboratory	Examination Scheme						
EXLIUI		ISE			ESE			Total
				Prac	tical	0	ral	
		4	0	-	-	2	20	60

Pre-requisite	e Course Codes	EXC701 (Embedded System Design)						
After successf	ful completion of the co	ourse, student will be able to						
CO1 Set-up simulation environment for programming se microcontroller architectures								
	CO2	Interface various peripherals with the microcontrollers						
Course	CO3	Compose procedure for initialization of internal peripherals of						
Outcomes		different microcontroller architectures						
	CO4	Design and develop embedded system applications						
	CO5	Test and debug embedded system applications						
	CO6	Perform in a team to implement an embedded application						

Exp. No.	Experiment Details	Ref.	Marks
1	Programming of NXP LPC11U24 using ARMmbed Compiler.(led	1	5
	blink, counter, Pot)		
2	Interfacing of NXP LPC11U24 (7 segment display, traffic signal).	1	5
3	Programming of MSP430 Launchpad (led blink, counter, interrupt, and timer).	2	5
4	Programming of PSOC CY8CKIT- 030 PSOC 3 (Led blink, counter)	3	5
5	Programming of PSOC CY8CKIT- 050 PSOC 5 (LCD interfacing, ADC)	3	5
6	Programming of PSOC CY8CKIT- 050 PSOC 5 (Capsence)	3	5
7	RTOS Programming (Free RTOS).	4	5
8	Programming of C2000	5	5
	Total N	Iarks	40

- [1] https://developer.mbed.org/
- [2] MSP430 user Manual
- [3] PSoC user Manual
- [4] DR.K.V.K.K. Prasad Embedded / real time system, Dreamtech
- [5] C2000 user Manual

Course Code	Course Name	Teaching Scheme (Hrs/week)			C	ned		
Code		L	T	P	L	T	P	Total
	IC Technology Laboratory			2			1	1
EXL702		Examination Scheme						
EXL/UZ		ISE		ESE			Total	
				Prac	ctical	0	ral	
		40		-	-	20		60

Pre-requisite	Cours	e Codes EXC702 (IC Technology)					
After successf	ul comp	eletion of the course, student will be able to					
CO1 Make use of modern tools available for process and layout simulation							
	CO2	Compose simulation program for a fabrication process to arrive at valid					
Course		conclusion					
Course Outcomes	CO3	Draw layout and sketch characteristics of MOS circuit to arrive at valid					
Outcomes		conclusion					
	CO4	Validate device characteristics via simulations to arrive at valid conclusion					
	CO5	Build layout as per the design rules					

Exp. No.	Experiment Details	Ref.	Marks
1	Draw and simulate layout for the CMOS inverter. Carry out static as	3,5	5
	well as transient simulation. Analyze CMOS inverter for i)		
	(W/L)pmos>(W/L)nmos ii) (W/L)pmos=(W/L)nmos iii)		
	(W/L)pmos<(W/L)nmos.		
	Do parasitic extraction. Feed these parasitic in circuit simulator and do		
	layout versus schematic verification.		
2	Draw and simulate layout for the following circuits. Size them with	3,5	5
	respect to reference inverter.		
	a. CMOS NAND		
	b. CMOS NOR		
	Also observe the effect of different types of design rules on above		
	circuits and tabulate the comparative results		
3	Draw and simulate layout for the given equation (each student will get	3,5	5
	different equation $[y = \overline{A.B + C.D}]$) with the following design style		
	a. Static CMOS		
	b. Transmission gate		
	c. Dynamic Logic		
4	Simulate n type and p type MOSFETs (bulk, SOI and Double Gate) to	1,4	5
	obtain family of ID-VG and ID-VD characteristics. Compare the		
	results obtained.		
	(Tool: a TCAD lab on nanohub.org)		
5	Simulate Carbon Nanotube MOSFET for different conditions (e.g.	1,3	5
	gate/drain voltage sweep, threshold voltage etc.) and comment on the		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	1,3results obtained.							
	(Tool: FETToy on nanohub.org)							
6	Simulate Silicon Nanowire MOSFET for different conditions (e.g.	1,3	5					
	gate/drain voltage sweep, threshold voltage etc.) and comment on the							
	results obtained.							
	(Tool: FETToy on nanohub.org)							
7	Simulate FinFET to plot energy band diagram and IV characteristics	4	5					
	for different values of gate and drain bias. Comment on the results							
	obtained.							
	(Tool: MuGFET on nanohub.org)							
8	Simulate SOI MOSFET and plot its characteristics.	2, 4	5					
	(Tool: Visual TCAD/Mentor)							
	Total N	Aarks	40					

- [1] www.nanohub.org
- [2] Visual TCAD lab manual
- [3] James D. Plummer, Michael D. Deal and Peter B. Griffin, "Silicon VLSI Technology", Pearson, Indian Edition
- [4] Jean-Pierre Colinge, "FinFETs and Other Multigate Transistors", Springer, 1st edition
- [5] Microwind User Manual

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			C	ned		
Code		L	T	P	L	T	P	Total
				2			1	1
EXL703	Power Electronics –II Laboratory	Examination Scheme						
EXL/03		ISE		ESE			Total	
				Prac	ctical	О	ral	
		40			2	20	60	

Pre-requisite	Course	e Codes EXC703 (Power Electronics - II)					
After successful completion of the course, student will be able to							
	CO1	Make use of simulation tool to simulate power electronic system and					
Course		comment on its performance					
Outcomes	CO2 Analyze converters considering their practical issues						
Outcomes	CO3	Construct model of DC-DC converters using different techniques					
	CO4	Analyze the given DC and AC drives					

Exp. No.	Experiment Details	Ref.	Marks
1	Evaluation of the effect of source Inductance on performance of Half wave controlled rectifier.	3	5
2	Evaluation of the effect of source Inductance on performance of Full wave controlled rectifier.	3	5
3	Analysis of Space Vector Modulated 3 phase VSI using Simulation software.	3	5
4	Analysis of 3 phase PWM VSI using Simulation software.	3	5
5	Analysis of Semi-Converter Drive used for driving separately excited DC Shunt Motor	1	5
6	Analysis of Full-Converter Drive used for driving separately exciter DC Shunt Motor.	1	5
7	Speed control analysis of 3 phase induction motor using V/F method.	4	5
8	Feedback control of Buck/Boost converter using PMLK.	3	5
	Total N	larks	40

References:

1. M. Rashid, Power Electronics: Circuits, Devices, and Applications, PHI, 3rd Edition.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

- 2. By M. D. Singh, K. B. Khanchandani, Power Electronics, Tata McGraw Hill, 2nd Edition.
- 3. Mohan, Undeland and Riobbins, Power Electronics: Converters, Applications and Design, Wiley (Student Edition), 2nd Edition.
- 4. P. S. Bimbhra, Power Electronics, Khanna Publishers, 2012.
- 5. R. W. Erickson, D. Maksimovic, Fundamentals of Power Electronics, Springer, 2nd Edition.
- 6. J. P. Agrawal, Power Electronics Systems: Theory and Design, Pearson Education, 2002.
- 7. S. Bacha, I. Munteanu and A. Bratcu, Power Electronic Converters: Modeling and Control, Springer-Verlag, 2014.
- 8. H. Sira-Ramírez, R. Silva-Ortigoza, Control Design Techniques in Power Electronics Devices, Springer-Verlag, 2006

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			C	ned		
Code		L	T	P	L	T	P	Total
				2			1	1
EXL704	Computer Communication Networks Laboratory	Examination Scheme						
EXL/U4		ISE			ESE			Total
				Prac	ctical	0	ral	
		40		-	-	2	20	60

Pre-requisite Course Codes			EXC704 (Computer Communication Networks)				
After successf	ul comp	letion of the co	urse, student will be able to				
	CO1	Identify the so	cope of various networking commands in real time scenario				
Course	CO2	Create socket	programming for linux with a server and client				
Course Outcomes	CO3	Compose pro	gram to get logical results related to data link layer protocols				
Outcomes	CO4	Adapt open so	ource packet analyzers for communication networks				
	CO5	Implement se	cure client server environment				

Exp. No.	Experiment Details	Ref.	Marks
1	Get acquainted with some commonly used networking commands	1	5
2	FTP Server Configuration	1	5
3	Web Server Configuration	1	5
4	Firewall Configuration	1	5
5	Simulate a network using Packet Tracer	2	5
6	Design Ethernet using opnet software	3	5
7	Design Token Ring using opnet software	3	5
8	Design Switched Lan using opnet software	3	5
	7	Total Marks	40

- [1] CCN Lab manual
- [2] Packet Tracer software
- [3] Opnet software and manual

(Autonomous Institute Affiliated to University of Mumbai)

Course	Course Name		ning Scl Irs/weel		C	Credits	s Assig	ned
Code	,	L	T	P	L	T	P	Total
	Digital Image Processing Laboratory			2			1	1
		Examination Scheme						
EXL7051		ISE			ESE			Total
				Practical		Oral		
		4	0	-		2	20	60

Pre-requisite	Course	e Codes EXC7051 (Digital Image Processing)
After successf	ul comp	letion of the course, student will be able to
	CO1	Discuss the fundamental concepts of digital image processing
Course	CO2	Discuss image enhancement and segmentation techniques
Course Outcomes	CO3	Apply suitable operators for binary image processing
Outcomes	CO4	Apply suitable transform techniques on digital image
	CO5	Discuss digital image compression and decompression techniques

Exp. No.	Experiment Details Re	f.	Marks
1	Image Enhancement [Any one Experiment]		5
	1.To enhance image using Histogram Equalization		
	2. To enhance image using Contrast Stretching		
2	Image Enhancement [Any one Experiment]		5
	1. To enhance image using spatial filtering		
	2. To perform Colour Image Enhancement		
3	Image Segmentation [Any one Experiment]		5
	1. To find edges using LOG and DOG		
	2. To find Edges using Prewit/ Sobel/ Fri-chen / Robert operators.		
4	Image Segmentation [Any one Experiment]		5
	1. To find edges using canny Edge Detection.		
	2. To implement Morphological Operators		
5	Image Compression [Any one Experiment]		5
	1. To compress using Huffman coding		
	2. To compress DCT coefficient of Image		
6	Image Compression [Any one Experiment]		5
	1. To compress Wavelet Coefficient of Image.		
	2. To compress Binary Image using Run Length Coding		
7	Digital Watermarking		5
8	Person Tracking using DWT		5
	Total Mark	KS	40

References:

As recommended by faculty.

Course Code	Course Name		ning Scl Irs/weel		C	Credits	s Assig	Assigned	
Code		L	T	P	L	T	P	Total	
				2			1	1	
				Examin	ation S	chem	е		
EXL7052	Artificial Intelligence	IS	SE .		ES	E		Total	
				Prac	ctical	О	ral		
		4	0	-		2	20	60	

Pre-requisite Course Codes		e Codes EXC7052 (Artificial Intelligence)
After successf	ul comp	letion of the course, student will be able to
		Evaluate mathematical model of binary classification
		Validate training and testing of neural network algorithms
Outcomes	CO3	Construct a model of fuzzy controller
	CO4	Develop neural network based application

	Experiment Details	Ref.	Marks	
Aim:	Develop a Radial Basis Function Network (RBFN) for speech		5	
(gend	er) recognition			
Probl	em definition:			
i)	Collect audio samples for different gender(20 for male & 20 for			
	female)			
ii)	Train RBFN network			
iii)	Vary spread parameter			
iv)	Calculate efficiency for different values of spread factor			
			5	
_	e e e e e e e e e e e e e e e e e e e			
Probl	em definition:			
i)	Collect audio samples for different gender(20 for male & 20 for			
	, , , , , , , , , , , , , , , , , , ,			
- '			_	
			5	
i)				
ii)	Train PNN network			
iv)	Calculate efficiency for different values of spread factor			
	(gend Problem i) ii) iii) iii) iv) Aim: gende Problem iii) iii) iii) iiii) iiii) iiii) iiii)	female) ii) Train RBFN network iii) Vary spread parameter iv) Calculate efficiency for different values of spread factor Aim: Develop a Generalized Regression Neural network for speech gender recognition Problem definition: i) Collect audio samples for different gender(20 for male & 20 for female) ii) Train GRN network iii) Vary spread parameter iv) Calculate efficiency for different values of spread factor Aim: Develop a Probabilistic Neural network for speech (gender) recognition Problem definition: i) Collect audio samples for different gender(20 for male & 20 for female) ii) Train PNN network iii) Vary spread parameter	(gender) recognition Problem definition: i) Collect audio samples for different gender(20 for male & 20 for female) ii) Train RBFN network iii) Vary spread parameter iv) Calculate efficiency for different values of spread factor Aim: Develop a Generalized Regression Neural network for speech gender recognition Problem definition: i) Collect audio samples for different gender(20 for male & 20 for female) ii) Train GRN network iii) Vary spread parameter iv) Calculate efficiency for different values of spread factor Aim: Develop a Probabilistic Neural network for speech (gender) recognition Problem definition: i) Collect audio samples for different gender(20 for male & 20 for female) ii) Train PNN network iii) Vary spread parameter	

4	Aim: Develop a Competitive layer Neural network for speech recognition for gender classification Problem definition: i) Collect audio samples for different gender(20 for male & 20 for female) ii) Train CLNN network iii) Vary learning rate for kohonen weights iv) Calculate efficiency for different values of learning rate	5
5	Aim: Develop a Cascade Forward Neural network for speech	5
	recognition forgender classification Problem definition:	
	i) Collect audio samples for different gender(20 for male & 20 for female)	
	ii) Vary the hidden layer	
	iii) Train CFNN network	
	iv) Calculate efficiency for different values of hidden layer	
6	Aim: Develop a Linear Vector Quantization Neural network for speech recognition forgender classification Problem definition:	5
	i) Collect audio samples for different gender(20 for male & 20 for female) out of which 10 samples for testing and 10 samples for training.	
	ii) Vary the hidden layer	
	iii) Train LVQ network	
	iv) Calculate efficiency for different values of hidden layer	
7	Aim: Develop a Feed Forward Neural Network for speech recognition for gender classification Problem definition: i) Collect audio samples for different gender(20 for male & 20 for female) out of which 10 samples for testing and 10 samples for training.	5
	ii) Vary the hidden layer	
	iii) Train FFNN network	
	iv) Calculate efficiency for different values of hidden layer	
8	Aim: Develop a Pattern recognition Neural Network for speech recognition for gender classification Problem definition: i) Collect audio samples for different gender(20 for male & 20 for female) out of which 10 samples for testing and 10 samples.	5
	female) out of which 10 samples for testing and 10 samples for training.	
	ii) Vary the hidden layer	

(Autonomous Institute Affiliated to University of Mumbai)

	iii) Tracia DDNN raturada	
	iii) Train PRNN network	
	iv) Calculate efficiency for different values of hidden layer	
9	Aim: Develop a Support Vector Machine (SVM) model for speech	5
	(gender) recognition	
	Problem definition:	
	i) Collect audio samples for different gender(20 for male & 20 for	
	female) out of which 10 samples for testing and 10 samples	
	for training.	
	ii) Feature extraction of samples	
	iii) Training & testing using SVM model	
	iv) Calculate of efficiency	
10	Aim: To implement the working of Fuzzy logic	5
	Problem definition:	
	i) Initialize a fuzzy logic controller example	
	ii) Observe the variations in the output for change in rules	
	,	
	Total Mar	ks 40

References:

As recommended by faculty.

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	T	P	L	T	P	Total
				2			1	1
		Examin			nation Scheme			
EXL7053	ASIC Verification Lab	IS	SE .		ES	SE .		Total
				Prac	ctical	0	ral	
		4	0	_		2	20	60

Pre-requisite	Course	e Codes	EXC7053 (ASIC Verification)		
After successf	ul comp	letion of the co	ourse, student will be able to		
	CO1 Install and use modern tools available for verification				
	CO2	Compose the	SystemVerilog code for verification		
Course	CO3	Construct tes	tbench for verification		
Outcomes	CO4	Investigate th	ne given verification code		
	CO5 Validate the code under constrained environments				
	CO6	Debate the re	esults of verification tool		

Exp. No.	Experiment Details	Ref.	Marks
1	1. Simulate verilog code for	1,2	5
	a. D Flip-Flop (Using EDA Playground)		
	b. 2:1 Mux : Using case Statement		
	c. 4-bit Ripple Carry Full Adder by instantiating one bit full adder		
	d. D Flip Flop using gates		
	e. Example for blocking and non-blocking statements		
	f. 8-Bit Up Counter With Load		
	Do simulation, synthesis, implementation and physical verification of		
	any one of above Verilog design of your choice on given CPLD/FPGA		
	platform.		
2	Complete the given task on literals and data types in SystemVerilog	3,4	5
	Also write the simulation output for the given Procedural Statements		
3	Write the simulation output for the given Interprocess Communication	3,4	5
4	Write the simulation output for the given randomization code	3,4	5
5	Write the simulation output for the given Interfaces, Program and	3,4	5
	Clocking Blocks		
6	Write the simulation output for the given Processes	3,4	5
7	Write the simulation output for the given Functional Coverage	3,4	5
8	Write the simulation output for the given Assertions	3,4	5
	Total N	Iarks	40

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

- [1] Spartan and Virtex family user manuals from Xilinx
- [2] Verilog Language Reference manual
- [3]System Verilog Language Reference manual
- [4] Chris Spear, "System Verilog for Verification: A guide to learning the testbench language features", Springer, 2nd Edition

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	T	P	L	T	P	Total	
	Optical Fiber Communication Laboratory			2			1	1	
				Examin	nation Scheme				
EXL7054		ISE			ES	SE		Total	
	Laboratory			Prac	ctical	0	ral		
		40				20		60	

Pre-requisite Course Codes			EX	EXC7053 (Optical Fiber Communication)						
After successful completion of the course, student will be able to										
	CO1	Discuss the f	funda	amental _I	principles of	optics	and l	ight wave	e	
	CO2	Describe cor	ıstru	ction and	d working pr	inciple	e of o	ptical fib	er comm	unication
~		system								
Course	CO3	Outline trans	smiss	sion char	acteristics of	optica	al fibe	er		
Outcomes	CO4	Discuss oper	atior	nal princ	iple optical n	etworl	ks			
	CO5	Calculate li	Calculate link budget parameters and list several optical network							
		management	func	ctions						

Exp. No.	Experiment Details	Ref.	Marks
1	Measurement of Numerical Aperture of a given optical fiber.		5
2	Measurement of propagation loss and bending loss of two different wavelengths.		5
3	Study of characteristics of fiber optics LED and photo-detector.		5
4	Study the characteristics of LASER.		5
5	Study of Eye Pattern.		5
6	Study and measurement of bit error rate.		5
7	Fiber optic bi-directional communication		5
8	Wavelength Division Multiplexing		5
	Total N	Marks	40

References:

As recommended by faculty.

(Autonomous Institute Affiliated to University of Mumbai)

Semester VII

Course Code	Course Name	S	achir chem s/we	e	Credits Assigned				
		L	T	P	L	T	P	Total	
	CMOS VLSI Design	4			4			4	
EXC801		Examination Scheme							
EACOUI		ISE		MSE			ESE		
		10		30	100 (60%	Weigh	tage)	

Pre-requisit	e Cour	se Codes	EXC302: Electronic Devices			
1			EXC303: Digital Circuits and Design			
			EXC402: Discrete Electronic Circuits			
			EXC502: Design With Linear Integrated Circuits			
			EXC601: VLSI Design			
			EXC702: IC Technology			
After success	sful con	npletion of	the course, student will be able to			
	CO1	Recogniz	e tradeoffs involved in analog VLSI Circuits			
	CO2	Analyze	basic building blocks of CMOS analog VLSI circuits			
Course	CO3	Evaluate	MOSFET based single stage and differential amplifiers			
Outcomes	Outcomes CO4 Design MOSFET based operational amplifier					
CO5 Analyze mixed signal circuits						
	CO6	Describe	layout techniques for analog circuits			

Module No.	Unit No.	Topics	Ref.	Hrs.					
1		CMOS analog building blocks		08					
	1.1	MOS Models: Necessity of CMOS analog design, Review of characteristics of MOS device, MOS small signal model, MOS spice models	1						
	1.2	Passive and Active Current Mirrors: Basic current mirrors, Cascode current mirrors and Active current mirrors	· · · · · · · · · · · · · · · · · · ·						
	1.3	Band Gap References: General Considerations, Supply-independent biasing, Temperature independent references, PTAT current generation and Constant Gm biasing	1						
2		Single Stage Amplifiers		10					
	2.1	Configurations: Basic concepts, Common source stage, Source follower, Common gate stage, Cascode stage	1						
	2.2	Frequency Response and Noise: General considerations, Commonsource stage, Source followers, Common-gate stage, Cascode stage and Noise in single stage amplifiers	1						
3		Differential Amplifiers		10					
	3.1	Configurations: Single ended and differential operation, Basic differential pair, Common-mode response, Differential pair with MOS loads, Gilbert cell	1						
	3.2	Frequency response and noise in differential pair	1						

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

4		MOS Operational Amplifiers		10
	4.1	Op-amp Design: General Considerations, performance parameters,	1,3,5	
		One-stage op-amps, Two-stage op-amps, Gain Boosting, Common-		
		mode feedback, Input range limitations, Slew Rate, Power supply		
		rejection, Noise in op-amps		
	4.2	Stability and Frequency Compensation: General Considerations,	1	
		Multipole systems, Phase margin, Frequency compensation,		
		compensation of two stage op-amps		
5		Mixed Signal Circuits		10
	5.1	Switch Capacitor Circuits: MOSFETs as switches, Speed	1	
		considerations, Precision Considerations, Charge injection		
		cancellation, Unity gain buffer, Non-inverting amplifier and integrator		
	5.2	Oscillators: General considerations, Ring oscillators, LC oscillators,	1	
		VCO		
	5.3	Phase-Locked Loop: Simple PLL, Charge pump PLL, Nonideal	1	
		effects in PLL, Delay locked loops and applications of PLL in		
		integrated circuits		
6		Analog Layout and other concepts		04
	6.1	Analog Layout Techniques: Antenna effect, Resistor matching,	1,2	
		capacitor matching, current mirror matching, floorplanning, shielding		
		and guard rings		
	6.2	AMS design flow, ASIC, Full custom design, Semi custom design,	1	
		System on Chip, System in package, Hardware software co-design		
			Total	52

- [1] B Razavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, First Edition.
- [2] R. Jacaob Baker, Harry W. Li, David E. Boyce, "CMOS Circuit Design, Layout, and Stimulation", Wiley, Student Edition
- [3] P. E. Allen and D. R. Holberg, "CMOS Analog Circuit Design", Oxford University Press, Third Edition.
- [4] Gray, Meyer, Lewis, Hurst, "Analysis and design of Analog Integrated Circuits", Willey, Fifth Edition

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
		L	T	P	L	T	P	Total	
	Advanced Networking Technologies	4			4			4	
EXC802		Examinat			nation	ation Scheme			
EAC002		ISE		MSE			ESE		
		10		30	100 (60%	Weigh	tage)	

Pre-requisite	e Cours	Codes EXE704: Con	nputer Communication Networks						
After successful completion of the course, student will be able to									
	CO1 Identify the significance of WPAN standards								
	CO2	Define the role of SO	fine the role of SONET, frame relay and ATM in efficient data transfer						
Course		through the network	•						
Outcomes	CO3	Discuss issues related	to network design, security threats and selection of						
		appropriate tools and te	oppropriate tools and techniques to resolve the same.						
	CO4	Illustrate the utility of v	various network management tools						

Module No.	Unit No.	Topics	Ref.	Hrs.			
1		Emerging Wireless Technologies		10			
	1.1	Wireless Personal Area Network – Bluetooth Bluetooth (IEEE 802.15.1), Definitions of the Terms Used in Bluetooth, Bluetooth Protocol Stack, Bluetooth Link Types, Bluetooth Security, Network Connection Establishment in Bluetooth, Network Topology in	7,8				
		Bluetooth, Bluetooth Usage Models					
	1.2						
	1.3	Model, Sensor Network Protocol Stack, ZigBee Technology, IEEE 802.15.4 LR-WPAN Device Architecture, IEEE 802.15.3a Ultra WideBand, Radio Frequency Identification.	8				
2		Optical Networking		06			
	2.1	ONET/SDH Standards, devices, DWDM, frame format, DWDM, Performance and design considerations.	3				
3		WAN Technologies		12			
	3.1	Frame: FR concept, FR specifications, FR design and VoFR and Performance and design considerations	3,6				
	3.2	ATM: The WAN Protocol: Faces of ATM, ATM Protocol operations. (ATM cell and Transmission) ATM Networking basics, Theory of Operations, B-ISDN reference model, PHY layer, ATM Layer (Protocol model), ATM layer and cell	3,6				
	3.3	Traffic Descriptor and parameters, Traffic Congestion control defined, AAL Protocol model, Traffic contract and QoS, User Plane overview,	3,6				

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		Control Plane AAL, Management Plane, Sub S3 ATM,ATM public services		
4		Network Design		08
	4.1	Network layer design, access layer design, access network capacity, network topology and Hardware and completing the access network	1	
		design.		
5		Network Security		08
	5.1	Security threats, safeguards and design for network security	2,3,4	
	5.2	Enterprise Network Security: DMZ, NAT, SNAT, DNAT, Port	2,3,4	
		Forwarding, Proxy, Transparent Proxy, Packet Filtering and Layer 7 Filtering		
6		Network Management and Control		08
	6.1	Network management definitions, functional areas (FCAPS), SNMP, RMON	5,6,10	
	6.2	Designing a network management solutions, Monitoring and control of network activity and network project management	5,6,10	
			Total	52

- [1] Data Network Design by Darren Spohn, McGraw Hill publications, Third Edition.
- [2] Data Communication and Network Security by Carr and Snyder, McGraw Hill Publications.
- [3] Communication Networks by Leon-Garcia and Indra Widjaja, Tata McGraw-Hill Publications, Second Edition.
- [4] Information Security by Mark Stamp and Deven Shah by Wiley Publications.
- [5] Behrouz A Forouzan, Data communications and Networking, McGraw-Hill Publication, Forth Edition.
- [6] William Stallings, Data Computer Communications, Pearson Education
- [7] Wireless communication and Networking-Vijay Garg, ELSEVIER Inc
- [8] Eldad Perahita, Next Generation wireless LANS, Cambridge Publication
- [9] Computer Networking by J. F. Kurose and K. W. Ross, Pearson Education
- [10] Local Area Networks by Gerd Keiser, McGraw-Hill Publication.

Course Code	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total	
	MEMS Technology	4			4			4	
EVC902		Examination Scheme							
EXC803		ISE		MSE			ESE		
		10		30	100 (60% Weightage)			tage)	

Pre-requisit	e Cours	se Codes EXC 404: Basic VLSI Design
_		EXC 604: IC Technology
After success	ful com	pletion of the course, student will be able to
	Discuss fundamental principles of MEMS devices including physical	
		operation and mathematical modeling.
	CO2	Outline basic properties of MEMS materials and selection criteria of these
Course Outcomes		materials for MEMS device fabrication.
Outcomes	CO3	Apply various fabrication processes for MEMS devices.
	CO4	Develop different concepts of micro system sensors and actuators for real-
		world applications.

Module No.	Unit No.	Topics	Ref.	Hrs.
1		Introduction to MEMS		04
	1.1	Introduction to MEMS & Real world Sensor/Actuator examples	1,3,6	
		(DMD, Air-bag, pressure sensors). MEMS Sensors in Internet of		
		Things (IoT), BioMedical Applications		
2		MEMS Materials and Their Properties		10
	2.1	Materials (eg. Si, SiO2, SiN, Cr, Au, Ti, SU8, PMMA, Pt); Important	6	
		properties: Young modulus, Poisson's ratio, density, piezoresistive		
		coefficients, TCR, Thermal Conductivity, Material Structure.		
		Understanding Selection of materials based on applications.		
3		MEMS Fab Processes – 1		11
	3.1	Understanding MEMS Processes & Process parameters for: Cleaning,	3,6	
		Growth & Deposition, Ion Implantation & Diffusion, Annealing,		
		Lithography. Understanding selection of Fab processes based on		
		Applications		
4		MEMS Fab Processes – 2		10
	4.1	Understanding MEMS Processes & Process parameters for: Wet &	3,6	
		Dry etching, Bulk & Surface Micromachining, Die, Wire & Wafer		
		Bonding, Dicing, Packaging. Understanding selection of Fab processes		
		based on Applications		
5		MEMS Devices		11
	5.1	Architecture, working and basic quantitative behaviour of Cantilevers,	1,2,3	
		Microheaters, Accelerometers, Pressure Sensors, Micromirrors in		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		DMD, Inkjet printer-head. Understanding steps involved in Fabricating above devices		
6		MEMS Device Characterization		06
	6.1	Piezoresistance, TCR, Stiffness, Adhesion, Vibration, Resonant frequency, & importance of these measurements in studying device behavior, MEMS Reliability	6	
		·	Total	52

- [1] N. Maluf, K Williams,"An Introduction to Microelectromechanical Systems Engineering" Artech House Inc, Second Edition.
- [2] Practical MEMS by Ville Kaajakari; Publisher: Small Gear Publishing
- [3] Microsystem Design by S. Senturia; Publisher: Springer
- [4] Analysis and Design Principles of MEMS Devices Minhang Bao; Publisher: Elsevier Science
- [5] Fundamentals of Microfabrication by M. Madou; Publisher: CRC Press; Second edition
- [6] Micro Electro Mechanical System Design by J. Allen; Publisher: CRC Press
- [7] Micromachined Transducers Sourcebook by G. Kovacs; Publisher: McGraw-Hill

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total
	Robotics	4			4			4
EV.C9041		Examination Scheme						
EXC8041		ISE	E MSE ESE					
		10		30	100 (60% Weightage)			tage)

Pre-requisit	e Cours	se Codes EXS 301 : Applied Mathematics III
		EXS 401 : Applied Mathematics IV
		EXC 404 : Principles of Control Systems
After success	sful con	npletion of the course, student will be able to
	CO1	Discuss the fundamentals of robotics.
	CO2	Apply the direct and inverse kinematics algorithm for robotic arm
Course		manipulation
Course Outcomes	CO3	Analyse the equations for velocity kinematics and Dynamics.
Outcomes	CO4	Discuss the concept of robot motion planning using different algorithms.
	CO5	Justify the need of trajectory planning and robot vision algorithms for robotic
		arm manipulation

Module No.	Unit No.	Topics	Ref.	Hrs.
1		Fundamentals of Robotics		03
	1.1	Robot Classification, Robot Components, Degrees of freedom, Joints, Coordinates, Coordinate frames, workspace, applications	1	
2		Forward & Inverse Kinematics of Robots		09
	2.1	Homogeneous transformation matrices, Inverse transformation matrices, Forward and inverse kinematic equations – position and orientation	2	
	2.2	Denavit-Hatenberg representation of forward kinematics, Inverse kinematic solutions, Case studies	2	
3		Velocity Kinematics & Dynamics		14
	3.1	Differential motions and velocities : Differential relationship, Jacobian, Differential motion of a frame and robot, Inverse Jacobian, Singularities.	2	
	3.2	Dynamic Analysis of Forces: Lagrangian mechanics, Newton Euler formulation, Dynamic equations of robots, Transformation of forces and moment between coordinate frames	2	
4		Robot Motion Planning		04
	4.1	Concept of motion planning, Bug Algorithms – Bug1, Bug2, Tangent Bug	3	
5		Potential Functions and Visibility Graphs		08
	5.1	Attractive/Repulsive potential, Gradient descent, wave-front planner, navigation potential functions, Visibility map, Generalized Voronoi	3	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		diagrams and graphs, Silhouette methods		
6		Trajectory Planning		08
	6.1	Trajectory planning, Joint-space trajectory planning, Cartesian-space	2	
		trajectories		
7		Robot Vision		06
	7.1	Image representation, Template matching, Polyhedral objects, Shape analysis, Segmentation, Iterative processing, Perspective transform.	1	
	•		Total	52

- [1] Robert Shilling, Fundamentals of Robotics Analysis and control, Prentice Hall of India
- [2] Saeed Benjamin Niku, "Introduction to Robotics Analysis, Control, Applications", Wiley India Pvt. Ltd., Second Edition.
- [3] Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia E. Kavraki and Sebastian Thrun, "Principles of Robot Motion Theory, Algorithms and Implementations", Prentice-Hall of India.
- [4] Mark W. Spong, Seth Hutchinson, M. Vidyasagar, "Robot Modeling & Control", Wiley India Pvt. Ltd.
- [5] John J. Craig, "Introduction to Robotics Mechanics & Control", Third Edition, Pearson Education, India.
- [6] Aaron Martinez & Enrique Fernandez, "Learning ROS for Robotics Programming", Shroff Publishers, First Edition.
- [7] Mikell P. Groover et.al, "Industrial Robots-Technology, Programming & applications", McGraw Hill, New York.

Course Code	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total	
	Mobile Communication	4			4			4	
EVC9042		Examination Scheme							
EXC8042		ISE		MSE			ESE		
		10		30	100 (60% Weightage)			tage)	

Pre-requisite Course Codes			EXC 704: Computer Communication Networks
			EXC: Digital Communication
After success	ful com	pletion of the	he course, student will be able to
	CO1	Identify tl	he blocks of cellular communication system
Course	CO2	Compare	GSM and CDMA standards
Course Outcomes	CO3	Explain 3	G mobile communication system
Outcomes	CO4	Identify tl	he requirements of 4G standards
	CO5	Discuss e	merging technologies

Module No.	Unit No.	Topics	Ref.	Hrs.
1		Cellular Communication System		10
	1.1	Introduction to Cellular Communications, Frequency reuse, Multiple Access Technologies	1,2	
	1.2	Cellular Processes: Channel assignment, Call Setup, Handoff strategies, interferences and system capacity	1	
	1.3	Traffic Theory: Trunking and grade of service, improving system capacity	1	
2		GSM		08
	2.1	GSM Network architecture, signaling protocol architecture, identifiers, channels, Frame structure, speech coding, authentication and security, call	1	
3		procedure, handoff procedure, services and features CDMA digital cellular standard (1S-95).		08
3	3.1	Frequency and channel specifications of IS-95, forward and reverse CDMA channel, packet and frame formats, mobility and radio resource management	1	00
4		3 G Mobile Communication System		10
-	4.1	2.5 G TDMA Evolution Path, GPRS, EDGE, 2.5G CDMA one cellular N/W, Need of 3G Cellular N/w, IMT 2000 Global Standard, UMTS Technology, W-CDMA Air interface, TD-SCDMA Technology, CDMA 2000 Cellular Technology	4	
5		4G Wireless Standards		08
	5.1	Need for 4G network, difference between 3G and 4G, LTE, WiMAX	4	
6		Emerging Technologies		08
	6.1	Mobile Adhoc Network, Mobile IP and Mobility Management, Mobile TCP, Wireless Sensor Networks, RFID Technology	4	
	L		Total	52

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

- [1] Wireless Communications Theodore S. Rappaport, Prentice Hall of India, PTR publication
- [2] Mobile & Personal Communication system & Services by Raj Pandya , Prentice –Hall of India (PHI) Private Limited
- [3] Principles of Wireless Networks-KavehPahlavan, Prashant Krishnamurthy, PHI
- [4] Wireless communication and Networking-Vijay Garg, ELSEVIER Inc
- [5] Wireless communication- Singhal_TMH
- [6] Fundamentals of Wireless Communications, "David Tse and Pramod Viswanath, Publisher, Cambridge University Press.
- [7] Wireless Communications: Andrea Goldsmith, Cambridge University Press.

Course Code	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned				
		L	T	P	L	T	P	Total		
		4			4			4		
EXC8043	Digital Control System	Examination Sch					me			
EAC0045	Digital Control System	ISE MSE ESE				ESE				
		10		30	100	(60%	Weigh	tage)		

Pre-requisite Course Codes			EXC404: Principles of Control System				
_			EXC504: Signals and Systems				
After successful completion of the course, student will be able to							
	CO1	Different control	ifferentiate between analog and digital control and importance of digital				
Course Outcomes	CO2		the model of digital control system				
Outcomes	CO3	Analyze	the digital control systems				
	CO4	Design d	igital controllers				

Module No.	Unit No.	Topics	Ref.	Hrs.
1		Introduction		12
	1.1	Why digital control system? Advantages and limitations, comparison of continuous and discrete data control, block diagram of digital control system	1,2,3	
	1.2	Data conversion and quantization, sampling and reconstruction of analog signal, zero and first order hold		
	1.3	Impulse invariance, bilinear transformation, finite difference approximation of derivatives		
2		Modeling of Digital Control System		04
	2.1	Linear difference equation, pulse transfer function, input output model	1,2,3	
	2.2	Examples of first order continuous and discrete time systems		
	2.3	Signal flow graph applied to digital control system		
3		Time Domain Analysis and Stability of Digital Control System		08
	3.1	Mapping between s plane and Z plane, Jury's method, R. H. criteria	1,2,3	
	3.2	Comparison of time response of continuous and digital control system		
	3.3	Steady state analysis of digital control system, effect of sampling on transient response		
4		State Space Analysis		08
	4.1	Discrete time state equation in standard canonical form, similarity transformation	1,2,3	
	4.2	State transition matrix, solution of discrete time state equation		
	4.3	Discretization of continuous state space model and its solution.		
5		Pole Placement and Observer Design		10
	5.1	Concept of reachability, controllability, constructability and observability	2,4	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	5.2	Design of controller using pole placement method, dead beat controller design		
	5.3	Concept of duality, state observer design, concept of multi rate output feedback based state estimation		
6		Transfer Function Approach to Controller Design		10
	6.1	Control structures, internal stability	1,3	
	6.2	Internal model principle and system type, well behaved signals		
	6.3	Discretization of PID controllers, pole placement controllers with performance specifications		
	*		Total	52

- [1] M. Gopal, "Digital Control and State Variable Methods", McGraw Hill companies, 3rd edition, 2009.
- [2] K. Ogata, "Discrete-Time Control Systems", PHI, Second Edition.
- [3] B. C. Kuo, "Digital Control Systems", Oxford University press, Second Edition.
- [4] K. M. Moudgalya, "Digital Control", Wiley India.

Course Code	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned				
		L	T	P	L	T	P	Total		
	Biomedical Electronics	4			4			4		
EXC8044		Examination Scheme								
EAC0044		ISE	E MSE ESE							
		10		30	100 (60% Weightage)					

Pre-requisit	e Cour	se Codes EXC305:Electronic Instruments and Measurements
_		FEC102,202: Applied Physics I and II
After success	sful con	apletion of the course, student will be able to
	CO1	Describe anatomy of human body and interpret bioelectric signals
	CO2	Analyze physiological systems, measurement of related bio-signals and its
Comman		instrumentation
Course Outcomes	CO3	Analyze cardiovascular system related measurement techniques
Outcomes	CO4	Analyze building blocks of life support instruments and imaging techniques
	CO5	Justify the importance of patient safety and hospital management system
	CO6	Adapt the norms related to biomedical electronics

Module No.	Unit No.	Topics	Ref.	Hrs.
1	110.	Bio-Potential and Measurement		08
	1.1	Structure of Cell, Origin of Bio-potential, electrical activity of cell their characteristic and specifications.	1,3	•
	1.2	Measurement of RMP and AP. Electrode-Electrolyte interface and types of bio-potential electrodes.	1,3	
2		Physiological Systems and Related Measurement		14
	2.1	Respiratory system- Physiology of respiration and measurements of respiratory related parameters	2,3	
	2.2	Cardiovascular system- Structure of Heart, Electrical and Mechanical activity of Heart, ECG measurements and Cardiac arrhythmias	2,3	
	2.3	Nervous system- Nerve cell, neuronal communication, nerve-muscle physiology, CNS, PNS. Generation of EEG and its measurement. Normal and abnormal EEG, evoked potential and epilepsy	2,3	
	2.4	Muscular system- Generation of EMG signal, specification and measurement.	2,3	
	2.5	Design of ECG amplifier (Pre-amplifier)	2	
3		Cardiovascular Measurement		08
	3.1	Blood Pressure- Direct and Indirect types. Blood Flow- Electromagnetic and Ultrasonic types. Blood Volume- Types of Plethysmography. (Impedance, Capacitive and Photoelectric) Cardiac Output- Flicks method, Dye-dilution and Thermo-dilution type.	2,3	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		Heart sound measurement		
4		Life support Instruments		08
	4.1	Pacemaker- Types of Pacemaker, mode of pacing and its application.	2,3	
		Defibrillator- AC and DC Defibrillators and their application.		
		Heart Lung machine and its application during surgery.		
		Haemodialysis system and the precautions to be taken during dialysis.		
		Baby Incubator and its application		
5		Imaging Techniques		10
	5.1	X-Ray- Generation, X-ray tube and its control, X-ray machine and its	2,3	
		application		
	5.2	CT Scan- CT Number, Block Diagram, scanning system and	2,3	
		application. Ultrasound Imaging- Modes of scanning and their		
		application		
	5.3	MRI- Concepts and image generation, block diagram and its	2,3	
		application		
6		Significance of Electrical Safety		04
	6.1	Physiological effects of electrical current, Shock Hazards from	1,2,3	
		electrical equipments and methods of accident prevention.		
			Total	52

- [1] Leslie Cromwell, "Biomedical Instrumentation and Measurements", Second Edition, Pearson Education, 1980.
- [2] John G. Webster, "Medical Instrumentation", John Wiley and Sons, Fourth edition, 2010.
- [3] R. S. Khandpur, "Biomedical Instrumentation", TMH, 2004
- [4] Richard Aston, "Principles of Biomedical Instrumentation and Instruments", PH, 1991.
- [5] Joseph J. Carr and John M. Brown, "Introduction to Biomedical Equipment Technology", PHI/Pearson Education, Fourth Edition, 2001.
- [6] John E Hall, Gyton's Medical Physiology, Twelfth Edition, 2011

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course	Course Name		eaching Scheme (Hrs/week) Credits Assigned				Teaching Scheme (Hrs/week)		gned
Code		L	T	P	L	T	P	Total	
				4			4	4	
	Project (Stage II)	Examination Scheme							
EXC806		Project (Stage II)	Term	Work	Prac	ctical	0	ral	Total
EACOU		Phase-III:50					50	200	
		Phase	-IV:50						
		TPl	P:25						
		PE	2:25						

TPP: Technical Paper Presentation; PE: Project Exhibition

Term Work:
The final year students have already under gone project assignment in their seventh semester and in this
semester the students are expected to continue the project work of stage I.

The college should keep proper assessment record of the progress of project and at the end of the semester it should be assessed for awarding TW marks. The TW should be examined by approved internal faculty appointed by the head of the institute on the basis of following:

semester it should be assessed for awarding 1 w marks. The 1 w should be examined by ap
internal faculty appointed by the head of the institute on the basis of following:
☐ Scope and objective of the project work.
☐ Extensive Literature survey.
□ Progress of the work (Continuous assessment)
☐ Design, implementation, and analysis of the project work.
☐ Results, conclusions and future scope.
☐ Report in prescribed University format.

An approved external examiner and internal examiner appointed by the head of the institute together will assess during oral examination. The oral examination is a presentation by the group members on the project along with demonstration of the work done. In the examination each individual student should be assessed for his/her contribution, understanding and knowledge gained.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	T	P	L	T	P	Total
				2			1	1
				Examin	ation S			
EXL801	CMOS VLSI Design Laboratory	ISE ESE					Total	
				Prac	ctical	0	ral	
		40 -		- 20		60		

Pre-requisite Course Codes EXC801 (CMOS VLSI Design)							
After successful of	After successful completion of the course, student will be able to						
CO1 Analyze tradeoffs in CMOS analog circuits after successful simulations							
Course	CO2	Compose SPICE code and simulate MOSFET based analog circuits					
Outcomes CO3 Validate characteristics of MOSFE		Validate characteristics of MOSFET based analog circuits via simulations					
	CO4	Solve the issues via troubleshooting the CMOS analog circuit					

Exp. No.	Experiment Details	Ref.	Marks	
1	Analysis of MOSFETs for analog performance	1,3	05	
2	Design and simulate various types of current mirror circuits	1,3	05	
3	Design and simulate various types of single stage amplifiers	1,3	05	
4	Design and simulate differential amplifier	1,3	05	
5	Design and simulate operational transconductance amplifier	2,3	05	
6	Design and simulate switch capacitor circuits	1,3	05	
7	Design and simulate various types of oscillators	1,3	05	
8	Generate layout for the simple and cascode current mirror	1,3	05	
	Total Marks			

- [1] R. Jacaob Baker, Harry W. Li, David E. Boyce, "CMOS Circuit Design, Layout, and Stimulation", Wiley, Student Edition.
- [2] P. E. Allen and D. R. Holberg, "CMOS Analog Circuit Design", Oxford University Press, Third Edition
- [3] LTSPICE Manual.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned				
Code		L	T	P	L	T	P	Total		
				2			1	1		
EXL802	Advanced Networking	Examination Scheme				е				
EAL802	Technologies Laboratory	ISE		ESE			Total			
				Prac	Practical		ral			
		4	10) -		1	20	60		

Pre-requisite Co	urse Co	odes EXC802 (Advanced Networking Technologies)					
After successful of	After successful completion of the course, student will be able to						
	Understand specification of Bluetooth and its various profiles						
	through FOSS and command prompt.						
Course							
Course	CO2	Understand system utilities for network management using various open					
Outcomes		source networking tools.					
	CO3	Perform a Vulnerability Analysis using security network analyzer.					

Exp. No.	Experiment Details	Ref.	Marks		
1	Identify the specifications of Bluetooth through command	2,3	05		
	prompt and GUI.				
2	Understand the system utilities for network management.	2,3	05		
3	To perform network audit of a LAN.	2,3	05		
4	To observe the statistics of application and service based network	2,3	05		
	management protocols				
5	Test a host to determine potential security vulnerabilities.	2,3	05		
6	Virtual Lab on identifying the different issues related to hidden	1	05		
	terminal problem and exposed terminal problem; also they can solve				
	and simulate with the open source network simulator NS2/NS3				
7	Virtual Lab on evaluating the network performance by using	1	05		
	performance evaluation matrix and NS2				
8	Case Study on Network Design and Management.	2,3	05		
	Total Marks				

References/Online Resources:

- 1. http://iitkgp.vlab.co.in/index.php?sub=38&brch=121
- 2. Wireless communication and Networking-Vijay Garg, ELSEVIER Inc
- 3. Computer Networking by J. F. Kurose and K. W. Ross, Pearson Education

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	T	P	L	T	P	Total
				2			1	1
EVI 902	MEMC Tacky alogy I above towy			Examin	ation S	chem	е	•
EXL803	MEMS Technology Laboratory	IS	ISE ESE		ESE			Total
				Practical		О	ral	
		4	0	-		2	20	60

Pre-requisite Co	urse Co	odes EXC803 (MEMS Technology)					
After successful completion of the course, student will be able to							
	CO1 Design and simulate MEMS devices and system using Industry graded						
		simulation tools like COMSOL and Coventorware.					
Course	CO2	Determine characteristics of given MEMS device using Hardware setup.					
Outcomes	CO3	Design and simulate MEMS devices and system using open source					
		simulation tools like sugar.					
	CO4	Relate the given literature with the studied concepts of MEMS.					

Exp. No.	Experiment Details	Ref.	Marks
1	Aim: To analyze MEMS cantilever in Matlab.	1,2,4	05
	Problem Statement: For the given MEMS cantilever with given		
	dimensions and uniformly distributed load a) To plot the variation in		
	stiffness constant (K) for varying length (L) keeping its width (W),		
	thickness (h) constant and different values of effective length		
	(λr=L/Lc) of uniformly distributed load.		
	b) To plot the variation in stiffness constant (K) for varying width (W)		
	keeping its length (L), thickness (h) constant and different values of		
	effective length (λr=L/Lc) of uniformly distributed load.		
	c) To plot the variation in stiffness constant (K) for varying thickness		
	(h) keeping its width (W), length (L) constant and different values of effective length (λr =L/Lc) of uniformly distributed load		
2	Aim: To model MEMS cantilever in COMSOL Multiphysics.	1,2,4	05
	Problem Statement: For the given dimensions and material create		
	MEMS cantilever model in COMSOL and observe the dependence of		
	resonance frequency of the cantilever on material.		

3	Aim: To analyze MEMS cantilever in COMSOL Multiphysics.	1,2,4	05
	Problem Statement: For the cantilever model analyze dependence of		
	fundamental resonance frequency on varying length (given range), plot		
	the result and also compare the result with analytical expression of		
	resonance frequency.		
4	Aim: To analyze MEMS Piezoelectric Harvester model.	1,2,3	05
	Problem Statement: Choose the proper configuration, dimensions and		
	the method of conversion (converter) for obtaining dc voltage from ac		
	voltage generated by the MEMS Piezoelectric Harvester. Obtain the		
	output voltage graph for any two different substrates materials against		
	Silicon as a substrate material.		
5	Aim: To analyze MEMS cantilever in Sugar Tool.	1,2,3	05
	Problem Statement: Choose the proper dimensions of MEMS		
	cantilever modeled in Sugar. Choose the proper co-ordinate and node		
	for applied point contact force. Observe and tabulate the maximum		
	displacement of the cantilever for at least three different values of		
	point contact load, verify one of the readings with given analytical		
	expression of maximum displacement of the cantilever.		
6	Aim: To model and analyze Piezoresitive Pressure Sensor in MEMS	1,2,4	05
	Design and Simulation FEM Tool (CoventorWare).		
	Problem Statement:		
	a) Choose the proper substrate; define the process flow and Layout of		
	Piezoresitive pressure sensor in MEMS Design and Simulation FEM		
	Tool (CoventorWare) and create a its 3 D Layout.		
	b) Observe the change in resistance of piezoresistance for given input		
	pressure. Compare this reading with the given analytical expression of		
	the change in resistance of the piezoresistace.		
7	Aim: To evaluate the performance of the fabricated MEMS micro-	1,2,4	05
	heater.		
	Problem Statement: For the given fabricated MEMS micro-heater,		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	Total M	Marks	40
	b) Observe and draw the effect of change in width of flexures on the deflection of the Hot Arm actuator.		
	actuator.		
	Hot Arm actuator before and after the deflection of the Hot Arm		
	c) Observe the spatial variation of electric potential, temperature of the		
	mask layout and draw the final structure.		
	a) Describe the complete process flow, schematic representation of the		
	COMSOL Multiphysiscs,		
	Problem Statement: For the given model of Hot Arm actuator in		
	Multiphysiscs.		
8	Aim: To model and analyze the Hot Arm actuator in COMSOL	1,2,4	05
	test voltages like square, Ramp, and sinusoidal.		
	b) To plot the temperature response of heated membrane to standard		
	excitation voltage and compare it with the given analytical expression.		
	a) To measure the temperature of the heated membrane for the input		

- [1] Practical MEMS by Ville Kaajakari; Publisher: Small Gear Publishing
- [2] Microsystem Design by S. Senturia; Publisher: Springer
- [3] www.nanohub.org
- [4] MEMS Technology Laboratory Manual

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	T	P	L	T	P	Total
				2			1	1
EXC8041	Robotics	Examination Scheme					е	
EAC0041	Robotics	ISE ESE		Total				
				Prac	Practical		Oral	
		4	0	•	-	2	20	60

Pre-requisite Co	urse C	odes EXC8041 (Robotics)					
After successful of	After successful completion of the course, student will be able to						
	CO1	Develop inverse and direct kinematics algorithm for robotic arm					
		manipulation using suitable platform					
CO2 Differentiate the performance of motion planning algorithms							
Outcomes	Outcomes CO3 Develop image processing algorithm for robotic arm manipulation						
	CO4 Operate the robotic arm manipulator and verify its specifications						
	CO5	Perform in a team to execute a given robotic task					

Exp. No.	Experiment Details	Ref.	Marks
1	Generation of PWM Signal for motor control	1	05
2	Digital control algorithm for self-balance ROBOT	1	05
3	Simulation of CTM in MATLAB	2	05
4	Implement Bug 0 Algorithm	2,3	05
5	Implement Bug 2 Algorithm	2,3	05
6	Control Algorithm 6 DOF Robot	1	05
7	Thresholding, Histogram and Edge detection of Digital Image	2	05
8	Position control of DC motor using NI Elvis	1	05
		Total Marks	40

- [1] LabVIEW & myRIO user manual
- [2] www.mathworks.com
- [3] Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia E. Kavraki and Sebastian Thrun, "Principles of Robot Motion Theory, Algorithms and Implementations", Prentice-Hall of India, 2005.

Course Code	Course Name	Teaching Scheme (Hrs/week)			C	Credits Assigned		ned
Code		L	T	P	L	T	P	Total
				2			1	1
EXC8042	Mobile Communication	Examin			ation S	ation Scheme		
		IS	SE	Prac	ctical	0	ral	Total
		4	0		-	2	20	60

Pre-requisite Co	urse C	odes EXC8042 (Mobile Communication)
After successful of	complet	ion of the course, student will be able to
Campa	CO1	Explain basic building block of mobile communication system
Course Outcomes	CO2	Illustrate Mobile information using android applications
Outcomes	CO3	Analyze the Virtual Lab for different mobile communication technologies.

Exp. No.	Experiment Details	Ref.	Marks
1	AIM: List Hardware Components of Mobile Communication	5	05
	Networks. (Mobile Phone, Antenna, BTS,PSTN) List Software Components of Mobile Communication Networks.		
	(Bluetooth Protocol Stack, WML, HTML, Browsers)		
2	AIM: Find mobile specifications and signal specifications using different android applications.(G-Net Track Lite, Network Cell)	1	05
3	AIM: WAP to implement cell splitting method to improve coverage area of cellular system. Simulation to implement capacity of cellular system. (Scilab or Matlab)	4	05
4	AIM: To understand the cellular frequency reuse concept fulfilling the following objectives I. finding the co-channel cells for a particular cell. II. Finding the cell clusters within certain geographic area.	2	05
5	AIM: To understand the handover mechanism. Objectives: To study the effect of handover threshold and margin on SINR and call drop probability and handover probability.	2	05
6	AIM: Understand about WiMAX networks, standards, limitations. Get familiar with adaptive modulation techniques used with WiMAX.	3	05
7	AIM: Understand about the basics of Mobile Ad-hoc Networks (MANETs) and different routing protocols. Setup a network with wireless nodes using ns2. Get familiar with the different characteristics of MANET through simulations	3	05

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

8	Understand basic concepts about Wireless Sensor Networks (WSNs),	3	05
	types, applications of WSN. Gain familiarity with LEACH, a cluster		
	based routing protocol for WSNs.		
	Total M	larks	40

- [1] G-NetTrack Lite Android application.
- [2] Fading Channels and Mobile Communications Virtual Lab
- [3] IIT Khargpur Virtual Lab http://vlabs.iitkgp.ernet.in/ant
- [4] Matlab / Scilab
- [5] Internet

Course Code	Course Name	Teaching Scheme (Hrs/week)		C	Credits Assigned		ned	
Code		L	T	P	L	T	P	Total
				2			1	1
		Examination Scheme						
EXL8044	Biomedical Electronics	IS	SE		ES	E		Total
				Prac	ctical	0	ral	
		4	0	-		2	20	60

Pre-requisite Course Codes		odes EXC8044 (Biomedical Electronics)				
After successful of	complet	ion of the course, student will be able to				
	CO1	Evaluate design of building blocks for various medical instruments				
	CO2	Measure various bioelectric signals using advanced electronics techniques				
Course	CO3	Justify the necessity and principle of operation of health related medical				
Outcomes		instruments used in hospital				
	CO4	Justify the importance of patient safety				
	CO5	Check biomedical equipment related standards				

Exp. No.	Experiment Details	Ref.	Marks
1	Aim: Simulate the instrumentation amplifier with TINA SPICE and	1,2	05
	plot frequency response. Implement the instrumentation amplifier		
	with Texas Instruments ALSK or on bread board. Compare and		
	discuss the simulation and experimental results.		
	Objective: In this experiment student should understand the need of		
	instrumentation amplifier in biomedical instrumentation. Also		
	should able to design and implement IA with high value of gain		
	(>1000) and CMRR.		
	Tasks: i) Simulate IA for high value of gain and CMRR & obtain		
	frequency response.		
	ii) Implement IA using hardware components with same		
	values		
	& plot frequency response.		
	iii) Verify simulation and hardware results.		
2	Aim: To design, simulate and implement notch filter (50Hz). Plot	1,2	05
	the frequency response and compare experimental results with		
	simulation results.		
	Objective: In this experiment student should understand the need of		
	Notch filter in biomedical instrumentation. Also should able to		
	design and implement notch filter.		

	Tasks: i) Simulate notch filter & obtain frequency response ii) Implement notch filter using hardware components with same values & plot frequency response.		
	iii) Verify simulation and hardware results.		
3	Aim: To obtain, measure and analyze simulated and real time ECG waveforms using simulator board ST2351 and ST2352. Objective: In this experiment student should understand the measurement procedure for ECG using ST2351 and ST2352 boards. Also student should understand various lead configurations and their importance and able to analyze the recorded ECG's. Depending on the nature of ECGgraph and measured values student should able to identify the abnormalities if any.	3	05
	Tasks: i) Record simulated ECG using ST2351 board. ii) Record real time ECG using ST2352 board for different lead configurations. iii) Compare simulated & real time ECG and note down values of amplitude, time duration, etc; for P, QRS, T & U segments. iv) Note down the value of heart rate for real time ECG and identify abnormalities if any.		
4	Aim: To record and analyze real time ECG waveform using ECG sensor, Ni-Elvis and LabView. Objective: In this experiment student should understand the recording procedure for ECG using biomedical electronics toolbox of Labview and NI-Elvis kit. Also student should understand the interfacing of hardware components electrodes-protoboard-NI-Elvis-PC with Labview. Tasks: i) Develop a VI to plot real time ECG graph using Labview and NI-Elvis. ii) Using Biomedical electronics toolbox plot ECG graphs for various abnormalities. iii) Compare normal and abnormal ECG graphs.	4	05
5	Aim: To record and analyze real time EEG waveform using EEG sensor, Ni-Elvis and LabView. Objective: In this experiment student should understand the recording procedure for EEG using biomedical electronics toolbox of Labview and NI-Elvis kit. Also student should understand the interfacing of hardware components electrodes-protoboard-NI-Elvis-PC with Labview. Tasks: i) Develop a VI to plot real time EEG graph using Labview	4	05

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	and NI-Elvis.		
	ii) Using Biomedical electronics toolbox plot EEG graphs for		
	various abnormalities.		
	iii) Compare normal and abnormal EEG graphs.		
6	Aim: To record and analyze real time EMG waveform using EMG	4	05
	sensor, Ni-Elvis and Labview.		
	Objective: In this experiment student should understand the		
	recording procedure for EMG using biomedical electronics toolbox		
	of Labview and NI-Elvis kit. Also student should understand the		
	interfacing of hardware components electrodes-protoboard-NI-Elvis-		
	PC with Labview.		
	Tasks: i) Develop a VI to plot real time EMG graph using Labview		
	and NI-Elvis.		
	ii) Using Biomedical electronics toolbox plot EMG graphs		
	for		
	various abnormalities.		
	iii) Compare normal and abnormal EMG graphs.		
7	Aim: Design, implement and demonstrate various circuits for		05
	implementation of biomedical data acquisition/ instrumentation		
	system (Innovative – Application/Project based learning)		
8	Aim: To demonstrate Medical instruments X-ray machine, CT	Based	05
	machine, MRI machine, Defibrillator, Pacemaker, Bedside monitor,	on	
	Dialysis machine, Anesthesia machine and electrosurgical unit	hospital	
	Objective: In this experiment students will understand the working	visit	
	principle of imaging instruments. Also students should able to		
	differentiate between X-ray machine, CT machine and MRI		
	machine.		
	Tasks: Draft a detailed report on imaging instruments mentioning		
	model number of the instruments, name of the company,		
	specifications, working principle, procedure, safety & precautions.	-1 M - 1	40
	1 Ota	al Marks	40

- 1. John G. Webster, "Medical Instrumentation", John Wiley and Sons, 4th edition, 2010.
- 2. R. S. Khandpur, "Biomedical Instrumentation", TMH, 2004.
- 3. ST2351 & ST2352 Manual
- 4. www.ni.com