Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai)

Revision: SPIT-3-18

Bachelor of Engineering/Technology (B.E./B.Tech)

<u>in</u>
<u>Electronics Engineering</u>
(Program Code: UEL)

Third Year Engineering (Sem. V and Sem. VI) Effective from Academic Year 2018 -19

Board of Studies Approval:

13/12/2017

Academic Council Approval:

20/01/2018

Dr. Surendra Rathod Head of Department Dr. Surendra Rathod
Dean Academics

Dr. Prachi Gharpure Principal

Principal
Principal
Principal
Sardar Patel Institute of Technology

Andheri (West)

Mumbai - 400 058.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	SEM V					
Course Code	Course Name	Group		cheme ek)	Credits	
			L	T	P	Total
EL51	Linear Integrated Circuits	PC	3	1		4
EL52	Micro-Architectures	PC	3	1		4
EL53	Signals and Systems	PC	3	1		4
EL54	Electromagnetic Engineering	PC	3	1		4
ELL51	Linear Integrated Circuits Lab	PC			2	1
ELL52	Micro-Architectures Lab	PC			2	1
ELL53	Signals and Systems Lab	PC			2	1
ELL55	Instrumentation Lab	PC		1	2	2
ELP56	Action Research Project I	PR			2	1
MEC^	Mandatory Elective Course MEC3:Industrial and Organizational Psychology MEC4: Law for Engineers	MEC	2			2
SDX	SCOPE Course (Optional)	SD				
ABL3	Creative Thinking, Diversity and Workplace Etiquette (Noncredit)	ABL				
CEP3	Problem solving module-II (Optional)	CEP				
	Total		12	5	10	24
	SEM VI					
Course Code	Course Name	Group		ning So [rs/we	cheme ek)	Credits
			L	T	P	Total
EL61	VLSI Design	PC	3	1		4
EL62	Power Electronics	PC	3			3
EL63	Digital Communication	PC	3			3
ELL61	VLSI Design Lab	PC			2	1
ELL62	Power Electronics Lab	PC			2	1
ELL63	Fundamentals of Operating System Lab	PC		1	2	2
ELL64	Signal Processing Lab	PC			2	1
ELP65	Action Research Project II	PR			2	1
HSS61	Advance Communicative English	HSS	2	2		3
OE^	Open Elective @	OE	1@		2@	2@
SDX	SCOPE Course (Optional)	SD				
ABL4	Technical Paper and Patent Drafting (Noncredit)	ABL				
CEP4	Problem solving module-III (Optional)	CEP				
MEC^	Mandatory Elective Course	MEC	2			2
=	MEC1:French Language		_			_
	MEC2:German Language					
	Total		13+1@	4	10+2@	21+2@

@OE1: Consumer Electronics (ETRX)

OE3: Cyber Security and Digital Forensics (EXTC) OE7:Software Testing (IT)

OE4: Internet of Things (EXTC)

OE2: Robotic Vision (ETRX)

OE5:Fundamentals of Computational Intelligence (COMP)

OE6: Fundamentals of Data Structures and Algorithms (COMP)

OE8:Database Management Systems (IT)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Evaluation Scheme

	B.E./B.Tech Electronics Enginee	ering (SEM	(V)		
Course	Course Name			Marks	
Code		ISE	MSE	ESE	Total
EL51	Linear Integrated Circuits	20	20	60	100
EL52	Micro-Architectures	20	20	60	100
EL53	Signals and Systems	20	20	60	100
EL54	Electromagnetic Engineering	20	20	60	100
ELL51	Linear Integrated Circuits Lab	40		20	60
ELL52	Micro-Architectures Lab	40		20	60
ELL53	Signals and Systems Lab	40			40
ELL55	Instrumentation Lab	40			40
ELP56	Action Research Project I	40&		20	60
MEC^	Mandatory Elective Course	ISE1=	ISE2=	Attendance=	50
	MEC3:Industrial and Organizational Psychology MEC4: Law for Engineers	20	20	10	
ABL3	Creative Thinking, Diversity and Workplace Etiquette (Noncredit)				
	Total				750
	B.E./B.Tech Electronics Enginee	ring (SEM	VI)		
Course	Course Name			Marks	
Code		ISE	MSE	ESE	Total
EL61	VLSI Design	20	20	60	100
EL62	Power Electronics	20	20	60	100
EL63	Digital Communication	20	20	60	100
ELL61	VLSI Design Lab	40			40
ELL62	Power Electronics Lab	40		20	60
ELL63	Fundamentals of Operating System Lab	40			40
ELL64	Signal Processing Lab	40			40
ELP65	Action Research Project II	40&		20	60
HSS61	Advance Communicative English	100			100
OE^	Open Elective @	40	10	20	70
MEC^	Mandatory Elective Course	ISE1=	ISE2=	Attendance=	50
	MEC1:French Language MEC2:German Language	20	20	10	
ABL4	Technical Paper and Patent Drafting (Noncredit)				
	Total				800

@OE1: Consumer Electronics (ETRX)
OE5:Fundamentals of Computational Intelligence (COMP)
OE2: Robotic Vision (ETRX)
OE6:Fundamentals of Data Structures and Algorithms (COMP)

OE3: Cyber Security and Digital Forensics (EXTC) OE7:Software Testing (IT)

OE4: Internet of Things (EXTC) OE8: Database Management Systems (IT)

& Phase-I:10 Phase-II:10 Phase-III:10 Phase-IV:10

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Semester V

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
		L	T	P	L	T	P	Total	
	Linear Integrated Circuits	03	01		3	1		4	
TRI 51		Examination Scheme							
EL51		ISE		MSE	MSE I			Total	
		20		20 60		60		100	

Pre-requisi	te Course	e Codes	ES11: Basic Electrical & Electronics Engineering		
			EL31: Analog Electronics-I		
			EL32: Digital Circuits		
			EL41: Analog Electronics-II		
After succes	ssful comp	pletion of t	the course, student will be able to		
CO1 Discuss fundamentals of operational amplifier IC					
	CO2	Analyze	the various applications and circuits based on particular linear		
		integrate	d circuit		
Course	CO3	Design li	near and non-linear applications using operational amplifier IC		
Outcomes	CO4	Design a	and analysis of circuits and applications with data converter ICs,		
		voltage r	regulator ICs and special purpose ICs		
	CO5	Design a	and develop the complete block diagram and circuit diagram for		
		typical a	pplications using integrated circuits		

Module No.	Unit No.	Topics	Ref.	Hrs.
1		Fundamentals of Operational Amplifier		06
	1.1	Functional Block Diagram of op amp, DC and AC characteristics of	1,3,5	
		an op-amp, Ideal op-amp		
	1.2	Single Supply op-amp Vs Dual Supply op amp, Noise analysis	1,3,5	
		circuits		
2		Linear Applications of Operational Amplifier		08
	2.1	Inverting and non Inverting Amplifier, Adder, subtractor, integrator,	1,3,5	
		differentiator, difference amplifier, instrumentation amplifier		
	2.2	Converters: Current to voltage and voltage to current converters	1,3,5	
	2.3	Active Filters: First order filters, second order active finite and	1, 3	
		infinite gain low pass, high pass, band pass and band reject filters		
3		Non-Linear Applications of Operational Amplifier		08
	3.1	Comparators: Inverting comparator, non-inverting comparator,	1,3,5	
		zero crossing detector, window detector and level detector		
	3.2	Schmitt Triggers: Inverting Schmitt trigger, non-inverting Schmitt	1,3,5	1
		trigger with adjustable threshold levels		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	3.3	Waveform Generators: Square wave and triangular wave generator with duty cycle modulation	3, 5	
	3.4	Precision Rectifiers: Half and full wave precision rectifiers and their applications, Peak detectors, sample and hold circuits, logarithmic converters and antilog converters	1,3,5	
	3.5	Sine Wave Oscillators: RC phase shift oscillator, Wien bridge oscillator	3,4	
4		Data Converters		04
	4.1	Performance parameters of ADC, single ramp ADC, ADC using DAC, dual slope ADC, successive approximation ADC, flash ADC	3,6	
	4.2	Performance parameters of DAC, binary weighted register DAC, R/2R ladder DAC, inverted R/2R ladder DAC	3,6	
5		Special Purpose Integrated Circuits		08
	5.1	Functional block diagram, working, design and applications of Timer 555	3,5	
	5.2	Functional block diagram, working and applications of VCO 566, PLL 565 and multiplier 534	3,5	
6		Voltage Regulators		08
	6.1	Functional block diagram, working and design of three terminal fixed (78XX, 79XX series) and three terminal adjustable (LM 317, LM 337) voltage regulators	1,3,5	
	6.2	Functional block diagram, working and design of general purpose 723 (LVLC, LVHC, HVLC and HVHC) with current limit and current fold-back protection, Switching regulator topologies, functional block diagram and working of LT1070 monolithic switching regulator	1,3,5	
			Total	42

ISE Evaluation:

1) Assignment: Applications using Integrated Circuits: Case Studies: LED Temperature Indicator, Digital DC Motor Speed Control, Appliance Timer, Electronic Security System: Siren/Alarm, Process Parameter monitoring and Control System(CO1 to CO5)(10 Marks)

This is group activity. Students will form a group of minimum 5 students. Each group will be given the problem statement from the case studies listed above but not limited to these. Students will develop the block diagram of the system first, then design each block using ICs and discrete components. Simulate the complete block diagram using any circuit simulator like TINA, Multisim or Proteus. The duration of this activity is a complete semester but evaluation will be done in Phases and rubrics designed. In the first phase students will develop the block diagram for the given problem statement. In the second phase students will develop the circuit diagram and simulate each of the circuit diagrams and test it for input-output relationship. In the third phase students will interface all the designed circuits to obtain final input-output relationship of the system. Hardware implementation is optional.

STATE OF TECHNO

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

2) Four Quizzes based on COs. (CO1 to CO5) (10 Marks)

Tutorial

Tutorials will be based on Design and analysis of the circuits using Integrated Circuits.

- 1) Tutorial 1 and 2: Problems based on fundamentals of operational amplifier IC.
- 2) Tutorial 3 to 6: Design and Analysis of circuits using op-amp (Linear and Non Linear Circuits).
- 3) Tutorial 7 to 10: Design and analysis of circuits and applications with data converter ICs, voltage regulator ICs and special purpose ICs.

Recommended Books:

- 1. Sergio Franco, "Design with operational amplifiers and analog integrated circuits", TataMcGraw Hill, 3rd Edition.
- 2. William D. Stanley, "Operational Amplifiers with Linear Integrated Circuits", Pearson, 4thEdition.
- 3. D. Roy Choudhury and S. B. Jain, "Linear Integrated Circuits", New Age International Publishers, 4th Edition.
- 4. David A. Bell, "Operation Amplifiers and Linear Integrated Circuits", Oxford UniversityPress, Indian Edition.
- 5. Ramakant A. Gayakwad, "Op-Amps and Linear Integrated Circuits", Pearson Prentice Hall,4th Edition.
- 6. R. P. Jain, "Modern Digital Electronics," Tata McGraw Hill, 3 rd Edition.

Course	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
Code		L	T	P	L	T	P	Total	
	Micro-Architectures	3	1		3	1		4	
EI 52		Examination Scheme							
EL52		ISI	${\mathbb E}$	MSE	ES	SE	-	Γotal	
		20)	20	6	0		100	

Pre-requisite	Course	Codes	EL33: Digital Circuits						
			EL43: Computer Organization and Architecture						
After successf	ul compl	etion of th	ne course, student will be able to						
CO1 Describe the architecture, modes and interrupt structure of 16-bit									
		micropro	ocessors.						
	CO2	Compar	e microprocessors based on their architectural features and correlate						
		with cor	nputer organization.						
	CO3	Explain	the architectural features of 8-bit microcontroller.						
Course	CO4	Apply a	ddressing modes and write assembly as well as C program for the						
Outcomes		given ta	sk.						
	CO5	Effective	ely utilize the on chip hardware resources available in the						
		microco	ntroller.						
	CO6	Compar	ompare various 8-bit and 16-bit microcontrollers based on their						
		architect	tural features and select suitable microcontroller for the given						
		applicati	ion.						

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Microprocessors		12
	1.1	Architecture of 16 bit microprocessor, Segmentation and Pin	1,2	
		Diagram.		
	1.2	Maximum and Minimum modes module design	1,2	
	1.3	Interrupt Structure of 8086,8086 instructions and assembler	1,2	
		directives with addressing modes, System design (I/O and memory		
		interfacing).		
	1.4	Comparative Study of microprocessors and microarchitectures with	1,2	
		respect to their important features from the perspective of computer		
		organization:INTEL (X86, Pentium, Celeron, Core 2, Core i3, Core		
		i5 and Core i7) and AMD (Am86, K5, K10, Zen Core).		
2		8051 Architecture		04
	2.1	Overview of 8051 Family	3	
	2.2	8051 block diagram	3	
	2.3	Pin Description of 8051	3	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

3		8051 Programming in C		12
	3.1	Addressing Modes	3	
	3.2	Data Types, Time Delay, Logic Operations and Data Conversion	3	
	3.3	I/O Programming	3	
	3.4	Timer Programming	3	
	3.5	Interrupt Programming	3	
	3.6	Serial Port Programming	3	
4		8051 Interfacing		04
	4.1	LCD and Keyboard Interfacing	4	
	4.2	ADC, DAC and Sensor Interfacing	4	
	4.3	Motor Control: Relay, PWM, DC and Stepper Motors	4	
5		Comparative study of microcontrollers		10
	5.1	Architectural features and development tools: Intel, Atmel (AVR),	4	
		TI (MSP430), Microchip (PIC)		
	5.2	Architectural features and development tools for ARM: NXP (LPC	4	
		2148) and Cypress Semiconductor (PSoC)		
	5.3	Comparative study of Architectural features and development tools	4	
		of Single board microcontrollers: Arduino,Rasberry-Pi and Intel		
		Galilio.		
	5.4	Mixed Signal Microcontrollers from Silicon Labs:8-	4	
		bitC8051F02xand EFM32 Giant Gecko GG Series 32-bit		
		microcontroller.		
			Total	42

Recommended Books:

- [1] Douglas Hall, "Microprocessor and Interfacing", TMH Publication
- [2] John Uffenbeck, "8086/8088 family: Design Programming and Interfacing", Pearson Education.
- [3] Muhammad Ali Mazidi, Janice G. Mazidi and R. D. McKinlay"The 8051 Microcontroller and Embedded Systems: Using Assembly and C", 2nd Edition, Pearson.
- [4] User Manuals

Course Code	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total	
	Signals & Systems	03	01		03	01		04	
TH 52		Examination Scheme							
EL53		IS	E	MSI	Ŧ	ESE		Total	
		20		20		60		100	

Pre-requisite Course Codes	BS31: Applied Mathematics I					
	BS41: Applied Mathematics II					
At the end of the course students will be able to						
	CO1 Perform Operations on Signals					
Course Outcomes	CO2 Classify Signals and Systems					
Course Outcomes	CO3 Analyze System in Transform Domain					
	CO4 Apply DFT Properties and Illustrate FFT algorithms					

Module No.	Unit No.	Topics	Ref.	Hrs.			
	1	Continuous Time Signal	1,2	6			
1	1.1	Mathematical Representation of Signal: Unit Impulse Signal, Unit					
	Step Signal, Unit Ramp Signal, Complex Exponential Signal and Sinusoidal Signal.						
	1.2 Classification : Deterministic and Non deterministic signals,						
		Periodic and Aperiodic Signals, Even, Odd and Neither Even nor					
		Odd signals, Causal, Anti-causal and Both Sided Signals, Energy,					
		Power and Neither Energy nor Power Signal.					
	1.3 Signal Operation : Linear & Circular Convolution, Correlation						
	1.4	Spectral Analysis using Continuous Time Fourier Transform					
2	2	Discrete Time Signal	1,2	6			
	2.1	Mathematical Representation of signal: Unit Impulse Signal, Unit					
		Step Signal, Unit Ramp Signal, Complex Exponential Signal,					
		Sinusoidal Signal					
	2.2	Classification : Deterministic and non deterministic signals, Periodic					
		and Aperiodic Signals, Even, Odd and Neither Even nor Odd					
		signals, Causal, Anti-causal and Both Sided Signals, Energy, Power					
		and Neither Energy nor Power Signal.					
	2.3	Signal Manipulation: Folding, Shifting, Time Scaling, Addition,					
		Multiplication, Decimation, Interpolation by zeros.					
3	3	Z-Transform	1,2	4			
	3.1	Forward Z-Transform, Region of Convergence, Inverse Z-transform	3,4				
	3.2	Properties of Z-Transform: Scaling & Linearity, Time Shift, Time					

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		Reversal, Differentiation, Convolution & Correlation Property		
	3.3	Initial Value Theorem, Final value Theorem		
	4	Discrete Time System	2,3	12
4	4.1	Introduction of System, Classification of Systems: Static and Dynamic		
		Systems, Linear and Non-Linear Systems, Time Invariant and Time		
		Variant Systems, Causal and Non-causal Systems, Stable and unstable		
		Systems.		
	4.2	Impulse Response and Step Response, Transfer Function, Differential		
		Equation, Realization Diagram, Frequency response, Stability.		
	4.3	Zero State Response, Zero Input Response, Transient response, Steady		
		State Response		
5	5	Discrete Fourier Transform	2,3	6
	5.1	DTFT and Inverse DTFT, DFT and Inverse DFT, Relation between DFT		
		and DTFT		
	5.2	Properties of DFT : Scaling & Linearity, Periodicity, Time Shift,		
		Frequency Shift, Time Reversal, Symmetry, Convolution,		
	5.3	Spectral Analysis using DFT, Computations in DFT		
6	6	Fast Fourier Transform	2,3	6
	6.1	Radix-2 Decimation In Time FFT (DIT-FFT) for N=2, 4, 8, Inverse DIT-		
		FFT, Computations in FFT, Convolution using FFT		
	6.2	Linear filtering methods: Overlap Add Method, Overlap Save Method		
	6.3	Spectral Analysis using FFT		
		•	Total	42

Tutorials:

Tutorials will be based on;

- 1. Operations on Continuous Time
- 2. Operations on Discrete time signals
- 3. Z-Transform and Analysis of Discrete Time System using ZT
- 4. Discrete Fourier Transform
- 5. Fast Fourier Transform

Recommended Books:

- [1] A. NagoorKani, "Signals & Systems", McGraw Hill Education (India) Pvt Ltd, Fourteenth Edition.
- [2] S.Salivahanan, AVallavaraj, C Gnanapriya, "Digital Signal Processing", Tata McGraw Hill, First Edition.
- [3] John Proakis and DimitrisMonolakis, "Digital Signal Processing", Pearson Publication, Fourth Edition.
- [4] Alan V. Oppenheim, Alan S. Willsky, and S. Hamid Nawab, "Signals and Systems", Second Edition, PHI learning.

Course Code	Course Name	Teaching Scheme	Credits Assigned						
Course Code	Course Name	L	T	P	L	T	P	Total	
		03	01		03	01		04	
EL54	Electromagnetic Engineering	Examination Scheme							
EL54		ISE	MSE		ESE			Total	
		20	20	0 60			100		

Pre-requisite	BS31 Appli	3S31 Applied Mathematics I				
Course	BS41 Appli	BS41 Applied Mathematics II				
Codes	EL34 Electr	EL34 Electronic Instruments and Measurement Lab				
	CO1	Apply basic laws of electromagnetic and Maxwell's equations				
	CO2	Illustrate the behavior of EM waves and travelling of waves in free space as				
Course		well as media.				
Outcomes	C03	Solve problems related to the propagation of electromagnetic waves				
	CO4	Discuss the types of antennas and their parameters				
	CO5	Discuss types of radio wave propagation				

Module	Unit	Topics	Ref.	Hrs.		
No.	No.					
	1	Coordinate system transformation and vector calculus	1,3	03		
1	1.1	Cartesian, cylindrical and spherical coordinate				
	1.2	Del Operator, Gradient of scalar, Divergence of a vector and				
		Divergence Theorem, Curl of a Vector and Stoke's Theorem,				
		Laplacian Theorem, Classification of a Vector Field				
2	2	Transmission Lines	2	08		
	2.1	Power frequency lines: Representation, losses and efficiency in				
		power lines, effect of length, calculation of inductance and				
		capacitance				
	2.2	Radio frequency lines: Representation, propagation constant,				
		attenuation constant, phase constant, group velocity, input				
		impedance, characteristic impedance, reflection coefficient, standing				
		wave ratio, VSWR, ISWR, S-parameters				
	2.3	Smith Chart: Impedance locus diagram, impedance matching				
3	3	Basic Laws of Electromagnetic and Maxwell's Equation	1,2	08		
	3.1	Coulomb's law, Gauss's law, Bio-Savart's law, Ampere's law,				
		Poisson's and Laplace equations				
	3.2	Boundary conditions for static electric and magnetic fields				
	3.3	Maxwell's Equations: Integral and differential form for static and				
		time varying fields and its interpretation.				
4	4	Uniform Plane Equation and Power Balance	1,2	08		
	4.1	Wave equation: Derivation and its solution in Cartesian co-ordinates.				
	4.2	Solution of wave equations: Partially conducting media, perfect				

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	1			
		dielectrics and good conductors, Concept of Skin Depth		
4	4.3	Electromagnetic Power: Poynting Vector and power flow in free		
		space and in dielectric, conducting media		
4	4.4	Polarization of wave: Linear, Circular and Elliptical		
4	4.5	Propagation in different media: Behavior of waves for normal and		
		oblique incidence in dielectrics and conducting media, propagation		
		in dispersive media		
5	5	Fundamentals of Antenna	1,2	06
	5.1	Magnetic vector potential and Electrical Scalar Potential, Hertzian		
		dipole, monopole and dipole, Antenna Parameters: Radiation		
		intensity, directive gain, directivity, power gain, beam width, band		
		width, gain and radiation resistance of current element		
	5.2	Half-wave dipole and folded dipole: Reciprocity principle, effective		
		length and effective area		
6 (6	Electromagnetic Field Computation	6	06
	6.1	Finite Difference Method (FDM): Neumann type and mixed		
		boundary conditions, Iterative solution of finite difference equations,		
		solutions using band matrix method		
	6.2	Method of Moment (MOM): Field calculations of conducting wire,		
		parallel conducting wires		
	6.3	Finite Element Method (FEM): triangular mesh configuration,		
		finiteelement discretization, element governing equations,		
		assembling allequations and solving resulting equations.		
7	7	Radio wave propagation	4,5	03
	7.1	Ground, Space, Surface and Sky wave propagation		
7	7.2	Measures of Ionosphere propagation		
	•		Total	42

Recommended Books:

- [1] Matthew N.D. Sadiku, "Principles of Electromagnetics", Oxford International Student 4th Edition, 2007
- [2] R.K. Shevgaonkar, "Electromagnetic Waves", TATA McGraw Hill Companies, 3rd Edition, 2009.
- [3] W.H. Hayt, and J.A. Buck, "Engineering Electromagnetics", McGraw Hill Publications, 7th Edition, 2006
- [4] Edward C. Jordan and Keth G. Balmin, "Electromagnetic Waves and Radiating Systems", Pearson Publications, 2nd Edition, 2006
- [5] J.D. Kraus, R.J. Marhefka, and A.S. Khan, "Antennas & Wave Propagation", McGraw Hill Publications, 4th Edition, 2011
- [6] Jian-Ming Jin, "Theory and computation of Electromagnetic Field", Wiley publication, 2^{nd} Edition, 2015

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Tutorials on Electromagnetic Engineering

Sr.	Suggested List of Topics	No. of
No		hours
1	Numerical problems on "Coordinate system transformation and Vector calculus"	01
2	Numerical problems on "Transmission line"	02
3	Numerical problems on "Basic laws of Electromagnetics"	01
4	Numerical problems on "Boundary conditions"	01
5	Numerical problems on "Maxwells equation in differential and integral form"	01
6	Numerical problems on "Wave equation"	02
7	Numerical problems on "Poynting Vector"	01
8	Numerical problems on "Polarization and propagation of EM waves"	02
9	Numerical problems on "Antenna fundamentals"	01
10	Numerical problems on "Electromagnetic Field Computation"	02
	Total	14

Course Code	Course Name	S	Teaching Scheme (Hrs/week)			Credits Assigned				
		L	T	P	L	T	P	Total		
				2		-	1	1		
ELL51	Linear Integrated Circuit Lab	Examination Scheme								
			ISE		MS	E	ESE	Total		
			40				20	60		

			ES11: Basic Electrical & Electronics Engineering							
Pre-requisite Course Codes		C. J	EL31: Analog Electronics-I							
Pre-requisi	te Coul	rse Codes	L32: Digital Circuits							
			EL41: Analog Electronics-II							
After succes	ssful co	mpletion of	the course, student will be able to							
	CO1	Validate e	lectrical characteristics of given ICs.							
	CO2	Design, de	ebug and test electronic circuit using ICs like op-amp 741, IC 555, IC							
		566, IC72	66, IC723, etc.							
	CO3	Validate t	Validate the simulation results with experimental results for the given circuit							
_		using Ana	sing Analog System Trainer Kit by Texas Instruments.							
Course	CO4	Validate c	Validate circuits by simulation using modern tools available like ngspice and							
Outcomes		LTspice,	ΓΙΝΑ, Multisim.							
	CO5	Design, de	evelop and troubleshoot the complete electronic system for typical							
		applicatio	ns like speed control of DC Motor, Temperature control, development							
		of signal of	conditioning circuits for various transducers.							
	CO6	Infer data	sheet of the given IC.							

Exp.	Suggested List of Experiments	Ref.	Marks
No.			
1	To measure (a) Input bias current, (b) Input offset current, (c) Input offset	1,2, 3	5
	voltage & (d) Slew rate of the given Op-Amp IC 741.		
2	Design, Implement and analyze Schmitt Trigger Circuit using Op-Amp IC	1,2	5
	741.		
3	Design, Implement and analyze Square Wave Generator Circuit using Op-	1,2	5
	Amp IC 741.		
4	Design, Implement and analyze MonostableMultivibrator Circuit using IC	1,2	5
	555 and its operation as divide by N frequency.		
5	Design, Implement and analyze Inverting Adder Circuit using Op-Amp IC	1,2	5
	741.		
6	Design, Implement and analyze Voltage Regulator Circuit using IC 723.	1,2	5
7	a) Design, Simulate and analyze the given problem statement (circuit) using	1,2,5	5
	Circuit Simulation S/W preferably NI-Multisim/TINA/SPICE.		
	b) Implement and analyze this Circuit using Op-Amp (TL802): Analog		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	System Trainer Kit - TEXAS INSTRUMENTS.		
	(Please refer to the extra sheet attached for problem statement).		
8	TSC: Trouble Shooting Competition	TSC	5
		Man	
		ual	
		Total	40

References:

- [1] DLIC Laboratory Manual
- [2] D. Roy Choudhury and S. B. Jain, "Linear Integrated Circuits", New Age International Publishers, 4th Edition.
- [3] David A. Bell, "Operation Amplifiers and Linear Integrated Circuits", Oxford UniversityPress, Indian Edition.
- [4] Ramakant A. Gayakwad, "Op-Amps and Linear Integrated Circuits", Pearson Prentice Hall,4th Edition.
- [5] Analog System Trainer, Texas Instruments Laboratory Manual

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	T	P	L	T	P	Total
	Micro-Architectures Lab			2			2	1
EI I 52		Examination Scheme					1e	
ELL52		ISI	Ξ	MS	E	ES	SE	Total
		40)			2	0	60

Pre-requisite Course Codes		Codes	EL52 (Principles of Microprocessors and Microcontrollers)					
After successful completion of the course, student will be able to								
	CO1	Impleme	ent an instruction set of 8086 microprocessor to execute the given					
Course		task on given platform						
Course	CO2	Program	and interface 8-bit microcontroller					
Outcomes	CO3	Program	and interface 16-bit microcontroller					
	CO4	Program	and interface ARM based microcontrollers					

Exp No.	Experiment Details	Ref.	Marks
1.	Write a program to execute the given task on 8086 platform.	1	5
2.	Write a program to study interfacing of 8086 to various peripherals	1	5
3.	Programming and Interfacing of 8-bit 8051 Microcontroller (e.g. 898S51/52)	2	5
4.	Programming and Interfacing for utilization of various on-chip resources of 8-bit 8051 Microcontroller (e.g. 89S51/52)	2	5
5.	Programming and Interfacing for utilization of various on-chip resources of 16-bit Microcontroller (e.g. MSP430)	3	5
6.	Programming and Interfacing of 16-bit Microcontroller (e.g. MSP430)	3	5
7.	Programming and Interfacing of ARM based microcontrollers (e.g. PSoC)	4	5
8.	Programming and Interfacing for utilization of various on-chip resources of ARM based microcontrollers (e.g. PSoC)	4	5
	Total		40

Recommended Books:

- [1] Douglas Hall, "Microprocessor and Interfacing", TMH Publication
- [2] Muhammad Ali Mazidi, Janice G. Mazidi and R. D. McKinlay "The 8051 Microcontroller and Embedded Systems: Using Assembly and C", 2nd Edition, Pearson.
- [3] Uses manuals and application notes from Texas Instruments
- [4] User manuals and application notes from Cypress Semiconductor

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total	
				02		-	01	01	
FI 1 50	Signals & Systems Lab	Examination Scheme							
ELL 53		ISE		MSE		ESE		Total	
		40						40	

Pre-requisite Course Codes	EL54	EL54: Signals & Systems				
At the end of the course students will be able to						
	CO1	Examine sampling and reconstruction				
	CO2	Analyze System performance in frequency domain				
Course Outcomes	C03	Adapt open source tools for signal processing				
		application				
	CO4	Evaluate Linear filtering using fast FFT				

Expt.	Suggested Topics for Experiments Ref.				
No.					
1	Sampling and Reconstruction	2,3	5		
2	Convolution time domain operation	2,3,4	5		
3	Correlation time domain operation	2,3,4	5		
4	Zero State Response of IIR System	2,3,4	5		
5	Zero State Response of FIR System	2,3,4	5		
6	Frequency Response of System	2,3,4	5		
7	Discrete Fourier Transform	2,3,4	5		
8	Fast Fourier Transform	2,3,4	5		
9	Energy evaluation in time and frequency domain	2,3,4	5		
10	Linear Filtering using FFT	2,3,4	5		
Eight Experiments Total Marks					

References

- [1] Vinay Ingle & John Proakis, "Digital Signal Processing using MATLAB", Cengage Learning, 2012
- [2] A. NagoorKani, "Signals & Systems", McGraw Hill Education (India) Pvt Ltd,14th Ed.
- [3] S.Salivahanan, AVallavaraj, C Gnanapriya, "Digital Signal Processing", Tata McGraw Hill, 1stEdition.
- [4] John Proakis and DimitrisMonolakis, "Digital Signal Processing", PearsonPublication, 4th Ed.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total	
			01	02		01	01	02	
		Examination Scheme							
ELL55	Instrumentation Lab	IS	E	MSE		ESE		Total	
		40						40	

Pre-requisite Cours	e Code	ELL34: Electronics Instruments and Measurement			
At the end of the course students will be able to					
	CO1	Describe the applications of different sensors, transducers, relays,			
		contactors			
	CO2	Design a pneumatic control system using PLC.			
Course Outcomes	CO3	Manipulate the hydraulic system using simulation software.			
	CO4	Operate the PLC to control external circuit.			
	CO5	Recognize the symbols used in pneumatic and hydraulic system.			
	CO6	Obtain the PID characteristics			

During tutorials, theoretical concepts required for performing the following experiments shall be taught. Content delivery for tutorials can be done through videos, ppt, animations, chalk & board and simulation software's. Teacher can use any assessment method for assessing the attainment of learning outcomes.

Sr. No.	Suggested List of Experiments	CO	Marks
1	Design hydraulic system which drives motor, pump, valves and hydraulic cylinders using SIM hydraulic simulation software.	2	5
2	Perform and experiment to identify the fault in the given digital flow indicator using Turbine Sensor and estimate the cost of each component with specification.	1	5
3	Design the Pneumatic circuit to operate the following. a. 5/3 way hand lever valve b. 5.2 way push button valve c. 5/2 way single solenoid valve d. 5/2 way double solenoid valve e. Cylinder and 5/2 way direction control valve f. Connection of contactors with self holding g. Automatic return control of a double acting cylinder	2,5	5

4	Perform an experiment to Simulate ladder diagram with PLC. Design basic gates using ladder diagram. Interface lamp and motor to PLC.	4	5
5	Design a PLC based pneumatic control circuit To operate double acting cylinder using 5/2 double solenoid valve with push button. To operate single acting cylinder using 5/2 single solenoid valve with push button.	2,4	5
6	Design a PLC based pneumatic control circuit To operate single acting cylinder using 5/2 single solenoid valve with timer base. To operate double acting cylinder using 5/2 double solenoid valve with sensors.	2,4	5
7	To design and simulate PID controller for process control application of plant/ Temperature control system using PLC / SCADA/ HMI	6	5
8	Demonstrate and perform an experiment on flow control with virtual lab set up.	3	5
	Total		40

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
		L	T	P	L	T		P	Total
	Action Research Project-I			2				2	1
77 D#4		Examination Scheme							
ELP56			ISE		MSE		ESE		Total
		Phase-I:10					2	20	60
		Phase-II:10							
		Phase-III:10							
		Pha	se-IV	:10					

Pre-requisite Course Codes	All the Courses till Vth Semester.
-----------------------------------	------------------------------------

Action research is an opportunity to make a difference in the experience of education in its own way. It is an attempt of scientific study of the problem in surrounding in order to guide, correct and evaluate the actions and decisions about it. Action research is based on small research project correlating scientific knowledge and day to day experience which encourages development of scientific attitude to solve real life problems among students.

The Objectives of Action Research are:

- ✓ To make students sensitive towards societal issues
- ✓ To learn scientific principles from day-to-day experiences
- ✓ To develop psychotechnological skills through observation, classification, statement of hypothesis etc.
- ✓ Development of communication, organizational skills and maturity through discussion, presentation etc.
- ✓ To develop ability to correlate science, technology and society
- ✓ To apply engineering knowledge and propose innovative, sustainable solutions to the real life challenges

Steps of action research:

- ✓ Keen observation of the surrounding/society
- ✓ Identification of the problem
- ✓ Analysis of the problem
- ✓ Collection of relevant information by formulating research questions
- ✓ Suggesting plan of action
- ✓ Conducting experiments
- ✓ To draw conclusion
- ✓ To find the possible solution to rectify the problem

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

✓ To execute experiments and remedial measures wherever possible

Students can seek guidance from teachers, other experts and make effective use of other sources of information available around them.

Students must ensure that problem to be solved in manageable in one semester.

Teachers must follow the below mentioned principles:

- ✓ Make student confront problem solving
- ✓ Develop methods and techniques of handling problems. Teach how to use the methods and not directly give solution to the problem.
- ✓ Empasize positive thinking
- ✓ Lead the students to the peak of their powers for improvement of better learning.

Criteria of a good project:

- ✓ Appropriate idea, clear understanding and proper presentation of the concept
- ✓ Quality of work
- ✓ Project plan and its execution
- ✓ Credibility of the work
- ✓ Probable impact of the work on the attitude of students and society
- ✓ Scientific attitude, creativity and novelty reflected in project work and analysis of the situation
- ✓ Utility and innovation of the remedial measures
- ✓ Efforts taken towards implementation
- ✓ Desirability, Feasibility and Viability in real life

The H/W and S/W resources required to complete the Action Research Project I may be beyond the scope of curriculum of courses taken or may be based on the courses but thrust should be on • Learning additional skills • Development of ability to define and design the problem and lead to its accomplishment with proper planning • Learn the behavioral discipline by working in a team. The team may be maximum three (03) students.

Evaluation:

Project report should be submitted on A-4 size pages. Use both printing. Report must carry project title, student details, certificate and acknowledgements. Other sections of the report shall be decided by the department based on projects. But it must have introduction, necessity of project, objectives, hypothesis ("If I do…then I may get…"), plan, observations, analysis of results, conclusion and references along with other sections related to technology.

The ISE and ESE evaluation will be carried out based on the rubrics framed by the Department. ISE marks will be based on the performance of the individual student in four phases of evaluation. The

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

evaluation of the Phase-I will be based on presentation of the market/literature survey, problem definition and project title finalization. Evaluation of Phase-II will be based on circuit/algorithm design, purchase of H/W and S/W resources, simulation/testing of circuit/algorithm. Phase-III evaluation will consist of PCB design, PCB making/verification of algorithm and testing of circuit/algorithm. Phase-IV evaluation is based on demonstration, poster presentation, technical report and paper writing during Action Research Project I contest.

The ESE marks will be based on demonstration in front of the expert appointed by the Department. In the ESE examination each individual student would be assessed for his/her contribution in selecting the originality of the problem statement, understanding and knowledge gained about the task completed through presentation/demonstration, work done, and preparing the technical report/poster/technical paper of the project in the standard format provided by the Department.

Course Code	Course Name	Т	Credits Assigned						
Code		L	T	P	L	T	P	Total	
		2	-	-	2	-	-	2	
MEC2	Industrial and			ion Scheme					
MEC3	Organizational Psychology	ISE1		ISE2	Attendance		To	Total Marks	
		20		20	10			50	

Pre-requisite Course Codes							
	CO1	To im	part knowledge and understanding of the basic concepts in and				
		variou	arious facets of Industrial and Organizational Psychology				
Course	CO2	To cre	o create awareness about the role and importance of Psychological factors				
Objectives		and pr	ocesses in the world of work				
	CO3	To cre	ate a foundation for higher education and a professional career in				
		Indust	rial Psychology and Organizational Behavior				

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Theories of Employee Motivation	1, 2	05
	1.1	What is motivation? Work motivation theories, need theories		
	1.2	Other Theories - Reinforcement theory, expectancy theory and self-		
		efficacy theory; Justice theories, goal-setting theory, control theory and		
		action theory		
2		Feelings about Work: Job Attitudes and Emotions	1,2	07
	2.1	The nature of job satisfaction; how people feel about their jobs; the		
		assessment and antecedents of job satisfaction		
	2.2	Potential effects of job satisfaction; organizational commitment and		
		emotions at work		
3.		Productive and Counterproductive Work Behavior	1,2	05
	3.1	Productive work behavior: ability, motivation, personal characteristics		
		and task performance; environmental conditions and task performance;		
		organizational constraints; organizational citizenship behavior (OCB)		
	3.2	Counterproductive work behavior: withdrawal – absence, lateness,		
		turnover; aggression, sabotage, and theft; labor unrest and strikes.		
4.		Leadership and Power in Organizations	1,2	06
	4.1	What is leadership? Sources of influence and power; abuse of		
		supervisory power: sexual and ethnic harassment		
	4.2	Approaches to the understanding of leadership; women in leadership		
		positions; cross-cultural issues in leadership		
5.		Organizational Development and Theory	1,2	05
	5.1	Organizational Development		
	5.2	Organizational Theories		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Total 28

Books Recommended:

- 1. Spector, P. E. (2012). Industrial and Organizational Psychology: Research and Practice. Singapore: John Wiley & Sons Pte. Ltd. (Indian reprint 2015)
- 2. Schultz, D., & Schultz, S. E. (2010). Psychology and Work Today.(10th ed.). Pearson Prentice Hall

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name			g Scheme week)	Credits Assigned			
Code		L	T	P	L	\mathbf{T}	P	Total
		2 -		-	2	-	-	2
MEGA				Examination	n Sch	eme		
MEC4	Law for Engineers	IS	E1	ISE2	Atter	ndance	;	Total
							N	Marks
		2	. 0	20		10		50

Pre-requisite	Course	Codes
	CO1	Student will be able to recognize the importance of the legal system, and
Course		the controls it exerts on the activities of engineers in practice.
Outcomes	CO2	Student will be able to express the details of what the individual's
		responsibilities are to ensure legal behaviour in engineering practice.

This course is a survey of legal topics relevant to engineers, including basic of legal system, labor law, intellectual property, torts, and contracts. This is an introductory course, emphasizes on legal principles that can provide engineers with the ability to recognize legal issues that are likely to arise in the engineering profession.

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	General Principles of Contract under Indian Contract Act, 1872.	1	4
	1.2	Introduction to Human Rights.	1	
		Enforcement of Human Rights in India including Supreme Court,		
		High Courts, Statutory Commissions- NHRC, NCW, NCM, NC-		
		SC/ST etc.		
2	2.1	Right to Information Act, 2005 : Evolution and concept; Practice	1	4
		and procedures; Official Secret Act, 1923; Indian Evidence Act,		
		1872.		
	2.2	Information Technology – legislation and procedures, Cyber	1	
		crimes – issues and investigations.		
3	3.1	Labor Laws: Industrial Disputes Act, 1947; Collective bargaining;	1	12
		Industrial Employment (Standing Orders) Act, 1946; Workmens		
		Compensation Act, 1923.		
	3.2	Apprentices Act, 1961.	2,3	
		Bonded Labor System (Abolition) Act, 1976.		
		Child Labor (Prohibition and Regulation) Act, 1986.		
		Contract Labor (Regulation and Abolition) Act, 1970.		
	3.3	Employees' Provident Funds and [Miscellaneous Provisions] Act,	2,3	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

			Total	28
		Representation of Peoples Act and Prevention of Corruption Act, 1988;		
		Election provisions under Indian Constitution (Art.324–329):		
		for control, FEMA 1999, Corporate liability, civil and criminal.		
		provisions; Law and multinational companies – International norms		
J	3.1	companies, public and private (Companies Act, 1956) general	1	T
5	5.1	Corporate Law: Meaning of corporation; Law relating to	1	4
		Law relating to Trademarks under Trademark Act, 1999. Law relating to Patents under Patents Act, 1970.		
		Law relating to Copyright in India.		
4	4.1	Law relating to Intellectual property	1	4
		Trade Unions Act, 1926.		
		Payment of Wages Act, 1936.		
		Payment of Gratuity Act, 1972.		
		Payment of Bonus Act, 1965.		
		Minimum Wages Act, 1948.		
		Industries (Development and Regulation) Act, 1951. Maternity Benefit Act, 1961.		
		Fatal Accidents Act, 1855.		
		Factories Act, 1948.		
		Equal Remuneration Act, 1976.		
		Employees' State Insurance Act, 1948.		
		1952.		

Books Recommended:

- [1] Nikita Agarawal and Rishi Kumar, "Laws for Engineers," Genius Publications.
- [2] P. L. Malik Handbook of Labour and Industrial Law, Eastern Book Company
- [3] Industrial labour and general laws, The Institute of Company Secretaries of India

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

ABL3: Creative Thinking, Diversity and Workplace Etiquette

I. Creative Thinking:

Organizations thrive on innovative ideas and new answers to old problems. To become successful not only these approaches be fresh, they must also be sound. This activity shall inspire students to push them for critical thinking and decision making. Students may be asked to provide innovative solutions to specific issues within the organization to meet business needs. Through this activity students shall learn how to step out of their comfort zone, able to isolate problems, recognize differences between left brain and right brain thinking, and apply creative thinking techniques to business problems.

II. Diversity:

Nowadays students are becoming global and degree from an accredited institute is considered as 'Educational Passport' hence it is necessary to include training on diversity. Training on working in a culturally diverse team to prepare students for an international work is required. A better understanding of others can improve communication, encourage engagement, reduce inappropriate behavior and increase the strength of a team. A strategy of inclusion can also help employees realize their full workplace potential. Activities shall be planned for diversity awareness, unconscious bias, generational differences, communicational style preferences and tactics for managing heterogeneous teams. Igniting thought provoking questions and conversations related to diversity in race, gender, culture, age and other observable differences shall be fundamental to this activity. Activity shall also address cognitive biases which are influences that cause us to make decisions based on information outside of logic and rational thinking for example behavioral partiality and social favoritism.

III. Workplace Etiquette:

Organizations expect that employees are aware of workplace expectations and etiquette. While the use of good business etiquette will not make up for technical knowledge in the workplace but bad manners and poor etiquette can cost both employees and organizations for which they work. This activity shall focus on ins and outs of business etiquette by managing technology and social media effectively. Activity shall be based on Cell phone etiquette, Email etiquette, social media etiquette, board meeting etiquette, sales meeting etiquette, business dressing and dining skills, international manners along with exceptional etiquette like hosting corporate guests, interacting with public or customers and business networking.

STATUTE OF TECHNOLOGY

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Methodology:

Guest lectures by professionals shall be arranged on Creative Thinking, Diversity and Workplace Etiquette. At least one lecture on each topic shall be taken. Assessment shall be based on performance in following activities:

- 1. Short Film Making
- 2. Skit Performance
- 3. Poster Presentation
- 4. Project Presentation
- 5. Physical Model Presentation
- 6. Scientific Case Study

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Semester VI

Course Code	Course Name	Teaching Scheme (Hrs/week)		e	Credits Assigned			
		${f L}$	T	P	L	T	P	Total
		3	1		3	1		4
EL61	VLSI Design			Exami	nation	Sche	me	
		ISE		MSE	E	SE	7	Γotal
		20		20	(60		100

Pre-requisit	Pre-requisite Course Codes			ES11: Basic Electrical & Electronics Engineering							
_			EL31: Anal	log Elect	ronics-I						
			EL32: Digi	tal Circu	its						
			EL41: Anal	log Elect	ronics-II						
After success	ful com	pletion of th	ne course, str	udent wil	ll be able 1	to					
	CO1	Distingui	sh between	technolo	gies and	MOSF	ET models				
	CO2	Analyze	MOSFET	based	circuits	like	inverters,	logic	circuits	and	
Course		semicond	uctor memo	ries							
Outcomes CO3 Design MOSFET based			ed logic	circuits v	vith di	fferent desi	gn style	es			
	CO4	Design da	ata path for a	adders, r	nultiplier	s and s	shifters				
	CO5	Discuss is	ssues in VL	SI Clock	ing and S	ystem	Design				

Module No.	Unit No.	Topics	Ref.	Hrs.
1		Technology Trend		04
	1.1	Technology Comparison: Comparison of BJT, NMOS and CMOS	1	
		technology		
	1.2	MOSFET Scaling: Types of scaling, MOSFET capacitances	1	
2		MOSFET Inverters		10
	2.1	Circuit Analysis: Static and dynamic analysis (Noise, propagation delay and power dissipation) of resistive load and CMOS inverter, comparison of all types of MOS inverters, design of CMOS inverters, CMOS Latch-up	1	
	2.2	Logic Circuit Design: Analysis and design of 2-I/P NAND and NOR using equivalent CMOS inverter	1	
3		MOS Circuit Design Styles		10
	3.1	Design Styles: Static CMOS, pass transistor logic, transmission gate, Pseudo NMOS, Domino, NORA, Zipper, C ² MOS	1,7	
	3.2	Circuit Realization: SR Latch, JK FF, D FF, 1 Bit Shift Register, MUX, decoder using above design styles	1,7	
4		Semiconductor Memories		06
	4.1	SRAM: ROM Array, SRAM (operation, design strategy, leakage currents, read/write circuits), DRAM (Operation 3T, 1T, operation modes, leakage currents, refresh operation, Input-Output circuits),	1,2	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		Flash (mechanism, NOR flash, NAND flash)		
	4.2	Peripheral Circuits: Sense amplifier, decoder	1,2,3	
5		Data Path Design		06
	5.1	Adder: Bit adder circuits, ripple carry adder, CLA adder	7	
	5.2	Multipliers and shifter: Partial-product generation, partial-product accumulation, final addition, barrel shifter	7	
6		VLSI Clocking and System Design		06
	6.1	Clocking: CMOS clocking styles, Clock generation, stabilization and distribution	2,5,6	
	6.2	Low Power CMOS Circuits: Various components of power dissipation in CMOS, Limits on low power design, low power design through voltage scaling	5,6	
	6.3	IO pads and Power Distribution: ESD protection, input circuits, output circuits, simultaneous switching noise, power distribution scheme	5,6	
	6.4	Interconnect: Interconnect delay model, interconnect scaling and crosstalk	5,6	
			Total	42

References:

- [1] Sung-Mo Kang and Yusuf Leblebici, "CMOS Digital Integrated Circuits Analysis and Design", Tata McGraw Hill, Third Edition.
- [2] Jan M. Rabaey, AnanthaChandrakasan and Borivoje Nikolic, "Digital Integrated Circuits: A Design Perspective", Pearson Education, Second Edition.
- [3] Etienne Sicard and Sonia DelmasBendhia, "Basics of CMOS Cell Design", Tata McGraw Hill, First Edition.
- [4] Neil H. E. Weste, David Harris and Ayan Banerjee, "CMOS VLSI Design: A Circuits and Systems Perspective", Pearson Education, Third Edition.
- [5] Debaprasad Das, "VLSI Design", Oxford, First Edition.
- [6] Kaushik Roy and Sharat C. Prasad, "Low-Power CMOS VLSI Circuit Design", Wiley, Student Edition.
- [7] John P. Uyemura, "Introduction to VLSI Circuits and Systems", Wiley, Student Edition, 2013.

Course Code	Course Name	Teaching Scheme (Hrs/week)		Credits Assigned				
		L	T	P	L	T	P	Total
	Power Electronics	3			3			3
EI (2		Exam			ination Scheme			
EL62		ISE		MSE	E	SE	7	Fotal
		20		20		60		100

Pre-requisite Course Codes	Analog Electronics-I (EL31)					
	Analog Electronics-II(EL41)					
After successful completion of	the co	urse, student will be able to				
	CO1	Interpret tradeoffs involved in power semiconductor devices.				
	CO2	Analyze different types of controlled rectifiers				
Course Outcomes	CO3	Analyze different types of inverters				
	CO4	Analyze DC-DC convertors (choppers)				
	CO5	Analyze AC-AC converters				

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Overview of Power Semiconductor Devices		
	1.1	Principle of operation, characteristics, rating and applications of:	2	12
		SCR, TRIAC, GTO, MOSFET and IGBT		
	1.2	Basic Gate Drive circuits for SCR, GTO, MOSFET and IGBT	2, 3	
	1.3	Reliability and protection of Thyristor.	3, 7	
2		Line CommutatedConverters		10
	2.1	Operation and performance analysis of Single-phase Half wave	1, 4	
		controlled rectifier, Full wave (bridge) Controlled rectifier, Semi-		
		converter, Dual converter with R and R-L load.		
	2.2	Operation and performance analysis of three-phase half controlled	1, 4	
		and fully controlled rectifiers with R load.		
3		Inverters		10
	3.1	Operation and performance analysis of Single-phase half /full bridge	1, 5	
		voltage source inverters with R and R-L load, three phase bridge		
		inverters (120° and 180° conduction mode) with R and R-L load		
	3.2	Single phase inverters using PWM techniques, harmonic	5	
		neutralization of inverters, applications of inverters.		
4		Choppers		06
		Basic principle of step up and step down chopper, operation of four	1, 5	
		quadrant chopper. Buck, Boost, Buck-Boost, Cuk regulators,		
		Applications of chopper.		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

5		AC Voltage Controllers and Cycloconvertors		04
	5.1	Principle of On-Off control, principle of phase control, single phase	1, 5	
		bidirectional control with R and RL load.		
	5.2	Introduction, single phase Cycloconverters, applications.	1, 5	
			Total	42

Recommended Books:

- [1] M. H. Rashid, "Power Electronics", Prentice-Hall of India, Third Edition.
- [2] Ned Mohan, "Power Electronics", Undeland, Robbins, John Wiley Publication, Third Edition.
- [3] Ramamurthy, "Thyristors and Their Applications", East-West Press, Third Edition.
- [4] VedamSubramanyam, "Power Electronics", New Age International, Second Edition.
- [5] M.D. Singh and K. B. Khanchandani, "Power Electronics", Tata McGraw Hill, Second Edition.
- [6] P. C. Sen, "Modern Power Electronics", Wheeler Publication, Second Edition.
- [7] Alok Jain, "Power Electronics and its Applications", Penram International Publishing (India) Pvt. Ltd, Second Edition.

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
		L	T	P	L	T	P	Total	
	Digital Communication	3			3			3	
EI (2		Examination Scheme							
EL 63		ISE		MSE	ESE		7	Total	
		20		20	60			100	

Pre-requisite	EL44:	EL44: Fundamentals of Communication Engineering					
Course Codes	EL54:	EL54: Signals and Systems					
	At the	At the end of the successful completion of the course students will be able to					
	CO1	Model various entities of digital communication system mathematically					
Course	CO2	Identify source and channel coding techniques					
Outcomes	CO3	Explain techniques to enhanced transmission efficiency of the system					
Outcomes	CO4	Describe digital modulation formats and its properties					
	CO5	Demonstrate the use of error control and spread spectrum techniques in					
		wired					

Module No.	Unit No.	Topics	Ref.	Total Hrs.
1	1.1	Information theory and source coding: Block diagram and sub-system description of a digital communication system, measure of information and properties, entropy and it's properties.	1,2,3	06
	1.2	Source Coding, Shannons Source Coding Theorem, Shannon-Fano, Huffman coding, information and channel capacity, channel coding theorem, channel capacity theorem.		
2	2.1	Pulse Shaping for Optimum Transmission: Line codes and their desirable properties, Concept of inter-channel and inter-symbol interference, eye pattern.	1,2,3	08
	2.2	Concept of equalizer to overcome ISI, Nyquist criterion for distortionless transmission, Duo-binary encoding and modified duo-binary encoding.		
3	3.1	Digital Modulation Techniques: Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK)Modulations, Binary Phase Shift Keying (BPSK), Modulation, Quaternary Phase Shift Keying QPSK), Mary PSK, Modulations, Quadrature Amplitude Modulation (QAM), Minimum Shift Keying		12

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		(MSK)		
	3.2	Comparison between bandwidth and bit rate, applications of digital modulation schemes		
4	4.1	Error Control Systems: Types of error control, error control codes, linear block codes, generator matrix, systematic linear block codes, parity check matrix,	1,2,4	12
	4.2	Cyclic codes: Algebraic structure of cyclic codes, binary cyclic code properties, encoding in systematic form, circuits for dividing polynomials, systematic encoding with shift register and error detection.		
	4.3	Convolution Codes: Time domain and transform domain approach, graphical representation, code tree, trellis, state diagram		
5	5.1	Spread Spectrum Modulation: Need for spread spectrum modulation, pseudo noise sequence generation, direct-sequence spread spectrum (DSSS)	1,2,4	04
	5.2	Processing gain and jamming margin, frequency-hop spread spectrum (FHSS)		
	•		Total	42

References

- [1] Taub Schilling AndSaha, "Principles Of Communication Systems", Tata Mc-Graw Hill, Third Edition.
- [2] Simon Haykin, "Communication System", John Wiley And Sons, Fourth Edition
- [3] Amitabha Bhattacharya, "Digital Communication", Tata Mcgraw Hill, Edition 2006
- [4] John G. Proakis, "Digital Communications", Mcgraw Hill, Fifth Edition.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	S	Teaching Scheme (Hrs/week)			Credits Assigned				
		L	T	P	L	T	P	Total		
				2			1	1		
ELL61	VLSI Design Lab	F			Examination Scheme					
	<u> </u>	ISE		MSE		ESE	Total			
		40					40			

Pre-requisite	Cours	se Codes ELL33 Digital Circuits Lab					
After success	After successful completion of the course, student will be able to						
CO1 Make use of simulation tools to verify characteristics of MOSFET 1							
		circuits					
Comman	CO2 Set-up simulation environment for VLSI circuit simulation						
Course Outcomes	CO3 Observe characteristics of MOSFETS via simulation						
Outcomes	CO4	Discuss tradeoffs in VLSI circuits by observing simulation results					
	CO5	Validate design of MOSFET based circuits					
	CO6	Reproduce the given abstract of the IEEE paper					

Exp.	Suggested List of Experiments Ref.				
No.					
1	To Analyze NMOS and PMOS Transistor characteristics.	1,2	5		
2	To simulate Resistive Load Inverter and CMOS Inverter, verify the VTC.	1,2	5		
	Compare both the topologies. Comment on the Noise Margins.				
3	Implement CMOS NAND, NOR, AND, OR using Static CMOS Logic.	1,2	5		
4	Design and Implement given Boolean equation using different CMOS	1,2	5		
	Logic styles.				
5	Simulate Pseudo NMOS Inverter and comment on the result.	1,2	5		
6	Simulate 6 Transistor SRAM and check the read and write stability	1,2	5		
7	Design and Implement given equation using Pseudo NMOS, Domino Logic	1,2	5		
	and C ² MOS Logic				
8	Simulate Clocked JK and D Flip Flop using Static CMOS Logic.	1,2	5		
Total Marks					

- [1] Sung-Mo Kang and Yusuf Leblebici, "CMOS Digital Integrated Circuits Analysis and Design", Tata McGraw Hill, 3rd Edition.
- [2] Etienne Sicard and Sonia DelmasBendhia, "Basics of CMOS Cell Design", Tata McGraw Hill, First Edition.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
		L	T	P	L	T	P	Total	
				2			1	1	
ELL62	Power Electronics Lab		1	E	xamina	tion Sc	heme	•	
		ISE		MSE		ESE	Total		
			40				20	60	

Pre-requisite Cours	se Codes	ELL34 Electronics Instruments and Measurements Lab				
After successful com	pletion o	f the course, student will be able to				
	CO1	Analyze performance of power semiconductor switches and their				
		firing circuits.				
Course Outcomes	CO2	Evaluate different performance parameters of rectifiers				
Course Outcomes	CO3	Design a Voltage Source Inverters using a simulation tool.				
	CO4	Design DC-DC converters for given specifications.				
	CO5	Evaluate different performance parameters of AC Voltage controller.				

Exp. No.	Experiment Details Ref.			
1	To plot SCR Characteristics and analyze different Firing Circuits	3	5	
2	To plot IGBT/MOSFET Characteristics and analyze different Firing	2	5	
	Circuits			
3	To analyze Single phase Line Commuted Semi-converter	1	5	
4	To analyze Single phase Line Commuted Full Converter		5	
5	To model a 3 Phase Voltage Source Inverter using a simulation tool	6	5	
6	To design the Buck Converter for given specifications.	2	5	
7	To design the Boost Converter for given specifications.	2	5	
8	To design AC Voltage controller using TRIAC	5	5	
Total Marks				

Recommended Books:

- [1] M. H. Rashid, "Power Electronics", Prentice-Hall of India, Third Edition.
- [2] Ned Mohan, "Power Electronics", Undeland, Robbins, John Wiley Publication, Third Edition.
- [3] Ramamurthy, "Thyristors and Their Applications", East-West Press, Third Edition.
- [4] VedamSubramanyam, "Power Electronics", New Age International, Second Edition.
- [5] M.D. Singh and K. B. Khanchandani, "Power Electronics", Tata McGraw Hill, Second Edition.
- [6] P. C. Sen, "Modern Power Electronics", Wheeler Publication, Second Edition.

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
		\mathbf{L}	T	P	L	T	P	Total	
			1	2		1	1	2	
ELL63	Fundamentals of Operating	Examination Scheme							
	System Lab	ISE		MSE		ESE	Total		
			40					40	

Pre-requisite	Course					
		ELL36: Object Oriented Programming Lab				
		EL43: Computer Organization and Architecture				
After successful completion of the course, student will be able to:						
	CO1	To understand OS and install, configure the system				
	CO2	To explain memory management and Scheduling algorithms				
Course	CO3	To discuss File and Disk Management				
Outcomes	CO4	To create user and set user policy and to install software packages				
	CO5	To outline Kernel Services and Synchronization				
	CO6	o configure network and server and write shell scripts				

Module No.	Unit No.	Suggested List of Experiments	Ref.	Hrs.
1	1.1	Operating system objectives and functions, Evolution of OS, Characteristics of modern OS, Basic concepts: Processes, Files, System calls, Shell, Kernel architectures: Monolithic, Micro-kernel, Layered, Kernel mode of operations.	1,4,6	2
2	2.1	Booting Process Using the System(Booting and login), User Management	4	2
3	3.1	Memory Management Memory Management Requirements, Memory Partitioning, Virtual memory: Paging; Segmentation; Page replacement policies, page faults	4,5,6	2
4	4.1	Multiprocessor and Real-Time Scheduling: Multiprocessor Scheduling, Real-Time Scheduling, Linux Scheduling, UNIX processScheduling	1,5	2
5	5.1	File System Management Files-System Structure, File System implementation, Directory implementation, Allocation Methods contiguous allocation, linked list allocation, indexed allocations, Free space management.	1,5	2

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

6		Disk Management Disks Scheduling Algorithm: FCFS, SSTF, SCAN, CSCAN, LOOK, Disk Management	1,5	2
7	7.1	Kernel Services and Compilations Kernel Synchronization, Kernel Service Requests, Synchronization Primitives, Kernel Data Structures, Race Condition Prevention, Kernel Wrapper Routines	6	2
•	•		Total	14

- [1] William Stallings, Operating Systems: Internals and Design Principles, 8th edition, Pearson Education Limited, 2014
- [2] John Muster, "Introduction to Unix and Linux", Tata McGraw Hill
- [3] Roderick W. Smith, "LPIC-1"
- [4] Andrew S. Tanenbaum, Herbert Bos, "Modern Operating System", 4th edition, Pearson
- [5] Silberschatz, Galvin, Gagne, "Operating System Concepts", 8 Edition, Wiley Student Edition
- [6] Daniel Bovet, Marco Cesati, "Understanding the Linux Kernel", 3rd Edition, O'Reilly Publication
- [7] Sumitabha Das, "UNIX, concepts and applications", 4th edition, Tata McGraw Hill
- [8] Michael Palmer, "Guide to UNIX Using Linux", Fourth Edition, Cengage Learning
- [9] William E. Shotts Jr, "The Linux Command Line: A Complete Introduction", 1st Edition, No Starch Press, Inc

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total
	Signal Processing Lab		-	02	ŀ	-	01	01
		Examination Scheme						
ELL 64		ISE		MSE		ESE		Total
		40						40

Pre-requisite Course Codes	EL53: Microprocessor and Microcontrollers					
	EL54 : Signals & Systems					
	ELL54: Signals & Systems Lab					
At the end of the course studer	At the end of the course students will be able to					
	CO1	Compare various DSP processors				
	CO2	Implement Fast Fourier Transform Algorithm				
Course Outcomes	C03	Demonstrate Real Time Signal Processing using DSP				
		Processor				
	CO4	Develop Signal Processing Application				

Expt. No.	Suggested List of Experiments	Ref.	Marks
			_
1	Comparison of fixed point & floating point DSP processors	5,6	5
2	Demonstration of DSP processor tools & development platform –	5,6	5
	Code Compose Studio and TMS320 SDK board		
3	Generation of harmonic oscillator using code composer studio	1,2	5
4	DSP peripheral initialization & experimentation	1	5
5	Measurement of degree of similarity using Correlation Algorithm	3,4	5
	OR		
	Hardware Implementation of Convolution Algorithm		
6	Hardware Implementation of Discrete Fourier Transform	3,4	5
	OR		
	Hardware Implementation of Fast Fourier Transform		
7	Linear FIR filtering using Overlap Add Method or Overlap Save	3,4	5
	Method		
8	Application development	4,7	5
	То	tal Marks	40

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

- [1] B. Venkatramani& M. Bhaskar, "Digital Signal Processors", McGraw Hill Education (India) Pvt Ltd, 2nd Edition 2012
- [2] Vinay Ingle & John Proakis,"Digital Signal Processing using MATLAB", Cengage Learning, 2012
- [3] S.Salivahanan, AVallavaraj, C Gnanapriya, "Digital Signal Processing", Tata McGraw Hill, First Edition.
- [4] John Proakis and DimitrisMonolakis, "Digital Signal Processing", PearsonPublication, Forth Edition.
- [5] Web references:
- [6] Technical Reference Manual, Texas
 Instrumenthttp://www.ti.com/lit/ug/spruh79c/spruh79c.pdf
- [7] Digital Signal Processorshttp://www.ti.com/processors/dsp/overview.html?
- [8] Steven W. Smith, "The Scientist and Engineer's Guide to Digital Signal Processing" http://www.dspguide.com/pdfbook.htm

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
		L	T	P	L	T	F	•	Total
	Action Research Project-II			2			2	2	1
ELP65		Examination Scheme							
		ISE			MSE		ESE		Total
		Ph	ase-I:	10			20		60
		Phase-II:10							
		Phase-III:10							
		Pha	se-IV	:10					

Pre-requisite Course Codes	All the Courses till Vth Semester.
-----------------------------------	------------------------------------

Action research is an opportunity to make a difference in the experience of education in its own way. It is an attempt of scientific study of the problem in surrounding in order to guide, correct and evaluate the actions and decisions about it. Action research is based on small research project correlating scientific knowledge and day to day experience which encourages development of scientific attitude to solve real life problems among students.

The Objectives of Action Research are:

- ✓ To make students sensitive towards societal issues
- ✓ To learn scientific principles from day-to-day experiences
- ✓ To develop psychotechnological skills through observation, classification, statement of hypothesis etc.
- ✓ Development of communication, organizational skills and maturity through discussion, presentation etc.
- ✓ To develop ability to correlate science, technology and society
- ✓ To apply engineering knowledge and propose innovative, sustainable solutions to the real life challenges

Steps of action research:

- ✓ Keen observation of the surrounding/society
- ✓ Identification of the problem
- ✓ Analysis of the problem
- ✓ Collection of relevant information by formulating research questions
- ✓ Suggesting plan of action
- ✓ Conducting experiments

STITUTE OF TECHNO

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

- ✓ To draw conclusion
- ✓ To find the possible solution to rectify the problem
- ✓ To execute experiments and remedial measures wherever possible

Students can seek guidance from teachers, other experts and make effective use of other sources of information available around them.

Students must ensure that problem to be solved in manageable in one semester.

Teachers must follow the below mentioned principles:

- ✓ Make student confront problem solving
- ✓ Develop methods and techniques of handling problems. Teach how to use the methods and not directly give solution to the problem.
- ✓ Empasize positive thinking
- ✓ Lead the students to the peak of their powers for improvement of better learning.

Criteria of a good project:

- ✓ Appropriate idea, clear understanding and proper presentation of the concept
- ✓ Quality of work
- ✓ Project plan and its execution
- ✓ Credibility of the work
- ✓ Probable impact of the work on the attitude of students and society
- ✓ Scientific attitude, creativity and novelty reflected in project work and analysis of the situation
- ✓ Utility and innovation of the remedial measures
- ✓ Efforts taken towards implementation
- ✓ Desirability, Feasibility and Viability in real life

The H/W and S/W resources required to complete the Action Research Project I may be beyond the scope of curriculum of courses taken or may be based on the courses but thrust should be on • Learning additional skills • Development of ability to define and design the problem and lead to its accomplishment with proper planning • Learn the behavioral discipline by working in a team. The team may be maximum three (03) students.

Evaluation:

Project report should be submitted on A-4 size pages. Use both printing. Report must carry project title, student details, certificate and acknowledgements. Other sections of the report shall be decided by the department based on projects. But it must have introduction, necessity of project, objectives, hypothesis ("If I do....then I may get...."), plan, observations, analysis of results, conclusion and references along with other sections related to technology.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

The ISE and ESE evaluation will be carried out based on the rubrics framed by the Department. ISE marks will be based on the performance of the individual student in four phases of evaluation. The evaluation of the Phase-I will be based on presentation of the market/literature survey, problem definition and project title finalization. Evaluation of Phase-II will be based on circuit/algorithm design, purchase of H/W and S/W resources, simulation/testing of circuit/algorithm. Phase-III evaluation will consist of PCB design, PCB making/verification of algorithm and testing of circuit/algorithm. Phase-IV evaluation is based on demonstration, poster presentation, technical report and paper writing during Action Research Project II contest.

The ESE marks will be based on demonstration in front of the expert appointed by the Department. In the ESE examination each individual student would be assessed for his/her contribution in selecting the originality of the problem statement, understanding and knowledge gained about the task completed through presentation/demonstration, work done, and preparing the technical report/poster/technical paper of the project in the standard format provided by the Department.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
		L	T	P	L	T	P	Total	
	Advance Communicative English	2	2		2	1		3	
HSS61					Examin	Examination Scheme			
115501			ISE*		MS	SE	ESE	Total	
		100					100		

^{*} ISE will be evaluated on the basis of marks scored in tutorials, out of 100.

Pre-requisit	e Cour	se Codes	The learners will be able to						
	CO1	Acquire s	kills for succeeding in job placements and competitive exams						
	CO2	Encourag	courage reading and evaluating critically						
	CO3	Develop	evelop proficiency in the use of spoken and written communication for						
Course		professio	rofessional purposes						
Outcomes	CO4	Commun	icate using social media						

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
	1.1	Verbal Ability skills for competitive exam		3
1	1.2	Resume Writing& Cover Letter		2
Placement	1.3	Group Discussions		3
Skills	1.4	Team Building skills / Work		2
	1.5	Case studies / pitching a startup		2
	1.6	Interview skills		2
2	2.1	Understanding news coverage and critical analysis of		2
Critical		the same		
Thinking Skills	2.2	Critical Writing Skills – Argumentative Writing		2
	3.1	Sourcing information through digital media		2
3				
Communication	3.2	Oral and written communication using social media.		4
through social		Vlog and Blog		
media	3.3	Corporate communication using social media like messenger applications, etc.		2
TOTAL				26

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Tutorial No.	Tutorial Details	Ref.	Marks	
1	Aptitude Test – Verbal Ability		10	
2	Resume Writing		10	
3	Cover Letter		10	
4	Group Discussion		20	
5	Presentation		20	
6	Mock Interview		10	
7	Social media writing		20	
TOTAL MARKS				

Reference Books:

- 1. Michael McCarthy and Felicity O'Dell. *English Vocabulary in Use.* India: Cambridge University Press, 1999.
- 2. John Eastwood. Oxford Practice Grammar. India: Oxford, 1999.
- 3. Geoffrey Leech, Et al. English Grammar for Today. UK: Palgrave, 2005.
- 4. Malhotra, Ankur. Campus Placement: A comprehensive guide. McGraw Hill Education, 2016
- 5. Hayes, John. Interpersonal Skills at Work. McGraw Hill Education, 2002
- 6. Alda, Alan. If I Understood You, Would I Have This Look on My Face?

 My Adventures in the Art and Science of Relating and Communicating. Random House. 2017
- 7. West, Steven. Critical Thinking Skills: Practical Strategies for Better Decision making, Problem-Solving and Goal Setting.
- 8. Isaac, William. Dialogue: The art of thinking together. Crown Business. 2008
- 9. Chambers, Harry. Effective Communication Skills for Scientific and Technical Professionals Paperback. Basic Books. 2000
- 10. Hamper, Robert J. & Baugh, L. Sue. *Handbook for writing proposals*. McGraw-Hill Education. 2010

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

'Activity Based Learning'

ABL4: Technical Paper and Patent Drafting

This is non-credit activity conducted in semester VI for all the branches of engineering. This course aims to encourage students to study advancement in engineering developments, prepare a technical paper based on the research topic and give holistic insight on the various aspects of patents that would be relevant to them. Attendance and participation are an integral part of the course

A. Technical Paper Drafting:

Invited talks and workshop on latex shall be conducted to impart the knowledge in technical paper drafting and presentation.

The primary learning outcomes expected are:

- Knowledge about importance of paper publication
- Key parts of a technical paper and drafting related issues
- Submission and review process of paper
- Paper presentation related issues
- Ethical issues

Students will have to give the presentation of the topics and submit the technical paper based on IEEE format. Students are expected to prepare and present a topic on engineering/ technology, for the duration of about 8 to 10 minutes. Group of two or three students will present the topic and will submit the technical paper based on the topic. Each student will be evaluated based on the presentation and draft of technical paper.

B. Patent Drafting:

Invited talks and workshop shall be conducted to impart the knowledge in patent drafting.

The primary learning outcomes expected are:

- Knowledge about Intellectual Property & Patents
- Patent Searching
- Patent Drafting
- Patent Commercialization & Case Studies

Course Code	Course Name	Т	eaching (Hrs/	Credits Assigned				
Code		L	T	P	L	T	P	Total
	French Language	2	-	-	2	-	-	2
		Examination Scheme						
MEC1		IS	E1	ISE2	Atter	ndance		Total
							I	Marks
		2	20	20		10		50

Pre-requisi	te Course Code	es
•	CO1	Student will be able to
	Self introduction	Introduce themselves in a meeting and converse with people from different countries. Speak about themselves, their professions, their family, family names, first names, nationalities, ages. Have a discussion on the whereabouts and identities of people they interact with such as their nationalities, the countries they come from, the languages they speakGreet people and take leave
	CO2	Student will be able to
	General Topics	Count numbers from 0 to 69 To know how to talk about dates, seasons, time of the day, days of the week and months of the year. Know how to describe a noun using qualitative adjectives.
	G0.4	ask price of something
Course	CO3	Student will be able to
Outcomes	Dialogue with professor or any other interlocutor	Communicate in class and understand instructions such as :repeat/answer/listen/look/tick the rightanswer/write/underline/close/how is it pronounced/how is it written/how does one say/work in groups/I don't know/I do not understandrequest for directions using interrogatives like where/who speaks/to whom/whyshare /to give personal information: telephone numbers/ date of birth/ postal address/filling out documents and ability to comprehend the details on important identity papers such as passports or registration forms.
	CO4	Student will be able to
	Exposure to French Culture Life and Social Norms.	get from the Airport in France to his destination in city. To understand directions. To move around the city understanding road signs, maps. Will be acquainted with French Culture and hence understand their behaviour and communicate appropriately with them.

Module No	Unit No	Topics	Ref	Hrs
1.	1.1	Alphabet		15mins
	1.2	Accents		30 mins
	1.3	Greetings:		15 mins
		Good morning/ good afternoon/ good evening/ good night		
	1.4	Verb conjugation		30 mins
		Ētre" (To be)		
	1.5	Gender:		30 mins
		Masculine		
		Feminine		
2.	2.1	Articles:		60 mins
		Definite article:le / la / l'/ les		
		Indefinite article :un/une/des Articles:		
		Definite article:le / la / les		
	2.1	List of some Masculine and Feminine Nouns		30 mins
	2.2	List of Qualitative Adjectives (Describing		30 mins
		big/small/adventurous/timid/pessimist/optimist)		
3. 3	3.1	Adjectives of colour and the rules: de quellecouleur?		60 mins
	3.2	Agreement of Number and Gender of the qualifying adjective with the noun		60mins
4.	4.1	3 groups of verbs depending on how they end. Conjugation of		45 mins
		Regular "ER"		
	4.2	List of: commonly used "ER" and "ER" verbs used for student		15 mins
		teacher communication.		
	4.3	Conjugation of "ALLER" which is an Irregular "ER" verb.		60mins
5.	5.1	Conjugation of Reflexive ER verb S'APPELER'		60 mins
	5.2	Conjugation of GER / CER verbs that are tricky		60 mins
6.	6.1	Frequently used expressions (thank you/glad to meet you/sorry/please)		30 mins
	6.2	Singular and Plural		90 mins
7.	7.1	Nationalities		30 mins
	7.2	Languages		30 mins
	7.3	Days of the week		30 mins
	7.4	Months of the year		30 mins
8.	8.1	Forms of Membership/Admission/Candidature/registration "Formularizedinscription" Hotel Reservation		60 mins
	8.2	Dialogue development from arriving at the Airport to getting to your destination by Metro/RER/Taxi/Bus Directions to move		60 mins

		around the city / Metro Maps / Reaching Hotel or Youth Hostel		
9.	9.1	Theory for the 10 marks Project work.		120 mins
		Paris, the capital of 1.Topography/Geography 2.History		
		3. Transport 4. Political and Financial / 5. Gastronomy 6. Current		
		Affairs 7. Culture – Fashion/Literature/Art/Theatre/Films 8. Trade		
		and Service Industries 9. Tourism and Monuments 10. Ecological		
		concerns		
10.	10.1	Professions		30 mins
	10.2	Family relations		30 mins
	10.3	Number counting: 0 to 69 Cardinal numbers		60 mins
		Question: Combien de		
11	11.1	Possessive adjective:		120 mins
		Mon/Ma/Mes		
		Ton/Ta/Tes		
		Son/Sa/Ses		
		Notre/Notre/Nos		
		Votre/Votre/Vos		
		Leur/Leur/Leurs		
12.	12.1	Verb conjugation "AVOIR" to haveUsed to express age		120 mins
13.	13.1	Verb Conjugation of "FAIRE – to make / to do / to describe		60 mins
		weather conditions		
		Comment fait-ilaujourdhui? Quel temps fait-il?		
		Il fait beau / Il fait chaud / Il fait froid / Il fait frais / Il fait du		
		vent		
	13.2	Seasons: L'été /L'hiver / L'automne /Le printemps		60 mins
14.	14.1	Weather		60 mins
		Comment fait-ilaujourdhui? Quel temps fait-il?		
		Il fait beau / Il fait chaud / Il fait froid / Il fait frais / Il fait du		
		vent		
	14.2	Ordinal Numbers		60 mins
		T	otal	28 hours

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

- ALTER EGO Méthode de Français A1 (PUBLICATION: HACHETTE FRANÇAIS LANGUE ÉTRANGÈRE)
- 2. Annie Berthet / Catherine Hugot / Véronique M. Kizirian / Beatrix Sampsonis / Monique Waendendries
- 3. NOUVEAU TAXI: Méthode de Français HACHETTE
- 4. GRAMMAIRE PROGRESSIVE DU FRANCAIS NiveauDébutant- MaïaGrégoire CLE International
- 5. OUI, JE PARLE FRANCAIS 1 Méthode de Français MANAK BOOKS Prochy Master
- 6. A Revision French Grammar and Composition Book BLACKBURN AND MORRIS
- 7. BLACKIE & SON PUBLISHERS PVT. LTD.
- 8. G. MAUGER COURS DE LA LANGUE ET DE CIVILISATION FRANÇAISES

Course Code	Course Name	Т	eaching (Hrs/	Credits Assigned					
Code		L	T	P	L	T	T P lae ance T	Total	
	German Language	2	-	-	2	-	-	2	
		Examination Scheme							
MEC2		ISE1		ISE2	Attendance		!	Total	
							I	Marks	
		2	20	20		10		50	

Pre-requisi	te Course	Codes							
	CO1	Student will be able to able to greet the other person, say good bye, introduce oneself and the partner, to be able to talk about the others, to be							
		able to count upto 20, make use of knowledge of numbers as regards							
		understanding telephone numbers, to be able to recognize alphabets,							
		speak about countries and languages							
	CO2	Student will be able to speak about hobbies, take leave of someone, name							
		the days of the week, to be able to talk about work, jobs, and office							
		timings, to be able to count beyond 20, to be able to talk about seasons, to							
		be able to register own data on internet site							
	CO3	Student will be able to name places and important buildings like th							
Course		Student will be able to name places and important buildings like marketplace, to be able to ask questions regarding places, to be able							
Outcomes		relate texts to a picture story, ask for things, name the means of public							
Outcomes		transport, ask for directions							
	CO4	Student will be able to identify food items and to talk about them, to be							
		able to write a shopping list, understand conversations in a supermarket,							
		understand W-questions							
	CO5	Student will be able to understand time, plan time table as per required							
		time, to be able to speak about family, to excuse oneself for being late, to							
		be able to fix an appointment telephonically							
	CO6	Student will be able to plan something together, to be able to speak about							
		birthday, to understand and draft an invitation, to be able to order and pay							
		food items in a restaurant, to be able to talk about routine events,							
		understand event information on radio							

Module	Topics	Ref.	Hrs.
No.			
1	Guten Tag!	1,2	4
2	Freunde, Kollegen und ich	1,2	5
3	In der Stadt	1,2	5
4	GutenAppetit!	1,2	4
5	Tag fuer Tag	1,2	5
6	ZeitmitFreunden	1,2	5
	Total		28

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Books Recommended:

- [1] NetzwerkA1:Authors Stefanie Dengler, Paul Rausch, Helen Schmitz, Tanja Sieber
- [2] Studio D A1: Authors Funk, Kuhn, Demme

Course Code	Course Name	Name Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total
	Consumer Electronics	1		2	1		1	2
OE1				E	Examination Scheme			
OE1		ISE		MS	SE	ESE	Total	
			40		10)	20	70

Pre-requisi	te Cou	rse Codes ES1: Basic Electrical and Electronics Engineering
After succes	ssful co	mpletion of the course, student will be able to
	CO1	List and classify devices used in consumer products based on their specifications, identify sub-systems of consumer electronic products, also choose and use proper interface standard for a given consumer electronic product
	CO2	Illustrate working principle of consumer electronic products and carry out basic tests to identify their correct operation.
Course	CO3	Experiment with Haptics, Multitouch devices, Device interconnects and peripherals and also suggest modification in consumer electronic product using modern tools to enhance user experience
Outcomes	CO4	Assemble subsystem of Television set and analyze technology used in audio systems.
	CO5	Demonstrate working principal of Healthcare and home electronics consumer products.
	CO6	Demonstrate working principal consumer electronic products used in Occupational safety.

Module	Unit No.	Topics	Ref.	Hrs.			
No.							
	1	Introduction to consumer Electronic.	4	02			
1	1.1	Haptics and Multi-touch Devices: Introduction to Touch panel, Capacitive Touch screen, Light pen.					
	1.2						
	1.3	Miscellaneous Devices: Mice, Trackballs, Virtual Reality.					
	1.4	Gaming Devices; Joystick.					
2	2	Device Interconnects and Peripherals.	3	02			
	2.1	Introduction to Serial Interfaces, RS-232, I2C, SPI, USB.					
	2.2	Introduction to ZIG-BEE Standards, WI-FI, Bluetooth, Thunderbolt, JTAG and various Interconnection standards.					

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

3	3	Interactive and Immersive TV.	1	02
	3.1	Introduction to Television, PAL TV System, NTSC TV System,		
		SECAM TV System.		
	3.2	Advanced Television System: 3D TV, High Definition TV, Digital		
		Satellite TV, 4K TV, Plasma Displays.		
4	4	Audio System Technologies and Home electronics.	1	02
	4.1	Introduction to Audio system and major components of Audio		
		System, Microphone, Loudspeaker, HI-FI, Stereophony, Public		
		Address System, Noise Cancelling Headphones.		
	4.2	Introduction to Home Electronics, Microwave Oven, Refrigerator, Air		
		Conditioning System, Washing Machine.		
	5	Healthcare Electronics.	6	02
5	5.1	Wearable Devices: Activity Trackers Smart Watch, Smart Glass.		
	5.2	Fitness Devices: Blood Pressure Monitor, Digital Weighing Scale,		
		Digital Glucometer.		
	5.3	Biomedical Devices: ECG Sensor, EKG Sensor, EMG Sensor,		
		Respirators.		
6	6	Consumer Electronics used in Occupational Safety.	2	02
	6.1	Printers, Scanners, Projection System.		
	6.2	Bio-metric Devices: Finger Print Scanner, IRIS Scanner.		
	6.3	Security Devices: CCTV, Electronics Lock, Video Intercom System,		
		Door bell.		
7	7	New and Emerging Technologies.	5	02
	7.1	E-platforms for Selecting Consumer Electronics.		
	7.2	E-payments.		
			Total	14

Teaching Learning Methodology in Laboratory: Role Play Model

a) Instructor:

Responsibilities: Explanation of theoretical background

To provide required sample formats

To guide students in identification of appropriate online material.

Supervision and assessment of the overall activity

b) First Group of students: Customer

Responsibilities: To finalize specifications of instrument to be purchased

Prepare request for quotations Prepare the comparative statement Preparation for purchase order

c) Second Group of students: Manufacturer/Vendor

Responsibilities: To maintain the specifications of the manufactured instruments

To submit quotations including all applicable taxes

To prepare Invoice as per purchase order

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

d) Third Group of Students: Sales/Service Engineer

Responsibilities: To demonstrate capabilities of various instruments and convince

customer to purchase a particular instrument

To prepare Delivery Challan

Install the instruments and prepare Installation Report, Demonstrate all the functions and uses of the instrument

Exp. No.	Suggested List of Experiments	Ref.	Marks	
1	Experiment on Haptics and Multi-touch devices.	4	5	
2	Experiment on Device interconnects and Peripherals (USB and Bluetooth).	3	5	
3	Experiment on assembly of parts used in Television set.	1	5	
4	Experiment on Audio system technology.	1	5	
5	5 Experiment on Home electronics Consumer products.			
6	6	5		
7	7 Experiment on Biomedical data acquisition devices.			
8	8 Experiment on occupational safety in electronic devices.			
	Assessment I	Marks	40	

ISE Evaluation: Continuous evaluation of experiments for 40 Marks

MSE Evaluation: Subjective evaluation for 10 Marks based on theory for one hour duration

ESE Evaluation: Subjective evaluation for 20 Marks based on theory for one hour duration

- [1] S. P. Bali, "Consumer Electronics", Pearson Education, 1st Edition, 2005.
- [2] Peter H. Gregory, "Biometrics for Dummies", Wiley Publishing Inc., 2008.
- [3] N. Mathivanan, "PC Based Instrumentation: Concepts and Practices", Prentice Hall Learning India Pvt. Ltd., 1st Edition, 2007.
- [4] Deborah Morley, "Understanding Computers: Today and Tomorrow", Course Technology, 16th Edition, 2016.
- [5] N. Jilovec, "E-Business: Thriving in Electronics Marketplace", 29th Street Press, 1st Edition, 2000
- [6] Sanjay Mishra, "Wearable Android: Android Wear and Google FIT App Development", Wiley Blackwell publication, 1st Edition, 2015.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total
	Robotic Vision	1		2	1		1	2
OE3		E2 Dobotic Vision	E	Examination Scheme				
OE2		ISE		MSE		ESE	Total	
			40		10	0	20	70

Pre-requisite Course Codes	EL 42: Principle of Control Systems				
At the end of the course studen	ts will	be able to			
	CO1	Discuss the fundamentals of Robotics			
Course Outcomes	e Outcomes CO2 Apply direct and inverse kinematics algorithms				
	CO3	Justify the need of vision algorithms			

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
	1	Fundamentals of Robotics		4
1	1.1	Robot Classification, Robot Components, Degrees of freedom,		
		Joints, Coordinates, Coordinate frames		
	1.2	Transformation matrix, inverse Transformation matrix,		
	1.3	Screw Transformation, Link co-ordinates		
2	2	Forward and Inverse kinematic equation, D-H Representation		4
	2.1	The Arm Matrix		
3	3	Introduction to Robot Vision		3
	3.1	Image Representation, Edge Detection		
	3.2	3D image to 2D image Transformation		
	3.3	Stereo Vision		
4	4	Edge Detection, Template Matching,		3
	4.1	Object detection and recognition		
	4.2	Object Classification		
		Total		14

Expt. No.	Suggested List of Experiments	Ref.	Marks
1	Identify the types of robot based on configuration and application.	1,2	5
2	Using the information based on length of links and no. of joints, specified angles verify the DH algorithm for forward kinematics and also to determine the maximum and minimum position of links.	1,2	5
3	Design a robots drive system and its end effectors for a given	1,2,3	5

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	application.		
4	Verify the transformation (Position and orientation) with respect to	1,2	5
	gripper and the coordinate system using any simulation software.		
5	Estimation of accuracy, repeatability and resolution of a given	1,2	5
	robotic manipulator.		
6	Robot programming exercises (Point-to-point and continuous path	1,2,3	5
	programming)		
7	Edge detection		4
8	Object Detection		4
9	Object recognition using Template Matching		4
10	Vision based Application development		4
	Eight Experiments Total Marks		40

ISE Evaluation: Continuous evaluation of experiments for 40 Marks

MSE Evaluation: Subjective evaluation for 10 Marks based on theory for one hour duration

ESE Evaluation: Subjective evaluation for 20 Marks based on theory for one hour duration

- [1] Robert Shilling, Fundamentals of Robotics Analysis and control, Prentice Hall of IndiaFourth edition [ISBN-81-203-1047-0]
- [2] Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia E.
- [3] Mittal R.K. & J. Nagrath, "Robotics and Control", TataMcGraw Hill, 2003 [ISBN 0-07-048293-4]
- [4] Milan Sonka, Vaclav Hlavac and Roger Boyle, "Image Processing, Analysis and Machine Vision", Second Edition, Thomson Brooks/Cole 2004[ISBN: 981-240-061-3]

Course Code	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total	
	Cyber Security and Digital Forensics	1	-	2	1	-	1	2	
OE2		Examination Scheme							
OE3		ISE		MSE	ESE		'	Total	
		40		10		20		70	

Pre-requisi	te Cour	rse Codes	Computer Basics, Networking basics				
	CO1	Identify an	d classify various cybercrimes with respect to organizational				
			s in order to mitigate the security risk and estimate the impact on				
		society and					
	CO2		e results of vulnerability scans of vulnerability assessment and				
		generate re	port with penetration testing				
Course	CO3	Apply Information Security Standards compliance during software design and					
Outcomes		developme	nt				
Outcomes	CO4	CO4 Interpret and apply Indian IT laws in various legal issues					
	CO5	Describe th	ne concept of Digital forensics and use various tools and techniques				
		used for di	gital forensics investigations				
	CO6	Integrate a	dvanced security solutions and manage, provide policies, standards,				
		procedures	, guidelines, policy framework, assess and mitigate risk				

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Introduction to Cyber Security	1,2	1
	1.2	Cybercrime definition and origins of the world, Cybercrime and	1,2	1
		information security, Classifications of cybercrime,		
	1.3	Cybercrime and the Indian ITA 2000, A global Perspective on	1,2	1
		cybercrimes.		
2	2.1	Cyber offenses & Cybercrimes:	1,2	1
		How criminal plan the attacks, Social Engg, Cyber stalking, Cyber		
		café and Cybercrimes, Botnets, Attack vector, Credit Card Frauds in		
		Mobile and Wireless Computing Era, Security, Challenges Posed by		
		Mobile Devices		
	2.2	Tools and Methods Used in Cybercrime:	1.2	1
		Phishing, Password Cracking, Keyloggers and Spywares, Virus and		
		Worms, Steganography, DoS and DDoS Attacks, SQL Injection,		
		Buffer Over Flow, Attacks on Wireless Networks, Identity Theft (ID		
		Theft)		
3	3.1	Security Risk Assessment and Risk Analysis:	7,8,	1
		Risk Terminology, Laws, Mandates, and Regulations, Risk	10	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

			Total	14
		Devices		
		forensics, Techno-Legal Challenges with Evidence from Hand-held		
	5.3	Forensics of Hand-held devices, Tool-kits for Hand-held device	1,2	1
		Forensics Auditing and Compliance Requirements, Antiforensics		
		setting-up forensics laboratory, Special Tools and Techniques,		
	5.2	Digital Forensics Life cycle, Computer forensics investigation,	1,2	1
		Need for forensics, Cyberforensics and Digital Evidence		
5	5.1	Digital Forensics:	1,2	1
		SOX, GLBA, HIPAA, ISO, FISMA, NERC, PCI-DSS	4,6	
	4.3	Information Security Standard compliances:	1,2,	1
		Appeals Under the IT Act, 2000, IT Act. 2008 and its Amendments	4,6	
	4.2	Cyber Crime and Criminal Justice: Penalties, Adjudication and	1,2,	1
		again ag	4,6	
4	4.1	Cyber Security Laws and Legal Perspectives	1,2,	1
		Perimeter, Attack Resources, Network and Web VAPT Process		
		Penetration Testing Phases-Discover/Map,Penetrate		
		, Reporting	10	
	3.3	Vulnerability Assessment Phases-Discovery, Exploitation/Analysis	7.8,	1
		Vulnerability Assessment,		
	0.2	VAPT An Overview, Goals and Objectives of a Risk and	10	*
	3.2	Vulnerability Assessment and Penetration Testing (VAPT):	7,8,	1
		Assessment.		
		Assessment Best Practices, The Goals and Objectives of a Risk Assessment, Best Practices for Quantitative and Qualitative Risk		

Teaching Learning Methodology in Laboratory: Role Play Model a) Instructor:

Responsibilities: Explanation of theoretical background

To provide required course material

To guide students in identification of appropriate online material.

Supervision and assessment of the overall activity

b) First Group of students: Offensive and Defensive

Responsibilities: To define cybercrime and classification of cybercrimes

List the tools and methods used in cybercrimes Prepare the list best cybersecurity practices

c) Second Group of students: Vulnerability Assessor and Penetration Tester (VAPT)

Responsibilities: To assess the vulnerabilities of systems (OS,Network infrastructure etc)

To carry out penetration testing and reporting

To abide by regulatory compliance and security standards

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

d) Third Group of Students: Forensic Investigator (FI)

Responsibilities: To setup laboratory for forensics

To use tools and techniques of digital forensics

To preserve the evidence

Demonstrate the forensic investigation process

Exp. No	Experiment Details	Refer	Marks		
1	Network commands and utilities	13,15	5		
2	Install and configure Virtual Environment	14	5		
3	Information Gathering, Sniffing and scanning		5		
4	Vulnerability Scanning and Vulnerability Assessment	13,15	5		
5	Penetration Testing using Metasploit	16	5		
6	Firewalls and Intrusion Detection System (IDS)	13	5		
7	Encryption Tools	13	5		
8	Forensics Tools and Utilities	13	5		
Assessment Marks					

ISE Evaluation: Continuous evaluation of experiments for 40 Marks

MSE Evaluation: Subjective evaluation for 10 Marks based on theory for one hour duration

ESE Evaluation: Subjective evaluation for 20 Marks based on theory for one hour duration

Recommended Books:

- [1] Nina Godbole, Sunit Belapure, Cyber Security, Wiley India, New Delhi.
- [2] The Indian Cyber Law by Suresh T. Vishwanathan; Bharat Law House New Delhi
- [3] The Information technology Act, 2000; Bare Act- Professional Book Publishers, NewDelhi.
- [4] Cyber Law & Cyber Crimes By Advocate Prashant Mali; Snow White Publications, Mumbai
- [5] Nina Godbole, Information Systems Security, Wiley India, New Delhi
- [6] Kennetch J. Knapp, Cyber Security & Global Information Assurance Information Science Publishing.
- [7] Michael Gregg & David Kim,Inside Network Security Assessment: Guarding Your IT Infrastructure, Pearson Publication
- [8] M. L. Srinivasan, CISSP in 21 Days Second Edition PACT Publication

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

- [9] Charles P. Pfleeger and Shari Lawrence Pfleeger, Security in Computing, Pearson Publication
- [10] Douglas J. Landoll, The Security Risk, Assessment Handbook-Second Edition , Auerbach Publications
- [11] Websites for more information is available on : The Information Technology ACT, 2008-TIFR : https://www.tifrh.res.in
- [12] https://www.sans.org/reading-room/whitepapers/compliance/compliance-primer-professionals-33538
- [13] Open Source Security Tools: A Practical Guide to Security Applications by Tony Howlett, Pearson Education
- [14] https://www.virtualbox.org
- [15] Hands-On Information Security Lab Manual by Michael Whitman, Cengage publication
- [16] https://www.offensive-security.com/metasploit-unleashed/

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total
	Internet of Things	1	-	2	1	-	1	2
OE4		Examination Scheme						
OE4		ISE		MSE	ESE		'	Total
		40		10		20		70

Pre-requisit	e Cours	se Codes
	CO1	Describe IoT value chain structure (device, data cloud), application areas, IoT
		sensors and technological challenges faced by IoT devices, with a focus on
		wireless, energy, power, RF and sensing modules.
Course	CO2	Describe the Architectural Overview of IoT, Reference Architecture and Real
Outcomes		World Design Constraints and various IoT Protocols (Datalink, Network,
		Transport, Session, Service)
	CO3	Apply the concepts of big data analytics, Internet of things and implement
		smart systems.

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1[CO1]	1.1	Internet of Things: Internet of Things Promises–Definition–	1,2,3	1
		Scope–Sensors for IoT Applications–Structure of IoT– IoT		
		Map Device.		
	1.2	Seven Generations of IoT sensors to Appear: Industrial	1,2,3	1
		sensors – Description & Characteristics–First Generation –		
		Description & Characteristics–Advanced Generation –		
		Description & Characteristics–Integrated IoT Sensors –		
		Description & Characteristics—IoT Generation Roadmap.		
	1.3	Technological Analysis: Wireless Sensor Structure–Energy	1,2,3	2
		Storage Module–Power Management Module–RF Module–		
		Sensing Module. IoT Development Examples: ACOEM Eagle		
		– EnOcean Push Button – NEST Sensor – Ninja Blocks -		
		Focus on Wearable Electronics		
2[CO2]	2.1	IoT Architecture and Protocols: IoT-An Architectural	5,6,8	2
		Overview—Building an architecture, Main design principles		
		and needed capabilities, An IoT architecture outline, standards		
		considerations. M2M and IoT Technology Fundamentals-		
		Devices and gateways, Local and wide area networking, Data		
		management, Business processes in IoT, Everything as a		
		Service(XaaS), M2M and IoT Analytics, Knowledge		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		Management.		
	2.2	IoT Data Link Layer & Network layer Protocols:	7,8	1
		PHY/MAC Layer(3GPP MTC, IEEE 802.11, IEEE 802.15),		
		WirelessHART,Z-Wave,Bluetooth Low Energy, Zigbee Smart		
		Energy, DASH7 - Network Layer-IPv4, IPv6, 6LoWPAN,		
		6TiSCH,ND, DHCP, ICMP, RPL, CORPL, CARP.		
	2.3	Transport & Session Layer Protocols: Transport Layer	7,8	2
		(TCP, MPTCP, UDP, DCCP, SCTP)-(TLS, DTLS) – Session		
		Layer-HTTP, CoAP, XMPP, AMQP, MQTT		
	2.4	Service Layer protocols & Security: Service Layer -	7,8	1
		oneM2M, ETSI M2M, OMA, BBF – Security in IoT Protocols		
		– MAC 802.15.4, 6LoWPAN, RPL, Application Layer.		
3[CO3]	3.1	Data Analytics for IoT	8,9	1
		Introduction		
	3.2	Apache Hadoop	8,9	3
		MapReduce Programming Model		
		Hadoop MapReduce Job Execution		
		MapReduce Job Execution Workflow		
		Hadoop Cluster Setup		
		Using Hadoop MapReduce for Batch Data Analysis		
		Hadoop YARN		
		Apache Spark		
		Using Apache Storm for Real-time Data Analysis		
		REST-based approach		
		WebSocket-based approach		
		Structural Health Monitoring Case Study		
Total				14

Recommended Books:

- [1] Editors Ovidiu Vermesan Peter Friess, Internet of Things From Research and Innovation to Market.
- [2] N. Ida, Sensors, Actuators and Their Interfaces, Scitech Publishers, 2014.
- [3] Dr. Guillaume Girardin , Antoine Bonnabel, Dr. Eric Mounier, 'Technologies & Sensors for the Internet of Things Businesses & Market Trends 2014 2024', Yole Développement Copyrights ,2014
- [4] Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand, StamatisKarnouskos, David Boyle, "From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence", 1 st Edition, Academic Press, 2014
- [5] Peter Waher, "Learning Internet of Things", PACKT publishing, BIRMINGHAM MUMBAI

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

- [6] Bernd Scholz-Reiter, Florian Michahelles, "Architecting the Internet of Things", ISBN 978-3-642-19156-5 e-ISBN 978-3-642-19157-2, Springer
- [7] Daniel Minoli, "Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications", ISBN: 978-1-118- 47347-4, Willy Publications
- [8] Arshdeep Bahga and Vijay Madisetti Internet of Things: A Hands-on Approach
- [9] Stackowiak, R., Licht, A., Mantha, V., Nagode, L.," Big Data and The Internet of Things Enterprise Information Architecture for A New Age", Apress, 2015.

Instructional Method and Pedagogy: At the start of course, the course delivery pattern, prerequisite of the subject will be discussed. Lectures will be conducted with the aid of multimedia projector, black board, OHP etc. Attendance is compulsory in lecture and laboratory which carries 40 marks in overall evaluation. One internal exam will be conducted as a part of internal theory evaluation. Assignments based on the course content will be given to the students for each unit and will be evaluated at regular interval evaluation. Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of 10 marks in the overall internal evaluation. The course includes a laboratory, where students have an opportunity to build an appreciation for the concepts being taught in lectures. Experiments shall be performed in the laboratory related to course contents.

Exp. No	Experiment Details	Ref	Marks
1	Introduction to DHT11 Temperature and Humidity measurement,	1,2,	5
	Ultrasonic Sensor,PIR Motion sensor.	3,4	
	Introduction to Actuators (DC Motor, Servo Motor and Relay).		
	Introduction to Bluetooth Technology.		
2	Outdoor Temperature & Humidity Monitoring using DHT11.	1,2,	5
	Motion Detection using PIR sensor.	3,4	
	Distance Measurement using Ultrasonic Sensor.		
	Practical with Servo Motor and Relay.		
	Interfacing HC-05 Bluetooth Device with Arduino, Raspberry		
	Development Board		
	Home automation using Voice Commands & Bluetooth.		
3	Introduction to NodeMCU (ESP8266-12E).	1,2,	5
	Introduction to NodeMCU firmware.	3,4	
	NodeMCU as Server and Client.		
	NodeMCU as an Access Point.		
	Mobile Communication using Sim800 (GSM/GPRS Module)		
	Introduction to various Notification Servers.		

(Autonomous Institute Affiliated to University of Mumbai)

4	Control of equipment using ESP8266+NODE MCU Webserver. Automatic Phone/Email Notification based on Event trigger using	1,2, 3,4	5
	IFTTT.		
	NodeMCU as an Access Point.		
	Mobile Weather Station using NodeMCU.		
	Home automation using Sim 800 using Mobile Communication.		
5	Introduction to IOT Cloud Platforms and API	1,2,	5
	TCP /IP/HTTP Protocol	3,4	
	Client and Server Communication.		
	Introduction Smart Bridge, ThingSpeak, Google Firebase IOT		
	Cloud.		
	Uploading sensor data to Cloud using API's.		
	Data Visualization, Data Analytics, Plugins, Import & Export		
	Sending and Receiving Data from IOT Cloud using ESP8266		
	Introduction to MIT App Inventor.		
6	Sending and Receiving Data from IOT Cloud using ESP8266	1,2,	5
	Uploading Temperature & Humidity data to ThingSpeak Cloud &	3,4	
	Ubidots cloud using wifi.Building Mobile Application using MIT		
	App Inventor.		
7	Prototyping and Building. Use cases:	1,2,	5
	Smart City	3,4	
	Smart Water		
	Smart Environment		
	Smart Health (Remote)		
	Smart Waste Management		
	Smart Agriculture		
	Smart Safety		
	Smart Supply Chain & Logistics		
	Smart Manufacturing / Industrial Iot		
8	Prototyping and Building. Use cases:	1,2,	5
	Smart City	3,4	
	Smart Water		
	Smart Environment		
	Smart Health (Remote)		
	Smart Waste Management		
	Smart Agriculture		
	Smart Safety		
	Smart Supply Chain & Logistics		
	Smart Manufacturing / Industrial Iot		
Assessment M	Iarks		40

ISE Evaluation: Continuous evaluation of experiments for 40 Marks

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

MSE Evaluation: Subjective evaluation for 10 Marks based on theory for one hour duration

ESE Evaluation: Subjective evaluation for 20 Marks based on theory for one hour duration

- 1.Raspberry Pi IoT Projects: Prototyping Experiments for Makers by John C. Shovic.
- 2.Internet of Things with ESP8266 by Marco Schwartz
- 3.IoT: Building Arduino-Based Projects by Brian Russell, Peter Waher, and Pradeeka Seneviratne.
- 4. Designing the Internet of Things by Adrian McEwen and Hakim Cassimally.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
		L	T	P	L	T	P	Total	
		1		2	1		1	2	
OE5	Fundamentals of	Examination Scheme							
OE5	Computational Intelligence	ISE		MSE		ESE	Total		
			40		10)	20	70	

Course Overview (Theory):

This open elective course is designed to introduce the concepts of computational intelligence and its application. It is structured to give students an overview of three fundamental topics which form the basis of Computational Intelligence: neural networks, fuzzy logic, natural language processing, and statistics. Students will be able to understand the working of different types of models according to different types of training. Fuzzy logic is included to enable students to design their own fuzzy control systems using all the various concepts taught. They will also learn about the basics and steps involved in Natural Language Processing which can be employed in most applications. To learn about which method fits their data set best, they will be introduced to the application of statistics to computational intelligence. Thus this open elective is focus on inspiration, design, theory, and practical aspects of implementing procedures to solve real-world problems.

The concepts taught in the theory must be implemented in the form of various problem statements in the practical. There will be four experiments based on supervised learning, CNN, Fuzzy controllers and model-fit calculation techniques. Emphasis is given to the mini-project which carries a high weightage. Students are required to implement most of the concepts learned throughout the practical in the mini-project by selecting a suitable problem statement. The mini-project will be graded at two stages. Special emphasis is given to the mini-project at the end of the practical sessions which will be based on computational intelligence.

Pre-requisite Course Codes	Mathe	Mathematics, Probability ,Programming languages - Java/C++					
	CO1	Identify suitability of different learning types for different					
		scenarios.					
	CO2	To study Neural Networks and Convolutional Neural					
Course Outcomes		Networks					
Course Outcomes	CO3	To design fuzzy controllers for various applications.					
	CO4	To study Natural Language Processing					
	CO5	To apply computational intelligence technique to solve real					
		world problems.					

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1	Introduction to Computational Intelligence : Concepts	1,6	0.5
	2	Basics of Artificial Neural Networks and Convolutional Neural	1,2,7	2.5
2		Networks	,8	
	2.1	Short History of Neural Networks, Rosenblatt's Neuron, Types of		
		Learning (Supervised, Unsupervised, Reinforcement), Activation		
		Functions.		
	2.2	Basic terminologies and architecture of ANN		
	2.3	Basic architecture of CNN		
3	3	Fuzzy Controllers	1,2,3	04
	3.1	Crisp Logic, Fuzzy logic, Fuzzy Membership functions and operators	,7,8	
	3.2	Fuzzy Inference System and its types, Fuzzification, Defuzzification,		
		Designing Fuzzy logic control systems.		
4	4	Basics of Natural Language Processing	4	
	4.1	Basic terminologies and steps involved in NLP		
	4.2	Applications of NLP		
5	5	Statistics in Computational Intelligence	5	03
	5.1	Calculation of standard deviation, root mean square, mean absolute		
		error etc for measuring the fitness of a model		
			Total	14

Exp. No.	Suggested List of Experiments	Ref.	Marks
1	Experiment on Supervised Learning (Back Propagation Neural	1,2,7,8	5
	Network)		
2	Experiment on studying different CNN architectures	1,2	5
3	Experiment on designing a Fuzzy Controller	2,3,6,7,8	5
4	Experiment on measuring fit and error parameters for a model	5	5
5	Mini project	Online	20
		References	
	Assessm	ent Marks	40

ISE Evaluation: Continuous evaluation of experiments for 40 Marks

MSE Evaluation: Subjective evaluation for 10 Marks based on theory for one hour duration

ESE Evaluation: Subjective evaluation for 20 Marks based on theory for one hour duration

- [1] Russell Eberhart and Yuhui Shi Computational Intelligence: Concepts to Implementations (2007)
- [2] FakhreddineKarray and Clarence de Silva Soft Computing and Intelligent Systems Design (2004)
- [3] AndriesEngelbrecht Computational Intelligence: an Introduction (2007)
- [4] Ela Kumar Natural Language Processing (2013)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

- [5] Peter Bruce and Andrew Bruce Practical Statistics for Data Scientists (2017).
- [6] James M. Keller, Derong Liu, David B. Fogel, Fundamentals of Computational Intelligence: NeuralNetworks, Fuzzy Systems, and Evolutionary Computation, IEEE Press series on Computational Intelligence, Wiley Publication, July 2016.
- [7] S.N.Sivanandam, S.N.Deepa "Principles of Soft Computing" Second Edition, Wiley Publication.
- [8] Samir Roy and Chakraborty, "Introduction to soft computing", Pearson Edition.

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		\mathbf{L}	T	P	L	T	P	Total
		1		2	1		1	2
OE6	Fundamentals of Data Structures and Algorithms			E	Examination Scheme			
OEO		ISE		MSE		ESE	Total	
			40		10)	20	70

Pre-requisite Course Codes	ES4- F	Programming Methodology and Data Structures
After successful	comple	etion of the course student will be able to
	CO1	Implement various operations of nonlinear data structures.
Course	CO2	Apply the concepts of Trees to a given problem.
Outcomes	CO3	Analyze time and space complexity of an algorithm
	CO4	Apply divide and conquer strategy to solve problems

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Introduction to Data Structures		
		Introduction, Review of Stack, Queue and Linked List.	1,2	01
2	2.1	Searching And sorting: Searching: Linear Search, Binary Search. Sorting: Insertion sort, Merge sort.	1,2	03
3	3.1	Introduction to Algorithms Algorithm development, Performance analysis, space and time complexity.	3,4	02
4	4.1	Growth of function Big –Oh ,Omega , Theta notation Analysis of insertion sort.	3,4	03
5	5.1	Divide and Conquer Approach Analysis of Merge sort	3,4	01
6	6.1	Binary Trees Representation, Binary Search Tree and its operations, Binary Tree Traversal, AVL Tree, B-tree	1,2	04
	1	I .	Total	14

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Exp. No.	Suggested List of Experiments	Ref.	Marks
1	Implementation of Linked List for a given scenario.	1,2	5
2	Implementation of Binary Search for a given scenario.	1,2	5
3	Implementation of Merge Sort for a given scenario.	1,2,3	5
4	Implementation of Tree Traversal for a given scenario.	1,2	5
5	Develop an application to explore the uses of an AVL tree	1,2	5
6	Develop Search application using B-Tree.	1,2	5
7	Sorting of 2 lacs elements using Insertion and Merge sort and do the analysis of algorithms.	3,4	10
	Tota	l Marks	40

ISE Evaluation: Continuous evaluation of experiments for 40 Marks

MSE Evaluation: Subjective evaluation for 10 Marks based on theory for one hour duration

ESE Evaluation: Subjective evaluation for 20 Marks based on theory for one hour duration

Recommended Books:

- (1) Data Structures APsedocode Approach with C, Richard F. Gilberg&Behrouz A. Forouzan, second edition, CENGAGE Learning.
- (2) Introduction to Data Structure and its Applications Jean-Paul Tremblay, P. G. Sorenson.
- (3) Thomas H.Cormen, Charles E. Leiserson, Ronald L Rivest, Clifford Stein, "Introduction to Algorithms", Third Edition, MIT Press, Massachusetts, 2009.
- (4) Horowitz E, Sahni S and S. Rajasekaran, "Fundamentals of Computer Algorithms", Second Edition, Galgotia Publications, New Delhi, 2010

Course	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		\mathbf{L}	T	P	L	T	P	Total
	Software Testing	1	-	-	1			1
OE7				Exa	minati	on Scheme		
OE7		IS	E	M	SE	ESE	1	Cotal
		4	0	1	0	20		70

Pre-requis	ite Course Co	es				
At the end of	the lab student	will be able to				
	OE7.1	Analyze the principles in software testing to prevent & remove bugs.				
	OE7.2 Design effective test cases suitable in testing.					
OE7.3 Describe the variety of ways to test software and indicate the tr						
Course		between various testing techniques.				
Outcomes	OE7.4	implement various test cases.				
	OE7.5	Apply the software testing techniques in commercial environments.				
	OE7.6	Able to use software testing methods and modern software testing tools				
		for their testing projects.				

Module	Unit	Topics	Ref.	Hrs.
No.	No.	•		
1	Intro	duction to Software Testing	2	2
	1.1	Software Quality		
	1.2	Verification and Validation		
	1.3	Failure, Error, Fault and Defect		
	1.4			
	1.5	Test levels		
	1.6	Software Testing Life Cycle		
2. Black-Box Testing		-Box Testing	1	4
	2.1	Boundary Value Analysis		
	2.2	Equivalence class testing		
	2.3	State table based testing		
	2.4	Cause-effect graphing based testing		
	2.5	Error guessing		
3.	White	e Box Testing	1	4
	3.1	Need of White box Testing		
	3.2	Logic coverage criteria		
	3.3	Basis path testing		
	3.4	Graph matrices	1	
	3.5	Loop testing		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	3.6	Data flow testing		
	3.7	Mutation testing		
4.	LEVI	ELS OF TESTING	3	4
	4.1	Unit testing		
	4.2	Integration Testing		
	4.3	System Testing		
	4.4	Acceptance testing		
	4.5	Performance testing		
	4.6	Regression Testing		
	4.7	Ad-hoc testing, Alpha, Beta Tests		
			Total	14

Exp. No.	Suggested List of Experiments	Ref.	Marks
1	Write the test cases for any known application.	1	5
2	Create a test plan document for any application.	1	5
3	Design Test case using boundary value analysis.	1	5
4	Design a test cases using equivalent class partitioning.	1	5
5	Study of testing tool, Win runner.	2,3	5
6	Study of test management tool, Test Director.	2,3	5
7	Test Automation using Selenium IDE.	2,3	5
8	Test Automation using Selenium Web driver.	2,3	5
		Total	40

ISE Evaluation: Continuous evaluation of experiments for 40 Marks

MSE Evaluation: Subjective evaluation for 10 Marks based on theory for one hour duration

ESE Evaluation: Subjective evaluation for 20 Marks based on theory for one hour duration

- 1. Naresh Chauhan, "Software Testing Principles and Practices", Oxford Higher Education.
- 2. Kshirasagar Naik and Priyadarshi Tripathy, "Software Testing and quality assurance theory and practice", Wiley Publication.
- 3. Srinivasan Desikan and Gopalaswamy Ramesh, "Software Testing Principles and Practices", Pearson education, 2006.

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		\mathbf{L}	T	P	L	T	P	Total
OE8	Database Management Systems	1	-	2	1		1	2
		Examination Scheme						
		ISE			MSE	ESE	Total	
		40			10	20		70

Pre-requisite Course Codes		les		
At the end of the course students will be able to				
	OE8.1	esign a database for real world system, choose real world problem and		
		map it to the solution using database techniques.		
Course	OE8.2	Construct a database using SQL.		
Course Outcomes	OE8.3	Create normalized database using functional dependencies.		
Outcomes	OE8.4	Analyze the effect of transaction over the database.		
	OE8.5	Build secure and normalize database using SQL constructs.		
	OE8.6	Apply the connectivity techniques of database.		

Module	Unit	Topics	Ref.	Hrs.
No.	No.	-		
1	1.1	Introduction Database Concepts and ER Modeling	1,2,3	2
		Characteristics of databases, File system V/s Database system,		
		Users of Database system, DBMS system architecture, Database		
		Administrator.		
	1.2	Introduction to ER model, Benefits of Data Modeling, Types of		2
		Models, The Entity-Relationship (ER) Model, Generalization,		
		Specialization and Aggregation, Mapping of ER to Relational		
		model.		
2	2.1	SQL	1,2	5
		Overview of SQL, Data Definition Commands, Set operations,		
		aggregate function, null values, Data Manipulation commands,		
		Data Control commands, Views in SQL, Trigger.		
3	3.1	Normalization	1,2,3	3
		Design guidelines for relational schema, Function dependencies,		
		Normal Forms- 1NF, 2 NF, 3NF.		
4	4.1	Transactions Management: Transaction concept, Transaction	1,2,4	2
		states, ACID properties, Implementation of atomicity and		
		durability.		
			Total	14

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Exp. No.	Suggested List of Experiments	Ref.	Marks
1	Identify the real world problem which can be mapped to the database using database concept. Design E-R model for the same.		5
2	Perform database administration DCL commands.		5
3	Build a database with related data using SQL.	2	5
4	Perform Data Manipulation using SQL.	2	5
5	Perform various nested queries on database.	2	5
6	Perform TCL operations over database.	2	5
7	Examine integrity of database using triggers.	2	5
8	Perform database connectivity using JDBC on a table.	1,2	5
		Total	40

ISE Evaluation: Continuous evaluation of experiments for 40 Marks

MSE Evaluation: Subjective evaluation for 10 Marks based on theory for one hour duration

ESE Evaluation: Subjective evaluation for 20 Marks based on theory for one hour duration

- 1. Korth, Slberchatz, Sudarshan, "Database System Concepts", 7th Edition, McGraw Hill, 2010.
- 2. Elmasri and Navathe, "Fundamentals of Database Systems", 5th Edition, PEARSON Education, 2015.
- 3. G. K. Gupta, "Database Management Systems", McGraw Hill, 2011.
- 4. Peter Rob and Carlos Coronel, "Database Systems Design, Implementation and Management", 8th Edition, Thomson Learning, 2007.
- 5. Sharaman Shah, "Oracle for Professional", SPD, 2008.
- 6. Dr. P.S. Deshpande, "SQL &PLSQL for oracle" Black Book, 2007.