23/11/15

S.E. sem IV (old) (ETRX) AEM

O.P. Code: 1313

(OLD COURSE)

(3 Hours)

[Total Marks :100

(1) Question No.1 is compulsory. N.B. :

(2) Solve any four from the remaining.

The probability distribution of a random variable X is given by 1 (a) 2 3 0 1 -2 -1 X: K 0.3 0.2 2K Κ $P(X \equiv x)$: 0.1 Find K, mean and variance. Find the eigen values and eigen vectors of matrix $\begin{vmatrix} 1 & 3 & 1 \\ 1 & 2 & 2 \end{vmatrix}$ 5 (b) 5 Determine the pole of the function $f(z) = \frac{z}{(z-1)^2 (z+2)}$ and also find residue (c) at each pole. If $f(x) = 2x^2+3$; g(x) = 4x+3, where $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ 5 (d) (i) Test whether the inverse function exists for both f and g. (ii) Find fog. Evaluate $\int_{c} \frac{dz}{z^{3}(z+4)}$ where Cis[z] = 2. 6 2) (a) 6 Fit a Binomial distribution to the following data and test the good-ness of fit. (b) 6 4 5 3 4 0 2 12 f 18 28 5 Verify Cayley-Hamilton theorem and find A⁻¹ for $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ Hence find 8 (c) A⁵-4ACTA³+11A²-A-10I in terms of A 3 (a) Find the mean and variance of the Poisson distribution. 6 (5) If $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, find A^{50} 6 SADAPA (c) Evaluate $\int_0^{2\pi} \frac{d\theta}{5+3\sin\theta}$ 8 **[TURN OVER**

QP-Con. 8129-15.

Q.P. Code : 1313

2

	4. (a)	A die was thrown 132 times and the following frequencies was observed. No.obtained 1 2 3 4 5 6 Total	6
		f 15 20 25 15 29 28 132	
	(b)	Is the following function injective, surjective? f: $R \rightarrow R$, f (x) = 2x ² +5x-3	6.5
	(c)	Find all possible Laurent's expansions of the function	18
		$f(z) = \frac{7z-2}{z(z-2)(z+1)}$ about Z = -1	3
	5. (a)	Is $(Z_{6} +, X)$ an Integral domain ? Is it a field?	6
	(b)	The first four moments of a distribution about the value 4 are -1.5, 17, -30	6
		and 108 calculate the moments about the mean.	
	(c)	Let $A = \{1, 2, 3, 5, 6, 10, 15, 30\}$ and R be the relation "B divisible by"	8
-		obtain the relation matrix and the Hasse diagram	
			-
		$\begin{bmatrix} 2 & -1 & -1 \end{bmatrix}$	
	6. (a)	Find the characteristic equation of the matrix $\begin{bmatrix} -1 & 2 & -1 \end{bmatrix}$ and verify	6
			v
	(b)	that it is satisfied by A and hence, abtain A ⁻¹ . The number of defects in printed circuit board is hypothesized to follow Poisson distribution. A random sample of 60 printed boards showed the following data	6
		Number of defects 0 1 2 3 frequency 32 15 9 4	
		Does the hypothesis of Poisson distribution seen appropriate?	
	(c)	Show that the matrix A is diagonisable. Find the diagonal form D and the diagonalizing matrix M. Where A is $ \begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix} $	8
	12		
	L.		
A	6	(TURN OVER	
A Y			
5'	QP-	Con. 8129-15.	

Q.P. Code: 1313

- Prove that the set $A = \{0, 1, 2, 3, 4, 5\}$ is a finite Abelian group under 7. (a) addition modulo 6.
- ad oraching of the state of the A box contains 2 red and 3 black balls. Three balls are drawn at random. (b) Let 'X' denote total no of red balls drawn from this box. Find (i) The MGF of X (ii) Hence find E (x) and var (x).
 - If X_1 has mean 5 and variance 5, X_2 has mean -2, and variance 3. If X_1 and (c) X₂ are independent random variables find.
 - (i) $E(X_1+X_2), V(X_1+X_2)$
 - (ii) $E(2x_1+3x_2-5), V(2x_1+3x_2-5)$

SE TI Old BOLILIT DSD-TI

Q.P. Code: 1359

(3 Hours)

[Total Marks : 100

20

N.B.: (1) Question No. 1 is compulsory.

(2) Solve any four questions Q. 2 to Q. 7.

1. Answer any four :

- (a) Explain the features of VHDL.
- (b) Differentiate amongst ROM, static RAM and dynamic RAM.
- (c) Draw a stage diagram of two bit bidirectional shift register which has two inputs, one data bit and one direction bit to select left shift or right shift.
- (d) Design Mod 7 counter using IC 7490. Explain the connections.
- (e) Explain the general structure of sequenctial state machine with the help of block diagram.
- 2. (a) Reduce the following state table and draw the state diagram of the reduce 10 table.

Present State	Next State		Output	
	x = 0	x = 1	Z	
A	В	F	0	
В	С	E	1	
С	E 🚕	F	0	
D	E	D	1	
E	A	Е	1	
F	E	С	0	
G	Α	В	1	

(b) Write a VHDL code for UP/DOWN 4 bit counter.

10 10

3. (a) Draw the block diagram and waveforms of

(i) Ring counter (ii) Twisted Ring Counter Explain the operation.

(b) Design a sychronous sequential state machine to detect the sequence 1011. 10
 Gvertapping sequence is allowed. Design Moore type machine.

[TURN OVER

QP-Con. 9096-15.

- 2
- Design MOD 100 counter IC 74191. 4. (a)
 - (b) Analyze the following feedback sequential circuit. Write the output equation, 10 state and output table indicating the stable states.

- Explain the architecture of XC4000 FPGA. 5. (a)
- Write a VHDL Code for a full adder. Using this as a component. Write a 10 (a) 6. structural code for 4 bit binary adder. 10

Analyze the following sequential state machine. Derive : (b)

- Output and next state equations. (i)
- State transition table (ii)
- Draw state diagram (iii)

Explain different types of modelling used in VHDL with suitable examples. 10 (c)

- Write short note on any three. 7.
 - SRAM basic cell (a)
 - Universal shift (b)
 - State assignment rules. (c)
 - CPLD XC-9500 : I/O block. (d)

20

SE sem iv (old) électronics ECAD 04/12/15

Q.P. Code: 1403

(3 Hours)

.0100 AM [Total Marks : 100

5 5

10

10

10

- N.B.: (1) Question No.1 is compulsory.
 - (2) Solve any four from remaining questions.
 - (3) Assume suitable data if necessary.
- (a) Explain open circuit and short circuit time constants related to frequency response 1. of amplifier.
 - (b) Explain steps in designing of RC phase shift oscillator.
 - (c) Compare voltage and power amplifier.
 - (d) Draw the circuit diagram dual input balanced output differential amplifier and 5 explain its operation.
- (a) Draw the circuit diagram of CE BJT amplifier. Sketch its frequency response 10 2. and explain the reasons of low frequency and high frequency gain fall. Mark f_{L} , $-f_{\mu}$ and Bandwidth on it.
 - (b) What is miller effect? Derive the expression of f_{B} and f_{T}
- (a) Determine low cut-off frequency for the amplifier shown below : 3.

OILME $= \frac{1}{3}\frac{3}{4}\frac{1}{7}\frac{1}{7}\frac{1}{7$

(b) Design colpitts oscillator for f = 100 kHz.

- (a) Draw and explain operation of power MOSFET. 10 4.
 - (b) What is necessity of Heat sink? Explain steps in design of Heat sink. 10
 - TURN OVER

GP-Con. 9879-15.

(a) Compare different types of feedback amplifiers. 5.

(b) Consider a three pole feedback amplifier with loop gain given by

$$T(f) = \frac{\beta(100)}{\left[1 + j\left(\frac{f}{10^5}\right)\right]^3}$$

Design two stage CS amplifier for Av \ge 100, Rin = 1M, Vo = 2.50, from 10 Hz. Write short notes

6.

Write short notes on (Any Two): 7.

1

- (a) Applications of oscillators.
 (b) Applications of Class A, Class B, Class C power amplifiers.
 (c) Distortions in amplifiers. rer al

TURN OVER

SARDAR PATTER -Con. 9879-15.

(OLD COURSE)

S.E. LTKX (IV) (old)

BADC

QP Code : 1448

10/12/15

		(3 Hours)	[Total	Marks :100
N.Í	8.: (1) Question No. 1 is compulsory		
	((2) Solve any four from remaining.		
	((3) Assume suitable data if necessary.		
1.	(a)	What is need of modulation		20
	(b)	Explain TDM.		
	(c)	Explain AGC		
	(d)	Explain Noise-traingle.		
2.	(a)	Explain elements of communication		10
	(b)	Explain Balance modulater.		10
_				10
3.	(a)	Explain superneterodyne radio receiver		10
	(b)	Explain A.M. modulation and De-modulation		10
4.	(a)	Explain FM, with fecquenl spectrum.		10
	(b)	Explain Indirect F.M. generation.		10
	(-)			10
5.	(a)	Explain PWM modulation and De-modulation.		10
	(b)	Explain PAM system.	181	10
6	(a)	Explain F.D.M. system.		10
0.	(u) (b)	Explain Adaptive Deltamodulator.		10
-	XX	its short notes on		20
1.	WI (a)	VCD sustem		
	(a) (L)			
	(D) (a)	D D Amplitice		
	(0)			

(d) Sampling Thereom.

QP-Con.-10819 -15

Dec 2015

SE (SEM IN) (RW. 2007)-ETRX [Uld] E.E.M.J.M.

Q.P. Code : 1494

(3 Hours)

[Total Marks : 100

- N.B.: (1) Question Nos. 1 is compulsory.
 - Attempt any four questions out of remaining six questions. (2)
 - Figures to the right indicate full marks. (3)
 - (4) Assume suitable data wherever necessary.
- 1. Answer the following :
 - (a)
- What is Lissajous patter. How measurement of frequency can be done with it. Explain the working of Mean (b)
 - (c)
 - Explain the working of Weston type frequency meter (d)
- 10 2. (a) Draw and explain Wein bridge Oscillator circuit. Derive an expression of output frequency.
 - 10 (b) What are the difficulties occurred in case of measurement of high resistance. Explain any one method for measurement of high resistance.
- 10 3. (a) What is dual trace, multi-trace, dual beamband sampling oscilloscope. 10 (b) With the help of neat block diagram. Explain the working of phase meter using flip-flop.

4. (a)	Explain microprocessor based ramp trigger digital voltmeter.	10
(b)	Discuss the following terms briefly related to CRO.	10

- (i) Time/Div (iii) Focus (v) Sweep (ii). Volt/div

(iv)Intensity

- 5. (a) What is stepped Motor. Explain the working of any one type of stepper 10 motor in detail.
 - (b) Explain the working of measurement of capacitance by Schering bridge. 10
- 6. (a) Discuss briefly the different types of DVM. Explain different methods for speed control of any DC machine.

ite short notes on (any four)

- (a) Three point starter (b) Working of power factor meter
- (c) Significance of back emf. (d) DSO
- FET voltmeter. (e)

QP-Con. 11610-15.

20

10