

Principal Sardar Patel Institute of Technology Bhavans Andheri Campus Munshi Nagar, Andheri (West), Mumbai - 400 058.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Preamble:

Concept of academic autonomy is based on the argument that Institutions can undertake the work expected of them by all stakeholders such as Students , Parents , University , Industry , Society in general, only if they have freedom of choice and action.

We at S.P.I.T. would like to believe that this freedom of choice and action as far as academics is concerned will make us more Proactive in our offerings.

An academic autonomy is as good as its Curricula and execution of it is as well as its faculty. S.P.I.T. is confident of succeeding on both the fronts.

In the first offering we have tried to pro-actively bridge the ever discussed "Industry-academic gap" by way of our SCOPE program. The issue about sensitizing students to social needs is being addressed by special activity based courses. Liberal arts courses have been introduced to enhance functionality of both sides of brain. In all this the professional core has not been overlooked. Thus the curricula are designed to achieve multi dimensional outcomes.

The evaluation mechanism is tuned for assessing the attainment of the designed outcomes and is designed as a fair mechanism.

As our learning cycle begins from July 2017, I wish to place on record that entire S.P.I.T. staff and faculty will work with singular focus and commitment towards the success of this endeavour.

Dr. Prachi Gharpure Principal, S.P.I.T.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

From the Desk of Dean Academics and Head of Electronics Engg. Dept.

Greetings and congratulations to all the students, teaching and supporting staff of Sardar Patel Institute of Technology for getting autonomous status to the institute from the year 2017-18. We look towards autonomy as a great opportunity to design and implement curriculum sensitive to needs of Indian Society and Industries.

In the proposed curriculum we have made an attempt to provide opportunity for students to develop themselves as competent engineering graduates with knowledge, skill and ethical behavior required for global career. Curriculum is designed to provide multiple learning opportunities for students to acquire

and demonstrate competencies for rewarding careers. The curriculum model is outcome based that focuses on learning by doing. This is achieved through activity based learning, minor projects, problem solving and innovative styles of pedagogy. Various steps are taken to transform teaching-learning process to make learning a joyful experience for students. Special laboratory based courses are introduced to give more practical exposure to the students.

To create socially responsible citizen curriculum offers courses like Constitution of India, Environmental Studies and Human Health Systems Approach. Also various activity based learning modules like 'Building Automation, Fire Safety and Electronic Security', 'Occupational Safety & Legal Studies for Engineers', 'Technical Presentation Skills', 'Technical Paper and Patent Drafting', 'Engineering Solution for Environmental Problems' and 'Financial Planning, Taxation Policies and Investment' are introduced. For overall development of the learner, various elective courses like Yoga Vidya, Music Appreciation, Dramatics, Industrial and Organizational Psychology, Law for Engineers, French Language, German Language etc. are introduced. To encourage interdisciplinary studies institute level Open Elective courses are offered.

One of the special feature of this curriculum is Skill development programme called SCOPE (Skill Certification for Outcome-Based Professional Education) planned to enhance employability, innovation and research culture in the institute. Every department is offering six domain specific tracks, each track containing six courses. Student will have an opportunity to enroll for more than 140 courses in any of the department of his choice. Some of the courses under SCOPE will be delivered in co-ordination with industries.

We believe that this curriculum will raise the bar of academic standards with the active involvement and cooperation from students, academic and administrative units. Faculty of S.P.I.T. deserves a special appreciation for their relentless efforts in designing curriculum and assessment instruments which will bring transformation in the quality and transparency in assessment of learners.

Looking forward for your active cooperation and constructive feedback to create vibrant and joyful learning environment at Sardar Patel Institute of Technology.

Dr. Surendra Singh Rathod Professor and Dean Academics

(Autonomous Institute Affiliated to University of Mumbai)

Scheme for B.E./B.Tech Electronics Engineering (SEM V)							
SEM V							
Course	Course Name	Teach	ing S	cheme	Credits		
Code		(H)	rs/we	ek)			
		L	Т	Р	Total		
EXC501	Microcontrollers and Applications	4			4		
EXC502	Design with Linear Integrated Circuits	4			4		
EXC503	3 Electromagnetic Engineering 4						
EXC504	Signals and Systems	4	1		5		
EXC505	Digital Communication	4			4		
EXS506	Business Communication and Ethics			*4	2		
EXL501	Microcontrollers and Applications			2	1		
	Laboratory						
EXL502	Design with Linear Integrated Circuits			2	1		
	Laboratory						
EXL503	Digital Communication Laboratory			2	1		
EXL504	Mini Project I			2	2		
	Total	20		10+02	28		

*Common to all branches

Scheme for B.E./B.Tech Electronics Engineering (SEM VI)						
	SEM VI					
Course	Course Name	Teach	ing S	cheme	Credits	
Code		(H	rs/we	ek)		
		L	Τ	Р	Total	
EXC601	Basic VLSI Design	4			4	
EXC602	Advanced Instrumentation Systems	4			4	
EXC603	Computer Organization	4			4	
EXC604	Power Electronics I	4			4	
EXC605	Digital Signal Processing and Processors	4			4	
EXC606	Modern Information Technology for	2			2	
	Management					
EXL601	VLSI Design Laboratory			2	1	
EXL602	Digital Signal Processing and Processors			2	1	
	Laboratory					
EXL603	Advanced Instrumentation and Power			2	1	
	Electronics Laboratory					
EXL604	Mini Project II			2	2	
	Total	22		8	27	

(Autonomous Institute Affiliated to University of Mumbai)

Semester V

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	P	L	Т	Р	Total
	Microcontrollers and Applications	4			4			4
EV.C501		Examination Scheme						
EAC501		ISE		MSE	ESE			
		10		30	100 (60% Weightage			tage)

Pre-requisit	e Cours	se Codes EXC303: Digital Circuits and Design
-		EXC402: Discrete Electronic Circuits
		EXC403: Microprocessor and Peripherals
Aftersu ccess	ful com	pletion of the course, student will be able to
	CO1	Discuss architecture and pin configuration of ARM7TDMI and Intel 8051.
Course	CO2	Apply the knowledge of instruction set of 8051 microcontroller and
Course		ARM7TDMI to implement Assembly Language Programs
Outcomes	CO3	Design various applications using 8051 microcontroller and ARM7TDMI.
	CO4	Develop C program applications in LPC2148

Module No.	Unit No.	Topics	Ref.	Hrs.
1		8051 Microcontroller Architecture		06
	1.1	8051 architectural features and its purpose, advantages	1,2	
2		8051 Microcontroller Assembly Language Programming		12
	2.1	Bit, byte, word processing, format conversion between HEX, BCD, ASCII	1,2	
	2.2	Data movement / copy operations, Block transfer of data, data swap / exchange	1,2	
	2.3	Arithmetic, logical, and stack operation, loops, condition evaluation, decision making based on flags	1,2	
	2.4	Call, return, jumps, serial and parallel port handling, timer / counter handling, interrupts and its handling	1,2	
3		8051 Microcontroller Hardware and Software Applications		10
		Objectives: Interpreting logical, electrical, timing specification,		
		requirement of following interfaces and interfacing and accessing/controlling using assembly programs		
	3.1	External memory interfacing and memory access cycles, polled I/O, Interrupt I/O	1,2	
	3.2	Serial communication using RS232 : Pulse width modulation and DC motor interfacing, electromagnetic relay, stepper motor interfacing, switch interfacing, SCP firing circuit (with electrical isolation)	1,2	
	33	Parallel input/output interfacing: 7-segment LED display	12	
	5.5	interfacing, 8-bit parallel DAC interfacing, 8-bit parallel ADC	1,2	
		interfacing, 4x4 matrix keyboard interfacing, temperature (resistive, diode based) sensor, optical (photodiode/ phototransistor, LDR)		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		sensors interfacing, 16x2 generic alphanumeric LCD interfacing		
4		ARM7TDMI(ARMv4T) Architectural		10
	4.1	Features, purpose, and advantages	4,5	
	4.2	Processor operating states, memory formats, data types, operating modes, registers	4,5	
	4.3	The program status registers, exceptions, interrupt latencies, and pipelined architecture advantage	4,5	
5		ARM7TDMI(ARMv4T) Assembly Language Programming		10
	5.1	8,16,32 bit and floating point numbers processing, format conversion between Hex, BCD, ASCII, data movement/copy operations, block transfer of data, data swap/exchange	4,5	
	5.2	Arithmetic, logical, and stack operation, loops, condition evaluation and decision making based on flags, control transfers (Call, Return, Jumps), processor state changing (ARM $\leftarrow \rightarrow$ THUMB)	4,5	
	5.3	Exceptions, interrupts and its handling	4,5	
6		LPC2148 based C Program Applications	6	4
	6.1	Applications for On-chip ADC, DAC, parallel port, and serial port accessing		
			Total	52

References:

[1] Kenneth J. Ayala, "The 8051 Microcontroller architecture, Programming and Applications" Penram international, Cengage Learning India Pvt. Ltd, Second Edition.

[2] M. A. Mazadi and J. C. Mazadi, "The 8051 Microcontroller and Embedded Systems", Pearson Education, Second Edition.

[3] V. Udayashankara, "8051 Microcontroller Hardware, Software and Application", McGraw-Hill.

[4] David Seal, "ARM Architecture", Reference Manual (Second Edition)

[5] William Hohl, "ARM Assembly Language: Fundamentals and Techniques", Second Edition.

Course Code	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	P	L	Т	Р	Total	
	Design With Linear Integrated Circuits	4			4			4	
EVC502		Examination Scheme							
EAC502		ISE		MSE	SE ESE				
		10		30	100 (60% Weightage)			tage)	

Pre-requisit	e Cours	se Codes FEC105: Basic Electrical & Electronics Engineering
-		EXC302: Electronic Devices
		EXC303: Digital Circuits and Design
		EXC402: Discrete Electronic Circuits
After success	ful com	pletion of the course, student will be able to
	CO1	Discuss fundamentals of IC operational amplifier
	CO2	Analyze the various applications and circuits based on particular linear
Course		integrated circuit
Course	CO3	Design linear application with the use of operational amplifier IC
Outcomes	CO4	Design non-linear application with the use of operational amplifier IC
	CO5	Design an application with data converters, voltage regulator ICs and special
		purpose ICs

Module	Unit	Topics	Ref.	Hrs.
INO.	INO.			
1		Fundamentals of Operational Amplifier		06
	1.1	Ideal Op Amp, characteristics of op-amp, op-amp parameters, high	1,3,5	
		frequency effects on op-amp gain and phase, slew rate limitation,		
		practical determination of op-amp parameters, single supply versus dual		
		supply op-amp		
	1.2	Operational amplifier open loop and closed loop configurations,	1,3,5	
		Inverting and non-inverting amplifier		
2		Applications of Operational Amplifier		12
	2.1	Amplifiers: Adder, subtractor, integrator, differentiator, current	1,3,5	
		amplifier, difference amplifier, instrumentation amplifier and application		
		of Op-Amp in transducer measurement system with detail design		
		procedure single supply DC biasing techniques for inverting non-		
		inverting and differential amplifiers		
	22	Converters: Current to voltage and voltage to current converters	135	
	4.4	converters. Current to voltage and voltage to current converters,	1,5,5	
	• • •	A stine Filterer Einst order filtere second order estive finite and infinite	1	
	2.3	Active Filters: First order filters, second order active filter and filling	1	
		gain low pass, nigh pass, band pass and band reject filters		
	2.4	Sine Wave Oscillators: RC phase shift oscillator, Wien bridge oscillator,	4	
		Quadrature oscillator		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

3		Non-Linear Applications of Operational Amplifier		12
	3.1	Comparators: Inverting comparator, non-inverting comparator, zero	1,3,5	
		crossing detector, window detector and level detector		
	3.2	Schmitt Triggers: Inverting Schmitt trigger, non-inverting Schmitt	1,3,5	
		trigger with adjustable threshold levels		
	3.3	Waveform Generators: Square wave and triangular wave generator	4	
		with duty cycle modulation		
	3.4	Precision Rectifiers: Half and full wave precision rectifiers and their	1,3,5	
		applications		
	3.5	Peak detectors, sample and hold circuits, voltage to frequency converter,	1,3,5	
		frequency to voltage converter, logarithmic converters and antilog		
		converters		
4		Data Converters		06
	4.1	Performance parameters of ADC, single ramp ADC, ADC using DAC,	1,3,5	
		dual slope ADC, successive approximation ADC, flash ADC,		
		ADC0808/0809 and its interfacing		
	4.2	Performance parameters of DAC, binary weighted register DAC, R/2R	1,3,5	
		ladder DAC, inverted R/2R ladder DAC, DAC0808 and its interfacing		
5		Special Purpose Integrated Circuits		08
	5.1	Functional block diagram, working, design and applications of Timer 555	3,5	
	5.2	Functional block diagram, working and applications of VCO 566, PLL	3,5	
		565, multiplier 534, waveform generator XR 2206, power amplifier		
		LM380		
6		Voltage Regulators		08
	6.1	Functional block diagram, working and design of three terminal fixed	1,3,5	
		(78XX, 79XX series) and three terminal adjustable (LM 317, LM 337)		
		voltage regulators		
	6.2	Functional block diagram, working and design of general purpose 723	1,3,5	
		(LVLC, LVHC, HVLC and HVHC) with current limit and current fold-		
		back protection, Switching regulator topologies, functional block		
		diagram and working of LT1070 monolithic switching regulator		
			Total	52

References:

[1] Sergio Franco, "Design with operational amplifiers and analog integrated circuits", Tata McGraw Hill, Third Edition.

[2] William D. Stanley, "Operational Amplifiers with Linear Integrated Circuits", Pearson, Forth Edition

[3] D. Roy Choudhury and S. B. Jain, "Linear Integrated Circuits", New Age International Publishers, Forth Edition.

[4] David A. Bell, "Operation Amplifiers and Linear Integrated Circuits", Oxford University Press, Indian Edition.

[5] R. A. Gayakwad, "Op-Amps and Linear Integrated Circuits", Pearson Prentice Hall, Fourth Edition.

[6] R. P. Jain, "Modern Digital Electronics," Tata McGraw Hill, Third Edition.

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	P	L	Т	Р	Total
	Electromagnetic Engineering	4			4			4
EVC502		Examination Scheme						
EAC505		ISE		MSE			ESE	
		10		30	100 (60% Weightage)			tage)

Pre-requisite Course Codes			Knowledge of Vector Calculus, Cylindrical and Spherical					
			coordinate systems					
After successful completion of the course, student will be able to								
	CO1	Apply ba	pply basic laws of electromagnetic and Maxwell's equations					
	CO2	Illustrate	the behavior of EM waves and travelling of waves in free space as					
Course		well as m	edia.					
Outcomes	CO3	Solve pro	blems related to the propagation of electromagnetic waves					
	CO4	Discuss t	he types of antennas and their parameters					
	CO5	Discuss t	ypes of radio wave propagation					

Module No.	Unit No.	Topics	Ref.	Hrs.
1	110	Basic Laws of Electromagnetic and Maxwell's Equations		10
	1.1	Coulomb [®] s law, Gauss [®] s law, Bio-Savart [®] s law, Ampere [®] s law, Poisson [®] s and Laplace equations	2	
	1.2	Boundary conditions for static electric and magnetic fields	2	
	1.3	Maxwell's Equations: Integral and differential form for static and time varying fields and its interpretations	2	
2		Uniform Plane Wave Equation and Power Balance		10
	2.1	Wave equation: Derivation and its solution in cartesian co-ordinates	2	
	2.2	Solution of wave equations: Partially conducting media, perfect dielectrics and good conductors, concept of skin depth	2	
	2.3	Electromagnetic Power: Poynting Vector and power flow in free space and in dielectric conducting media	2	
	2.4	Polarization of wave: Linear, Circular and Elliptical	2	
	2.5	Propagation in different media: Behavior of waves for normal and oblique incidence in dielectrics and conducting media, propagation in dispersive media	2	
3		Radiation Field and Computation		12
	3.1	Concept of vector potential, fields associated with Hertzian dipole	3	
	3.2	Radiation resistance of elementary dipole with linear current distribution, radiation from half-wave dipole and quarter-wave monopole	4	
	3.3	Finite Difference Method (FDM): Neumann type and mixed boundary conditions, Iterative solution of finite difference equations, solutions using band matrix method	4	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	3.4	Finite Element Method (FEM): triangular mesh configuration, finite	4	
		element discretization, element governing equations, assembling all		
		equations and solving resulting equations		
	3.5	Method of Moment (MOM): Field calculations of conducting wire,	4	
		parallel conducting wires		
4		Fundamentals of Antenna		10
	4.1	Antenna Parameters: Radiation intensity, directive gain, directivity,	3	
		power gain, beam width, band width, gain and radiation resistance of		
		current element		
	4.2	Half-wave dipole and folded dipole: Reciprocity principle, effective	3	
		length and effective area		
	4.3	Radiation from small loop and its radiation resistance, Helical antenna	3	
5		Radio Wave Propagation		10
	5.1	Types of wave propagation: Ground, space, and surface wave	1,2	
		propagation, tilt and surface waves, impact of imperfect earth and		
		earth" s behavior at different frequencies		
	5.2	Space wave propagation: Effect of imperfection of earth, curvature of	1,2	
		earth, effect of interference zone, shadowing effect of hills and		
		building, atmospheric absorption, Super-refraction, scattering		
		phenomena, troposphere propagation and fading		
	5.3	Sky Wave Propagation: Reflection and refraction of waves,	1,2	
		ionosphere and earth magnetic field effect		
	5.4	Measures of ionosphere propagation: Critical frequency, angle of	1,2	
		incidence, maximum unstable frequency, skip distance, virtual height,		
		variations in ionosphere		
			Total	52

References:

[1] W.H. Hayt, and J.A. Buck, "Engineering Electromagnetics", McGraw Hill Publications, Seventh Edition.

[2] R.K. Shevgaonkar, "Electromagnetic Waves", TATA McGraw Hill Companies, Third Edition.

[3] Edward C. Jordan and Keth G. Balmin, "Electromagnetic Waves and Radiating Systems", Pearson Publications, Second Edition.

[4] Matthew N.D. Sadiku, "Principles of Electromagnetics", Oxford International Student Forth Edition.

[5] J.D. Kraus, R.J. Marhefka, and A.S. Khan, "Antennas & Wave Propagation", McGraw Hill Publications, Forth Edition.

Course Code	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	P	L	Т	Р	Total	
		4	1		4	1		5	
EVC504	Signals and Systems	Examination Scheme							
EAC504		ISE		MSE			ESE		
		10		30	100	(60%	Weigh	tage)	

Pre-requisit	e Cours	se Codes			
After successful completion of the course, student will be able to					
	CO1	Classify continuous time & discrete time signals and systems			
Course	CO2	Apply time and frequency domain analysis techniques to different signals			
Outcomes	CO3	Analyze continuous time system using Laplace Transform			
	CO4	Analyze discrete time system using Z- Transform			

Module	Unit No	Topics			
<u> </u>	110.	Continuous And Discrete Time Signals And Systems		08	
	1.1	Mathematical representation, classification of CT and DT signals, arithmetic operations on the signals, transformation of independent variable	1,4	00	
	1.2	Mathematical representation, classification of CT and DT systems	1,4,5		
	1.3	Sampling and reconstruction, aliasing effect			
2		Time Domain Analysis Of Continuous and Discrete Signals And Systems		06	
	2.1	Properties of LTI systems, impulse and step response.	3,4,5		
	2.2	Use of convolution integral and convolution sum for analysis of LTI systems.	3,4,5		
	2.3	Properties of convolution integral/sum.	3,4,5		
3		Frequency Domain Analysis of Continuous Time System Using Laplace Transform		08	
	3.1	Need of Laplace transform, review of Laplace transform, properties, inverse of Laplace transform, concept of ROC, poles and zeros	1,4		
	3.2	Unilateral Laplace transform	1,4		
	3.3	Analysis and characterization of LTI system using Laplace transform: impulse and step response, causality, stability, stability of causal system	1,4		
	3.4	Block diagram representation	1		
4		Frequency Domain Analysis of Discrete Time System Using Z Transform		14	
	4.1	Need of Z transform, definition, properties of unilateral and bilateral Z Transform, mapping with s plane, relationship with Laplace transform	3,5		
	4.2	Z transform of standard signals, ROC, poles and zeros of transfer function, inverse Z transform	3,5		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	4.3	Analysis and characterization of LTI system using Z transform: impulse and step response, causality, stability, stability of causal	3,5			
		system				
	4.4	Block diagram representation, system realization				
5	5 Frequency Domain Analysis of Continuous and Discrete Signals					
	5.1	Review of Fourier series, Discrete time Fourier series, its properties	4			
	5.2	Fourier transform, properties of Fourier transform, relationship with	4			
		Laplace and Z transform				
	5.3	Discrete time Fourier transform, properties, frequency sampling,	4,5			
		Discrete Fourier transform, properties				
6		Correlation and Spectral Density		04		
	6.1	Comparison of convolution and correlation, Auto and cross correlation,	1			
		energy/power spectral density				
	6.2	Relation of ESD, PSD with auto-correlation	1			
	6.3	Relationship between ESD/PSD of input and output of LTI system	1			
			Total	52		

References:

[1] Alan V. Oppenheim, Alan S. Willsky, and S. Hamid Nawab, "Signals and Systems", Second Edition, PHI learning.

[2] Tarun Kumar Rawat, "Signals and Systems", Oxford University Press, Edition 2014.

[3] John Proakis and Dimitris Monolakis, "Digital Signal Processing", Pearson Publication, Forth Edition.

[4] A. Nagoor Kani, "Signals & Systems", McGraw Hill Education (India) Pvt Ltd, Fourteenth Edition.

[5] S.Salivahanan, A Vallavaraj, C Gnanapriya, "Digital Signal Processing", Tata McGraw Hill, First Edition.

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	P	L	Т	Р	Total
		4			4			4
EXC505	Digital Communication	Examination Scheme						
		ISE		MSE			ESE	
		10		30	100 (60%	Weigh	tage)

Pre-requisite Course Codes			Knowledge of Probability Theory and Signals and Systems		
After successful completion of the course, student will be able to					
	CO1Determine nature of random signal and its statistical characteristicsCO2Identify source and channel coding techniques				
Course	CO3	Explain t	echniques to enhanced transmission efficiency of the system		
Outcomes	CO4	Describe	digital modulation formats and its properties		
	CO5	Demonst	rate the use of error control and spread spectrum techniques in wired		
		and wirel	ess communication.		

Module	Unit	Topics	Ref.	Hrs.
NO.	No.			07
I		Application of Probability Theory in Communication Systems	1.0.0	07
	1.1	Introduction to digital communication system, significance of AWGN	1,2,3	
		channel, pulse dispersion in the channel		
	1.2	Introduction to probability and sample space, Baye ^w s rule,		
		conditional probability and statistical independence, random variables,		
		probability functions, mean and variance of random variables and sum		
		of random variables		
	1.3	Probability Models: Binomial Distribution, Poisson Distribution,		
		Gaussian PDF, Rayleigh PDF and Rician PDF, Central-Limit Theorem		
	1.4	Binary Synchronous Channel(BSC), development of optimal receiver		
2		Information Theory and Source Coding		05
	2.1	Measure of Information, Entropy, Information rate, Channel capacity	1,2,3	
	2.2	Capacity of a Gaussian channel, bandwidth, S/N trade-off, Shannon,,s		
		source coding theorem		
	2.3	Coding to increase the average information per bit, Huffman coding,		
		Lempel Ziv coding, examples and applications of source coding		
3		Pulse Shaping for Optimum Transmission		08
	3.1	Line codes and their desirable properties, PSD of digital data.	1,2,3	
	3.2	Baseband PAM transmission: Concept of inter channel and inter		
		symbol interference, eye pattern		
	3.3	Concept of equalizer to overcome ISI, Nyquist" s Criterion for		
		distortion less transmission		
	3.4	Duo-binary encoding and modified duo-binary encoding		
4		Digital Modulation Techniques		15
	4.1	Digital modulation formats, coherent and non- coherent reception	1,2,3	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	4.2	Binary modulation techniques: BPSK, BFSK, BASK		
	4.3	M-ary Modulation techniques: QPSK, M-ary PSK, MSK , M-ary		
		FSK, M-ary QAM, Differential encoded BPSK & D-QPSK		
	4.4	Optimal Reception of Digital Data: A baseband signal receiver and		
		its Probability of error		
	4.5	Optimum receiver and its transfer function, matched filter and its		
		properties		
5		Error Control Codes		12
	5.1	Need for channel encoding, discrete memory-less channel,	1,2,3	
		redundancy, code rate ,code efficiency and hamming bound		
	5.2	Linear block codes, cyclic codes, block interleaving		
	5.3	Convolution codes: State diagram, code tree, trellis diagram		
	5.4	Decoding of Convolutional codes using Viterbi algorithm		
6		Spread Spectrum Modulation		05
	6.1	Need for spread spectrum modulation, pseudo noise sequence	1,2,5	
		generation, direct-sequence spread spectrum (DSSS)		
	6.2	Processing gain and jamming margin, frequency-hop spread spectrum		
		(FHSS)		
	6.3	Application of spread spectrum : DS-CDMA		
	-	·	Total	52

References:

[1] Simon Haykin, "Communication System", John Wiley And Sons, Fourth Edition

[2] Taub Schilling And Saha, "Principles Of Communication Systems", Tata Mc-Graw Hill, Third Edition

[3] Amitabha Bhattacharya, "Digital Communication", Tata Mcgraw Hill, Edition 2006

[4] Lan A. Glover and Peter M. Grant, "Digital Communications", Pearson, Second Edition.

[5] John G. Proakis, "Digital Communications", Mcgraw Hill, Fifth Edition.

Course	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	Т	Р	L	Т	Р	Total
EXS 506	Business Communication and Ethics			4			2	2
		Examination Scheme						
		ISE Pra		Prac	ctical O		ral	Total
		5	0	-	-			50

Pre-requisit	e Cours	Se Codes FEC206: Communication Skills				
After successful completion of the course, student will be able to						
Course Outcomes	CO1	communicate effectively in both verbal and written form and demonstrate				
		knowledge of professional and ethical responsibilities				
	CO2	Participate and succeed in Campus placements and competitive examinations				
		like GATE, CET.				
	CO3	Possess entrepreneurial approach and ability for life-long learning.				
	CO4	Have education necessary for understanding the impact of engineering				
		solutions on Society and demonstrate awareness of contemporary issues.				

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Report Writing		08
	1.1	Objectives of report writing		
	1.2	Language and Style in a report		
	1.3	Types of reports		
	1.4	Formats of reports: Memo, letter, project and survey based		
2		Technical Proposals		02
	2.1	Objective of technical proposals		
	2.2	Parts of proposal		
3		Introduction to Interpersonal Skills		08
	3.1	Emotional Intelligence		
	3.2	Leadership		
	3.3	Team Building		
	3.4	Assertiveness		
	3.5	Conflict Resolution		
	3.6	Negotiation Skills		
	3.7	Motivation		
	3.8	Time Management		
4		Meetings and Documentation		02
	4.1	Strategies for conducting effective meetings		
	4.2	Notice		
	4.3	Agenda]
	4.4	Minutes of the meeting		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

5		Introduction to Corporate Ethics and etiquettes		02					
	5.1	Business Meeting etiquettes, Interview etiquettes, Professional and							
		work etiquettes, Social skills							
	5.2	Greetings and Art of Conversation							
	5.3	Dressing and Grooming							
	5.4	inning etiquette							
	5.5	Ethical codes of conduct in business and corporate activities (Personal							
		ethics, conflicting values, choosing a moral response, the process of							
		making ethical decisions)							
6		Employment Skills		06					
	6.1	Cover letter							
	6.2	Resume							
	6.3	Broup Discussion							
	6.4	Presentation Skills							
	6.5	Interview Skills							
			Total	26					

References:

[1] Fred Luthans, "Organizational Behavior", Mc Graw Hill, First edition

[2] Huckin and Olsen, "Technical Writing and Professional Communication", Mc Graw Hill

[3] Wallace and Masters, "Personal Development for Life and Work", Thomson Learning, Twelfth edition

[4] Heta Murphy, "Effective Business Communication", Mc Graw Hill, edition

[5] B N Ghosh, "Managing Soft Skills for Personality Development", Tata McGraw

[6] Bell . Smith, "Management Communication" Wiley India Edition, Third edition.

[7] Dr.K.Alex , "Soft Skills", S Chand and Company

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	Т	P	L	Т	Р	Total
				2			1	1
EVI 501	Microcontrollers and Applications Laboratory	Examination Scheme						
EALSUI		ISE		ESE			Total	
				Prac	ctical	0	ral	
		4	0	1	0	-	10	60

Pre-requisite Course Codes		se Codes EXC501 (Microcontrollers and Applications)
After success	ful com	pletion of the course, student will be able to
	CO1	Compose assembly language and C programs for 8051 microcontroller based
		system
Course	CO2	Interface various peripherals with 8051 microcontroller
Outcomes	CO3	Prepare initialization procedure for internal peripherals of ARM7 TDMI-S
		(LPC2148)
	CO4	Develop device drivers for ARM7 using datasheet
	CO5	Practice professional design techniques for microcontroller based system
		design

Exp. No.	Experiment Details	Ref.	Marks		
1	Interfacing of LED and Switch	1	5		
2	Print characters on LCD	1	5		
3	WAP for transfering block of data/ Arrange data in ascending order	1	5		
4	Mixed language program form timer	1	5		
5	Interfacing of Serial port	1	5		
6	Initialization of ARM7 and blink LED using ARM 7 LPC2148	2	5		
7	Transmit and receive data using UART in LPC2148	2	5		
8	To transfer block of data from one location to another in ARM7	2,3	5		
Total Marks					

References:

[1] M. A. Mazadi and J. C. Mazadi, "The 8051 Microcontroller and Embedded Systems", Pearson Education, Asia

[2] ARM User Manual

[3] www.arm.com

Course	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	Т	P	L	Т	Р	Total
				2			1	1
	Design with Linear Integrated Circuits Laboratory	Examination Scheme						
EXL502		ISE		ESE			Total	
				Prac	ctical	0	ral	
		4	0	1	10		10	60

Pre-requisi	te Cours	EXC502 (Design with Linear Integrated Circuits)			
After succes	After successful completion of the course, student will be able to				
	CO1	Validate electrical characteristics of given ICs.			
	CO2	Design, debug and test electronic circuit using ICs like op-amp 741, IC 555,			
		IC 566, IC723, etc.			
Course	CO3	Validate circuits by simulation using modern tools available like ngspice and			
Outcomes		LTspice, TINA, Multisim.			
Outcomes	CO4	Design, develop and troubleshoot the complete electronic system for typical			
		applications like speed control of DC Motor, Temperature control,			
		development of signal conditioning circuits for various transducers.			
	CO5	Infer the data sheet of electronic components/ICs			

Exp. No.	Experiment Details	Ref.	Marks
1	To measure (a) Input bias current, (b) Input offset current,(c)Input	1,2,3	5
	offset voltage & (d) Slew rate of the given Op-Amp IC		
2	Design, Implement and analyze Schmitt Trigger Circuit using given	1,2,3	5
	Op-Amp IC and also Square Wave, Triangular Wave Generator		
	Circuit using given Op-Amp IC.		
3	Design, Implement and analyze Monostable Multivibrator Circuit	1,2,3	5
	using given Timer and its operation as divide by N frequency.		
4	Design, Implement and analyze Voltage Regulator Circuit using	1,2,3	5
	given Voltage Regulator IC.		
5	Design, Implement and analyze given application using given ICs	1,2,8	5
	like Op-Amp, DAC, Multiplier, and VCO with Analog System		
	Trainer Kit - TEXAS INSTRUMENTS.		
6	To measure the performance specifications of given ADC, DAC	1,2,3	5
	ICs and interface these ICs to Microcontroller to perform ADC and		
	DAC conversions.		
7	Design, Simulate and analyze the given problem statement (circuit)	1,2,4,5,6	5
	using Circuit Simulation S/W preferably NI-Multisim		
	/TINA/SPICE. (Please refer to the extra sheet attached).		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

8	Score in Quiz on TSE-2017	7	5
	Tot	al Marks	40

References:

[1] D. Roy Choudhury and S. B. Jain, "*Linear Integrated Circuits*", New Age International Publishers, 4th Edition.

[2] David A. Bell, "Operation Amplifiers and Linear Integrated Circuits", Oxford University Press, Indian Edition.

- [3] DLIC Laboratory Manual
- [4] <u>www.ti.com</u>
- [5] <u>www.ni.com</u>
- [6] <u>www.pspice.com</u>
- [7] TSE-2017 Brochure
- [8] Analog System Trainer Manual by Texas Instruments.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	Т	Р	L	Т	Р	Total
				2			1	1
	Digital Communication Laboratory	Examination Scheme						
EXL503		ISE			ESE			Total
				Prac	ctical	0	ral	
		4	0				20	60

Pre-requisite Co	ourse C	bodes EXC503 (Digital Communication)						
After successful of	After successful completion of the course, student will be able to							
	CO1	Observe the characteristics of waveforms using digital modulation						
		chniques						
	CO2	Validate line coding techniques experimentally						
	CO3	Demonstrate the significance of channel and source coding techniques in						
Course		digital communication systems						
Outcomes	CO4	Observe the characteristics of spread spectrum techniques using scilab						
	CO5	Accept the attributes of plagiarism pertaining to creating the screencast of						
		lab experiment						
	CO6	Show audio power point presentation on technological drift in						
		communication						

Exp. No.	Experiment Details	Ref.	Marks	
1	To design and build a simple Analog-to-Digital (ADC) using OpAmp	1	5	
	circuits and resistors.			
2	To observe the waveform of ASK signal.	1,2	5	
3	To convert NRZ coded data to NRZ -RZ codes.	1	5	
4	To understand the working and implementation of LBC using gates	1,2	5	
5	To understand the working and implementation of Hamming codes	1,2	5	
	using gates.			
6	To analyze the receiver performance by using the eye diagram.	1,2	5	
7	To find out the entropy of binary memory less source using Scilab.	2	5	
8	To find out the entropy, average length and variance of Huffman	1,2	5	
	coding using Scilab.			
Total Marks				

References:

[1] Simon Haykin, "Communication System", John Wiley And Sons ,4th Ed

[2] Taub Schilling and Saha, "Principles Of Communication Systems", Tata Mc-Graw Hill, Third Ed

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	Т	Р	L	Т	Р	Total
	Mini Project-I			2			2	2
		Examination Scheme						
		ISE		Practical		0	ral	Total
EXL504		Phase-I:10					50	100
		Phase-II:10						
		Phase	-III:10					
		Phase	-IV:20					

ISE:

The main intention of Mini Project is to make student enable to apply the knowledge and skills learned out of courses studied to solve/implement predefined practical problem. The students undergo various Laboratory/ tutorial/ simulation laboratory/work shop courses in which they do experimentation based on the curriculum requirement. The Mini Project may be beyond the scope of curriculum of courses taken or may be based on the courses but thrust should be on

• Learning additional skills

• Development of ability to define and design the problem and lead to its accomplishment with proper planning

• Learn the behavioral science by working in a group

The group may be maximum **four** (04) students. Each group will be assigned one faculty as a supervisor. The college should keep proper assessment record of progress of the project and at the end of the semester it should be assessed for awarding TW marks. The TW may be examined by approved internal faculty appointed by the head of the institute. The final examination will be based on demonstration in front of internal and external examiner. In the examination each individual student should be assessed for his/her contribution, understanding and knowledge gained about the task completed. The students may use this opportunity to learn different computational techniques as well as some model development. This they can achieve by making proper selection of Mini Projects.

(Autonomous Institute Affiliated to University of Mumbai)

Semester VI

Course Code	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned				
		L	Т	P	L	Т	Р	Total		
		4			4			4		
EXC601	Basic VLSI Design	Examination Scheme								
		ISE		MSE	ESE					
		10		30	100 (60% Weightage)					

Pre-requisit	e Cours	se Codes EXC302: Electronic Devices			
-		EXC303: Digital Circuits and Design			
		EXC402: Discrete Electronic Circuits			
		EXC502: Design With Linear Integrated Circuits			
After success	ful com	pletion of the course, student will be able to			
	CO1	Distinguish between technologies and MOSFET models			
	CO2	Analyze MOSFET based circuits like inverters, logic circuits and			
Course		semiconductor memories			
Outcomes	CO3	Design MOSFET based logic circuits with different design styles			
	CO4	Design data path for adders, multipliers and shifters			
	CO5	Discuss issues in VLSI Clocking and System Design			

Module No.	Unit No.	Topics	Ref.	Hrs.
1		Technology Trend		06
	1.1	Technology Comparison: Comparison of BJT, NMOS and CMOS	1	
		technology		
	1.2	MOSFET Scaling: Types of scaling, Level 1 and Level 2 MOSFET	1	
		Models, MOSFET capacitances		
2		MOSFET Inverters		10
	2.1	Circuit Analysis: Static and dynamic analysis (Noise, propagation delay and power dissipation) of resistive load and CMOS inverter.	1	
		comparison of all types of MOS inverters, design of CMOS inverters, CMOS Latch-up		
	2.2	Logic Circuit Design: Analysis and design of 2-I/P NAND and NOR using equivalent CMOS inverter	1	
3		MOS Circuit Design Styles		10
	3.1	Design Styles: Static CMOS, pass transistor logic, transmission gate, Pseudo NMOS, Domino, NORA, Zipper, C2MOS, sizing using logical affort	1,7	
	3.2	Circuit Realization: SR Latch, JK FF, D FF, 1 Bit Shift Register,	1,7	
		MUX, decoder using above design styles		
4		Semiconductor Memories		08
	4.1	SRAM: ROM Array, SRAM (operation, design strategy, leakage	1,2	
		currents, read/write circuits), DRAM (Operation 3T, 1T, operation		
		modes, leakage currents, refresh operation, Input-Output circuits),		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		Flash (mechanism, NOR flash, NAND flash)		
	4.2	Peripheral Circuits: Sense amplifier, decoder	1,2,3	
5		Data Path Design		08
	5.1	Adder: Bit adder circuits, ripple carry adder, CLA adder	7	
	5.2	Multipliers and shifter: Partial-product generation, partial-product	7	
		accumulation, final addition, barrel shifter		
6		VLSI Clocking and System Design		10
	6.1	Clocking: CMOS clocking styles, Clock generation, stabilization and	2,5,6	
		distribution		
	6.2	Low Power CMOS Circuits: Various components of power	5,6	
		dissipation in CMOS, Limits on low power design, low power design		
		through voltage scaling		
	6.3	IO pads and Power Distribution: ESD protection, input circuits,	5,6	
		output circuits, simultaneous switching noise, power distribution		
		scheme		
	6.4	Interconnect: Interconnect delay model, interconnect scaling and	5,6	
		crosstalk		
			Total	52

References:

[1] Sung-Mo Kang and Yusuf Leblebici, "CMOS Digital Integrated Circuits Analysis and Design",

Tata McGraw Hill, Third Edition.

[2] Jan M. Rabaey, Anantha Chandrakasan and Borivoje Nikolic, "Digital Integrated Circuits: A Design Perspective", Pearson Education, Second Edition.

[3] Etienne Sicard and Sonia Delmas Bendhia, "Basics of CMOS Cell Design", Tata McGraw Hill, First Edition.

[4] Neil H. E. Weste, David Harris and Ayan Banerjee, "CMOS VLSI Design: A Circuits and

Systems Perspective", Pearson Education, Third Edition.

[5] Debaprasad Das, "VLSI Design", Oxford, First Edition.

[6] Kaushik Roy and Sharat C. Prasad, "Low-Power CMOS VLSI Circuit Design", Wiley, Student Edition.

[7] John P. Uyemura, "Introduction to VLSI Circuits and Systems", Wiley, Student Edition, 2013.

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	P	L	Т	Р	Total
	Advanced Instrumentation System	4			4			4
		Examination Scheme						
EAC002		ISE		MSE	ESE			
		10		30	100 (60% Weightage)			

Pre-requisit	e Cours	se Codes
After success	ful com	pletion of the course, student will be able to
	CO1	Identify process control system components and their applications.
	CO2	Apply the knowledge of Pneumatic and Hydraulic components in
Course		Instrumentation Process System.
Outcomes	CO3	Discuss principles of transmission and conversion of process parameters to
Outcomes		electrical and vice versa.
	CO4	Decide the appropriate types of controllers and their tuning methods to build
		the process control system

Module No.	Unit No.	Topics	Ref.	Hrs.
1		Concepts of Advancement in Instrumentation		06
	1.1	Data acquisition and data logging, telemetry in measurement, basic	7	
		requirement of control system and components		
2		Pneumatic Components		12
	2.1	ISO symbols, pneumatic air supply system, air compressors, pressure	4	
		regulation devices, directional control valves		
	2.2	Special types of pneumatic valve: pilot-operated valves, non-return valves, flow control valves, sequence valves, and time delay valve	4	
	2.3	Single and double acting linear actuators, special type of double acting	4	
		cylinder, rotary actuators, air motors		
	2.4	Process control pneumatics: flapper nozzle system, volume boosters,	4	
		air relays, pneumatic transmitters and controllers, pneumatic logic		
		gates, dynamic modeling of pneumatic circuits		
3		Hydraulic Components.	4	06
	3.1	Hydraulic pumps, Pressure regulation method, loading valves	4	
	3.2	Hydraulic valves and actuators, speed control circuits for hydraulic	4	
		actuators		
	3.3	Selection and comparison of pneumatic, hydraulic and electric systems	4	
4		Transmitters and Converters		12
	4.1	Electronic versus pneumatic transmitters, 2-wire; 3-wire and 4-wire	4,1	
		current transmitters		
	4.2	Electronic type: temperature, pressure, differential pressure, level,	4,1	
		flow transmitters and their applications Smart (Intelligent) transmitters,		
		Buoyancy transmitters and their applications.		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	4.3	Converters: Pneumatic to Electrical and Electrical to Pneumatic	4,1	
		converters		
5		Process Control Valves		08
	5.1	Globe, ball, needle, butterfly, diaphragm, pinch, gate, solenoid, smart	4	
	5.2	Flow characteristics, control valve parameters, control valve capacity, valve rangeabilty, turn-down, valve size, valve gain	4	
	5.3	Selection criteria, specifications and installation of control valves	4	
	5.4	Valve Positioners : Necessity, types-motion balance and force-balance, effect on performance of control valve	4	
	5.5	Control Valve Actuators: Electrical, pneumatic, hydraulic, electro- mechanical, digital actuators. selection criteria of valve actuators	4	
6		Controllers and Controller Tuning		08
	6.1	Continuous and discontinuous controller: proportional controller, proportional band, RESET controller, rate controller, composite controller, cascade controller, feed-forward controller	4,1	
	6.2	Need and different method of controller tuning	4,1	
	•		Total	52

References:

[1] Bella G. Liptak, "Process Control and Optimization, Instrument Engineer's Handbook", CRC

Press, Fourth Edition

[2] WG Andrews and Williams, "Applied Instrumentation in the process Industries, Vol. - I and II", Gulf Publication

[3] Terry Barlett, "Process Control System and Instrumentation", Delimar Cengage learning Reprint-2008

[4] Andrew Parr, "Hydraulics And Pneumatics- A Technician's And Engineer's Guide", Jaico

Publishing House, Mumbai

[5] C.D.Johnson, "Process Control and Instrument Technology", Tata Mcgraw Hill.

[6] J. W. Hatchison, "ISA Handbook of Control Valves", ISA, Second Edition.

[7] A. K. Sawhney, Electrical & Electronic Instruments & Measurement, Dhanpat Rai and Sons, Eleventh Edition.

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	P	L	Т	Р	Total
	Computer Organization	4			4			
EXC603		Examination Scheme						
		ISE		MSE			ESE	
		10		30	100 (60% Weightage)			tage)

Pre-requisit	e Cours	se Codes					
After success	After successful completion of the course, student will be able to						
	CO1	Outline the basic structure of a digital computer and illustrate the integer and					
		floating point arithmetic.					
Course	CO2	Design the control unit of a CPU using two approaches namely hardwired and					
Course		micro-programmed control.					
Outcomes	CO3	Classify and Create a memory organization					
	CO4	Discuss the concepts of I/O organization					
	CO5	Discuss instruction level parallelism and IA32 family architecture.					

Module	Unit No	Topics	Ref.	Hrs.
1	110.	Introduction to Computer Organization		10
	1.1	Fundamental units of computer organization, evolution of computers, von neumann model, performance measure of computer architecture	1,3	10
	1.2	Introduction to buses and connecting I/O devices to CPU and Memory, bus structure,	1,3	
	1.3	Introduction to number representation methods, integer data computation, floating point arithmetic.	3	
2		Processor Organization and Architecture		14
	2.1	CPU Architecture, register organization, instruction formats, basic instruction cycle, instruction interpretation and sequencing	1,3	
	2.2	Control unit: soft wired (micro-programmed) and hardwired control unit design methods	1,3	
	2.3	Microinstruction sequencing and execution, micro operations, concepts of nano programming.	1,3	
	2.4	Introduction to RISC and CISC architectures and design issues, case study on 8085 microprocessor, features, architecture, pin configuration and addressing modes		
3		Memory Organization		12
	3.1	Introduction to memory and memory parameters, classifications of primary and secondary memories, types of RAM and ROM, allocation policies, memory hierarchy and characteristics	1,3	
	3.2	Cache memory concept, architecture (L1, L2, L3), mapping techniques, cache coherency	1,3	
	3.3	Interleaved and associative memory, virtual memory, concept,	1,3	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		segmentation and paging, page replacement policies		
4		Input / Output Organization		08
	4.1	Types of I/O devices and access methods, types of buses and bus arbitration, I/O interface, serial and parallel ports	1,3	
	4.2	Types of data transfer techniques, programmed I/O, interrupt driven I/O and DMA	1,3	
	4.3	Introduction to peripheral devices, scanner, plotter, joysticks, touch pad, storage devices	1,3	
5		Introduction To Parallel Processing System		04
	5.1	Introduction to parallel processing concepts, Flynn ["] s classifications, pipeline processing, instruction pipelining, pipeline stages, pipeline hazards	1,2	
6		Introduction to Intel IA32 Architecture.		04
	6.1	Intel IA32 family architecture, register structure, addressing modes, advancements in arithmetic and logical instructions, exception handling in IA32 architecture	1	
			Total	52

References:

[1] Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", Tata McGraw-

Hill, Fifth Edition

[2] John P. Hayes, "Computer Architecture and Organization", Third Edition.

[3] William Stallings, "Computer Organization and Architecture: Designing for Performance",

Pearson, Eighth Edition.

[4] B. Govindarajulu, "Computer Architecture and Organization: Design Principles and

Applications", Tata McGraw-Hill, Second Edition.

[5] Dr. M. Usha and T. S. Srikanth, "Computer System Architecture and Organization", Wiley-India, First Edition.

[6] Ramesh Gaonkar, "Microprocessor Architecture, Programming and Applications with the 8085", Penram, Fifth Edition.

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	P	L	Т	Р	Total
		4			4			4
EXC604	Power Electronics I	Examination Scheme						
		ISE		MSE			ESE	
		10		30	100 (60% Weightage)			tage)

Pre-requisit	e Cours	se Codes	EXC302: Electronic Devices	
After successful completion of the course, student will be able to				
	CO1	Analyze	different circuits involving Silicon Controlled Rectifier	
Course	CO2	Interpret	tradeoffs involved in power semiconductor devices.	
Outcomes	CO3	Analyze	different types of controlled rectifiers and inverters	
	CO4	Analyze	DC-DC convertors (choppers) and AC-AC converters.	

Module	Unit	Topics	Ref	Hrs
No.	No.	Topics	KCI.	111.5.
1		Silicon Controlled Rectifiers		10
	1.1	Principle of operation of SCR, static and dynamic characteristics, gate	3,7	
		characteristics		
	1.2	Methods of turning on (type of gate signal), firing circuits (using R, R-	3,7	
		C, UJT), commutation circuit		
	1.3	Protection of SCR	3,7	
2		Other Switching Devices		08
	2.1	Principle of operation, characteristics, rating and applications of:	2	
		TRIAC, DIAC, GTO, MOSFET, IGBT and power BJT		
	2.2	Driver circuits for power transistors	2,7	
3		*Controlled Rectifiers	<u> </u>	12
	3.1	Half wave controlled rectifiers with R, R-L load,	2,8	
	3.2	Full wave controlled rectifiers, half controlled and fully controlled	2,8	
		rectifiers with R, R-L load (effect of source inductance not to be		
		considered)		
	3.3	Single phase dual converter, three phase half controlled and fully	2,8	
		controlled rectifiers with R load only *Numerical based on		
		calculation of output voltage		
4		*Inverters		10
	4.1	Introduction, principle of operation, performance parameters of:	2,7	
		Single phase half / full bridge voltage source inverters with R and R-L		
		load, three phase bridge inverters (1200 and 1800 conduction mode)		
		with R and R-L load		
	4.2	Voltage control of single phase inverters using PWM techniques,	2,7	
		harmonic neutralization of inverters, applications *Numerical with R		
		load only		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

5		Choppers		06
	5.1	Basic principle of step up and step down choppers	2	
	5.2	DC-DC switching mode regulators: Buck, Boost, Buck-Boost, Cuk	2	
		regulators, (CCM mode only)		
6		AC Voltage Controllers		04
	6.1	Principle of On-Off control, principle of phase control, single phase	1,2	
		bidirectional control with R and RL load		
7		Cycloconvertor		02
	7.1	Introduction, single phase and three phase Cyclo-converters,	2,7	
		applications		
			Total	52

References:

[1] M. H. Rashid, "Power Electronics", Prentice-Hall of India, Third Edition.

[2] Ned Mohan, "Power Electronics", Undeland, Robbins, John Wiley Publication, Third Edition.

[3] Ramamurthy, "Thyristors and Their Applications", East-West Press, Third Edition.

[4] Alok Jain, "Power Electronics and its Applications", Penram International Publishing (India) Pvt. Ltd, Second Edition.

[5] Vedam Subramanyam, "Power Electronics", New Age International, Second Edition.

[6] Landers, "Power Electronics", McGraw Hill, Second Edition.

[7] M.D. Singh and K. B. Khanchandani, "Power Electronics", Tata McGraw Hill, Second Edition.

[8] P. C. Sen, "Modern Power Electronics", Wheeler Publication, Second Edition.

Course Code	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	P	L	Т	Р	Total	
	Digital Signal Processing and Processors	4			4			4	
EVC 605		Examination Scheme							
EAC 005		ISE		MSE	ESE				
		10		30	100 (60% Weightage)			tage)	

Pre-requisite Course Codes		se Codes		
After successful completion of the course, student will be able to				
	CO1	Apply DFT Properties and Illustrate FFT algorithms		
Course	CO2	Design and Realize Digital IIR & FIR Filters		
Outcomes	CO3	Analyze the effect of hardware limitations		
	CO4	Justify the need and use of DSP processor		

Module No.	Unit No.	Topics	Ref.	Hrs.
1		Discrete Fourier Transform and Fast Fourier Transform		10
	1.1	Discrete Fourier Series: Properties of discrete Fourier series, DFS	1,2,7	
		representation of periodic sequences.		
	1.2	Discrete Fourier transforms: Properties of DFT, linear convolution	1,2,7	
		of sequences using DFT, computation of DFT, relation between Z-		
		transform and DFS		
	1.3	Fast Fourier Transforms: Fast Fourier transforms (FFT), Radix-2	1,2,7	
		decimation in time and decimation in frequency FFT algorithms,		
		inverse FFT, and composite FFT		
2		IIR Digital Filters		10
	2.1	Mapping of S-plane to Z-plane, impulse invariance method, bilinear Z	1,3,7	
		transformation (BLT) method, frequency warping, pre-warping		
	2.2	Analog filter approximations: Butter worth and Chebyshev, design of	3,7	
		IIR digital filters from analog filters, design examples		
	2.3	Analog and digital frequency transformations		
3		FIR Digital Filters		10
	3.1	Characteristics of FIR digital filters, frequency response, location of	1,3,7	
		the zeros of linear phase FIR filters		
	3.2	Design of FIR digital filters using window techniques, Gibbs	1,3,7	
		phenomenon, frequency sampling technique, comparison of IIR and		
		FIR filters		
4		Finite Word Length Effects in Digital Filters		08
	4.1	Number representation, fixed point, sign-magnitude, one" s	3,4	
		complement, two" s complement forms, floating point numbers		
	4.2	Quantization, truncation, rounding, effects due to truncation and	3,4	
		rounding, Input quantization error, Product quantization error, co-		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		efficient quantization error, zero-input limit cycle oscillations,		
		overflow limit cycle oscillations, scaling		
	4.3	Quantization in Floating Point realization IIR digital filters, finite word		
		length effects in FIR digital filters, quantization effects in the		
		computation of the DFT- quantization errors in FFT algorithms		
5		Introduction to DSP Processors		08
	5.1	Introduction to fixed point and floating point DSP processor, multiplier	4	
		and multiplier accumulator (MAC), modified bus structures and		
		memory access schemes in DSPs, multiple access memory, multiport		
		memory. VLIW architecture, pipelining, special addressing modes, on-		
		chip peripherals		
	52	Features of TMS 320c67xx DSP processor architecture of TMS	Δ	
		320c67xx DSP processor architecture features: computational units		
		bus architecture memory data addressing address generation unit		
		program control program sequencer pipeliping interrupts features of		
		avternal interfacing on chin peripherals hardware timers host		
		interface port clock generators SDOPT		
(0(
6		Applications of DSP Processors		06
	6.1	Speech Processing: Speech analysis, speech coding, sub band coding,	5	
		channel vocoder, homomorphic vocoder, digital processing of audio		
		signals.		
	6.2	Radar signal processing: Radar principles, radar system and	5	
		parameter considerations, signal design		
			Total	52

References:

[1] Proakis J., Manolakis D., "Digital Signal Processing", Pearson Education, Fourth Edition

[2] Oppenheim A., Schafer R., Buck J., "Discrete Time Signal Processing", Pearson Education, Second Edition.

[3] Babu R., "Digital Signal Processing", Scitech Publications, Fourth Edition

[4] B. Venkata Ramani and M. Bhaskar, "Digital Signal Processors, Architecture, Programming and Applications", Tata McGraw Hill, Edition 2004.

[5] L. R. Rabiner and B. Gold, "Theory and Applications of Digital Signal Processing", Prentice-Hall of India, Edition 2006.

- [6] B. Kumar, "Digital Signal Processing", New Age International Publishers, Edition 2014.
- [7] S.Salivahanan, A Vallavaraj, C Gnanapriya, "Digital Signal Processing", Tata McGraw Hill Edition Private Limited, New Delhi, Edition 2010

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	P	L	Т	Р	Total
EXC 606	Modern Information Technology for Management	2			2			2
		Examination Scheme						
		ISE		MSE	ESE			
		10		30	100 (60% Weightage)			tage)

Pre-requisit	e Cours	se Codes				
After success	After successful completion of the course, student will be able to					
	CO1	Identify production tools, various protocols which run the business				
		infrastructure system and business system managements				
Course	CO2	List the importance of IT tools in content management				
Outcomos	CO3	List various network management protocols and their applicability in global				
Outcomes		connectivity.				
	CO4	Identify keys applications of Management Information System in various				
		businesses.				

Module No	Unit No	Topics	Ref.	Hrs.
1	110.	IT Infrastructure		06
	1.1	Information technology	1	
	1.2	Computing infrastructure: software		
	1.3	Networking infrastructure		
	1.4	Cabling infrastructure		
	1.5	Wires less infrastructure		
	1.6	Storage infrastructure		
2		IT Production Tool		06
	2.1	Security infrastructure	1	
	2.2	Office tools		
	2.3	Data management tools		
	2.4	Web tools		
3		Internet and Network Protocol		04
	3.1	Network management tools	1	
	3.2	Network protocols and global connectivity		
4		IT Management		06
	4.1	E-Business Highway- business automation platform	1	
	4.2	Infrastructure management		
	4.3	Security management		
	4.4	Information management and audit		
5		IT Applications		04
	5.1	E Governance	1,2	
	5.2	Connected world and E-commerce		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

5.3	Information systems		
5.4	Business systems		
		Total	26

References:

[1] B Muthukumaran, "Information Technology for Management", Oxford University Press, Edition 2010.

[2] Kenneth C. Laudon and Jane P. Laudon, "*Management Information Systems*", Pearson Education, Fourth Edition.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	Т	Р	L	Т	Р	Total	
				2			1	1	
EXL601	VLSI Design Laboratory	Examination Scheme							
		ISE		ESE				Total	
				Prac	ctical	0	ral		
		4	0	-	-		20	60	

Pre-requisite Course Codes		
After successful completion of	the co	urse, student will be able to
	CO1	Make use of simulation tools to verify characteristics of
		MOSFET based circuits
	CO2	Set-up simulation environment for VLSI circuit simulation
Course Outcomes	CO3	Observe characteristics of MOSFETS via simulation
Course Outcomes	CO4	Discuss tradeoffs in VLSI circuits by observing simulation
		results
	CO5	Validate design of MOSFET based circuits
	CO6	Reproduce the given abstract of the IEEE paper

Exp.	Experiment Details	Ref.	Marks	
No.				
1	To Analyze NMOS and PMOS Transistor characteristics.	1,2	5	
2	To simulate Resistive Load Inverter and CMOS Inverter, verify the VTC.	1,2	5	
	Compare both the topologies. Comment on the Noise Margins.			
3	Implement CMOS NAND, NOR, AND, OR using Static CMOS Logic.	1,2	5	
4	Design and Implement AB+CD bar using different CMOS Logic styles.	1,2	5	
5	Simulate Pseudo NMOS Inverter and comment on the result.	1,2	5	
6	Simulate 6 Transistor SRAM and check the read and write stability	1,2	5	
7	Design and Implement given equation using Pseudo NMOS, Domino	1,2	5	
	Logic and C ² MOS Logic			
8	Simulate Clocked JK and D Flip Flop using Static CMOS Logic.	1,2	5	
Total Marks				

References:

[1] Sung-Mo Kang and Yusuf Leblebici, "CMOS Digital Integrated Circuits Analysis and Design", Tata McGraw Hill, 3rd Edition.

[2] Etienne Sicard and Sonia Delmas Bendhia, "Basics of CMOS Cell Design", Tata McGraw Hill, First Edition.

(Autonomous Institute Affiliated to University of Mumbai)

Course	Course Name	Teacl (H	hing Scl Irs/weel	Credits Assigned				
Code		L	Т	Р	L	Т	Р	Total
				2			1	1
	Digital Signal Processing and	Examination Scheme						
EAL002	Processors Laboratory	ISE			ESE			Total
		Pra		Prac	ctical O		ral	
		4	0	-	-		20	60

Pre-requisite Co	ourse Co	des		
After successful completion of the course, student will be able to				
	CO1	Test Fast Fourier Transform Algorithm		
Course	Design a Digital Filter			
Outcomes	CO3	Adapt open source tools for signal processing application		
	CO4	Demonstrate Real Time Signal Processing using DSP Processor		

Exp. No.	Experiment Details	Ref.	Marks
1	Convolution and Correlation		5
2	Discrete Fourier Transform		5
3	Fast Fourier Transform		5
4	Overlap Add Method / Overlap Save Method		5
5	Digital IIR Filter Design		5
6	Digital FIR Filter Design		5
7	Real Time Signal Processing		5
8	Signal Processing Application		5
	Total	Marks	40

References:

As recommended by faculty.

Course	Course Name	Teacl (H	Credits Assigned					
Code		L	Т	Р	L	Т	Р	Total
	Advanced Instrumentation System			2			1	1
Course		Examination Scheme						
EVI 6020		ISE		ESE				Total
EALOUJA			Prac	Practical		ral		
		40(50%weightage)				10		30

Pre-requisite Course Codes		
After successful completion of	the co	urse, student will be able to
	CO1	Make use of Virtual Instrumentation software (LabVIEW) in
		process control applications.
Course Outcomes	CO2	Differentiate Pneumatic and Hydraulic components
Course Outcomes	CO3	Make use of simulator to build Pneumatic and Hydraulic
		control circuit
	CO4	Design PID control circuit

Exp. No.	Experiment Details	Ref.	Marks
1	To construct a VI to convert Fahrenheit to Celsius, $c = (f - 32)/1.8$ and convert into sub-VI by selection.	1	5
2	To construct a VI to add 8 numeric pressure input values and light up	1	5
	LED if sum <25		
3	To constructs a VI to monitor industry temperature and display	1	5
	warning text and glow warning LED if:		
	1) Current temperature > max temperature. warning text: Heat		
	stroke warning		
	2) Current temperature < min temperature. warning text: Freeze warning		
	3) min. temperature < current temperature <max temperature.<="" th=""><th></th><th></th></max>		
	warning text: no warning text.		
4	To construct a VI to generate a sine wave using Simulate signal express	1	5
	VI. Add uniform white noise then use suitable filter to filter signal and		
	show filtered and unfiltered signal.		
5	To construct a VI to create a table to display pressure values P, P, \sqrt{P}	1	5
6	To demonstrate and understand different types of Pneumatic	2	5

(Autonomous Institute Affiliated to University of Mumbai)

Total Marks				
	of plant using MATLAB			
8	To design and simulate PID controller for process control application	3	5	
	acting cylinder using 5/2 way double solenoid valve and pushbutton			
7	To design a PLC based pneumatic system which will operate double	2	5	
	vii) Compressor, viii) FRL unit.			
	valve, v)5/2 way direction control valve, vi)Double acting cylinder,			
	valve, iii) 5/2 way single solenoid valve, iv) 5/2 way double solenoid			
	Components: i) 5/3 way hand lever valve, ii) 5/2 way pushbutton			

References:

[1] <u>www.ni.com</u>

[2] Electro-pneumatic manual

[3] www.mathworks.com

(Autonomous Institute Affiliated to University of Mumbai)

Course	Course Name	Teacl (H	Credits Assigned					
Code		L	Т	P	L	Т	Р	Total
	Power Electronics – I Lab			2			1	1
		Examination Scheme						
EXL603b		ISE		ESE				Total
				Practical		0	ral	
		40(50%weightage)]	10	30

Pre-requisite Course Codes						
After successful completion of the course, student will be able to						
Course Outcomer	CO1	Make use of simulation tool to analyze power electronic				
		circuits and comment on its performance				
	CO2	Analyze different power semiconductor switches with t				
		characteristics				
Course Outcomes	CO3	Evaluate different performance parameters of rectifiers and				
		choppers				
	CO4	Evaluate different performance parameters of inverters and				
		cycloconverters				

Exp. No.	Experiment Details	Ref.	Marks	
1	Analysis of V-I Characteristics of SCR.	4	5	
2	Analysis of Half Wave Controlled Rectifier using SCR.	1	5	
3	Analysis of V-I Characteristics of TRIAC.	7	5	
4	Analysis of Light Dimmer using DIAC and TRIAC.	7	5	
5	Analysis of different performance parameters of semi-converter using PSIM	2	5	
6	Analysis of different performance parameters of full converter using PSIM	2	5	
7	Evaluation of different performance parameters of Buck Converter using PMLK	2	5	
8	Evaluation of different performance parameters of Boost Converter using PMLK	2	5	
Total Marks				

References:

As recommended by faculty.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
EXL604	Mini Project II			2			2	2
		Examination Scheme						
		ISE		Practical		Oral		Total
		Phase-I:10				4	50	100
		Phase-II:10						
		Phase-III:10						
		Phase	-IV:20					

ISE:

The main intention of Mini Project is to make student enable to apply the knowledge and skills learned out of courses studied to solve/implement predefined practical problem. The students undergo various laboratory/tutorial/simulation laboratory/work shop courses in which they do experimentation based on the curriculum requirement. The mini Project may be beyond the scope of curriculum of courses taken or may be based on the courses but thrust should be on

• Learning additional skills

• Development of ability to define and design the problem and lead to its accomplishment with proper planning.

• Learn the behavioral science by working in a group

The group may be maximum **four** (04) students. Each group will be assigned one faculty as a supervisor. The college should keep proper assessment record of progress of the project and at the end of the semester it should be assessed for awarding TW marks. The TW may be examined by approved internal faculty appointed by the head of the institute. The final examination will be based on demonstration in front of internal and external examiner. In the examination each individual student should be assessed for his/her contribution, understanding and knowledge gained about the task completed.

The topic of Mini Project I and II may be different and / or may be advancement in the same topic. The students may use this opportunity to learn different computational techniques as well as some model development. This they can achieve by making proper selection of Mini Projects.