7/12/15

10

[TURN OVER

TE (EXTC) Sem V (old) signals and systems

QP Code : 1764

(OLD COURSE)

(3 Hours)

[Total Marks: 100

- **N.B.** (1) Question no. 1 is compulsory
 - (2) Answer any four questions out of remaining six questions
 - (3) Figure to right indicates full marks
 - (4) Illustrate the answers with sketches whenever required.

(a)	Prove differentiation in Z domain property of Z transform.	5
(b)	Determine the direct form-I realisation of the following transfer function	5
	$H(z) = 1 - 0.7z^{-1} + 0.4z^{-2}$	
(c)	Let $x[n] = u[n] - u[n-5]$. Find and sketch even and odd parts of $x[n]$	6
(d)	Determine whether the following signals are energy signals or power	4

(i)
$$x(t) = A \cos(2\pi f_0 t + \theta)$$

signals? Calculate their energy or power

(ii)
$$x(n) = \left(\frac{1}{4}\right)^n u(n)$$

2 (a)

З.

1.

$$x(t) = 1 \quad 0 \le t < 1$$

= 0 elsewhere
$$h(t) = 1 \quad 0 \le t < 1$$

with

Convolve

=0 elswhere

(b) Consider the analog signal $x(t) = 8 \sin 200 \pi t$

- (i) Determine minimum required sampling rate to avoid aliasing. 10
- (ii) If the signal is sampled at the rate Fs = 100Hz.
 - What is discrete time signal obtained after sampling.
- (ii) If the signal is sampled at the rate Fs=300Hz, what is discrete time signal obtained after sampling.
- (a) Determine the exponential form of Fourier series representation of signal
 10 shown below in fig 3(a). Hence determine the trigonometric form of Fourier series.

QP-Con. 10121-15.

Determine the output response of the system 10 (b) h(t) = u(t) to an input $x(t) = e^{-at}u(t)$, a > 0Find z transform along with its ROC of (a) 10 (i) $x[n] = \left(\frac{-1}{5}\right)^n u(n) + 5\left(\frac{1}{2}\right)^n U(-n-1)$ $x[n] = 2^n u(n-2)$ (ii) Prove that LTI system is stable if it's impulse response is absolutely summable (b) 10 Obtain the inverse Laplace transform of 5. (a) 10 $x(s) = \frac{5s^2 - 15s - 11}{(s+1)(s-2)^3}$ (ii) $x(s) = \frac{s-3}{s^2 + 4s + 13}$ (i) Realize Direct Form-I, Direct Form-II, First order cascade and First order (b) paraller structures if 10 $\mathbf{x}(\mathbf{z}) = \frac{1 + 3\mathbf{z}^{-1} + 2\mathbf{z}^{-2}}{\left(1 + \frac{1}{9}\mathbf{z}^{-1}\right)\left(1 + \frac{1}{2}\mathbf{z}^{-1}\right)\left(1 - \frac{1}{4}\mathbf{z}^{-1}\right)}$ The difference equation of the system is given by 6. (a) y(n) = 3y [n-2] + 4[n-1] + x[n]10 $If x[n] = [0.5]^n u[n]$ and y[-1] = 1, y[-2] = 0Zero Input Response Find (i) Zero State Response (ii)Total Response (iii) Prove time sifting property of Fourier transform (b) 5 Determine the unit step response of the system whose impulse response is (c) 5 given as h(t) = 3t u(t)Determine the state variable model of 7. (a) 10 y[n] = .2y[n-1] + 3y[n-2] + 0.5y[n-3] + 2x[n]Usign a suitable method obtain state transition matrix eAT for the following **(b)** 10 system $\begin{vmatrix} 3/4 & 0 \\ -1/2 & 1/2 \end{vmatrix}$

2

QP-Con. 10121-15.

4.

TE SEMI EXTC MPRMC-J COLD 24/11/15

QP Code : 1676

Total marks:100

5

(3 Hours)

N.B: (1) Question No. 1 is compulsory.

- (2) Solve any four questions from the remaining six questions.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data where necessary.
- 1. (a) Specify the register contents and flag status 0f 8085 as following instructions

are executed.

A	В	S	Z	CY
xx	xx	x	x	x
XRA	A			
MVI	B, 5A I	H		
SUI	5F H			
ANA	АВ			-
HLT	•			

(b) Explain how interrupts are handled in 8051.	5
((c) Explain functions of ALE and IO/\overline{M} signals of 8085 microprocessor.	4
(d) Explain any three addressing modes of ARM processor.	6
2. (a	a) Explain addressing modes of 8051.	10
(t	b) Design a 8085 based microprocessor based system with following specifica	tions:
	CPU of 3 MHz, EPROM of 16 KB using 8 KB chips and RAM of 16 K	B using

8 KB chips. Discuss schematic and show the memory map. 10

QP-Con. 8081 -15.

AL AL AL

[TURN OVER

QP Code : 1676

3. (a) Draw and explain architecture of ARM processor.	10
(b) Interface 8259 with 8085 using I/O mapped I/O technique and initialize 8259	to
meet following specifications	10
. (i) Level triggered, single and ICW4 not needed.	
(ii) Mask interrupts IR2 and IR4.	
(iii) Interrupt vector address for IR0 is 4250 H.	
4. (a) Explain control word register format of 8253	10
(b) Explain the following instructions of ARM processor.	10
(i) BNE label (ii) ADDEQ R1,R2,R3 (iii) LDRB R2, [R1],#1	
(iv) SMULTB R1,R2,R3 (v) MVN R2,#10	
5. (a) Explain TMOD and TCON register of 8051.	10
(b) Write assembly language for 8085 to multiply two 8 bit number using add	
and shift method.	10
6. (a) Explain the interrupt structure of 8085.	10
(b) Interface DAC 0808 to 8051 and write assembly language program using 8051	
to generate triangular waveform.	10
7. Write short note on any four of the following	20
(a) Serial communication in 8085. (b) PORT 3 structure of 8051.	
(c) BSR mode of 8255. (d) PSW register of 8051.	
(e) 8051 unconditional jump instructions.	

QP-Con. 8081 -15.

54-00 ARPAN

2

TE-Semiz (OLD) R2007 (EXIC) 18/11/2015

RSA

QP Code : 1631

Max. Marks: 100

Duration: 3 Hr.

- Instructions:
 - (1) Question No.1 is Compulsory.
 - (2) Solve any four out of remaining six questions.
 - (3) Assume suitable data if necessary.

State and prove Baye's Theorem. Q1(a)

05

- Suppose X and Y are two random variables, when do we say that X and Y are 05 (b) 1) Orthogonal 2) Uncorrelated 05
- Prove that Poisson process is Markov Process. (c)
- Define probability density function. State and prove any two properties of 05 (d) probability density function (p.d.f).
- Box 1 contains 5 white balls and 6 black balls. Box 2 contains 6 white balls and 4 10 Q2(a) black balls. A box is selected at random and then a ball is chosen at random from the selected box.
 - 1) What is the probability that the chosen ball will be a white ball?
 - 2) Given that the ball chosen will be white, what is the probability that it came from Box1?
 - The transmission times X of messages in a communication system obeys the 10 (b) following exponential probability law with parameter K.

$$f(x) = k e^{-\lambda x} , x > 0$$

- 1) Find the value of K.
- 2) Find the probability density function(p.d.f) of X and cumulative density

function (c.d.f) of X. sketch both functions.

The joint probability density function of a two dimensional random variable (X,Y) 10 Q3(a)

is given by $f_{xy}(x,y) = ke^{-(x+y)}, x > 0, y > 0$

- 1) Find the value of K.
- 2) Find the marginal probability density functions of X and Y.
- 3) Check for independence of X and Y.
- 10 If x and y are two independent exponential random variables and Z = X + Y, then (b) prove that the probability density function of Z is given by convolution of their individual density functions.
- Q4(a) Find the moment generating function of Binomial distribution and hence, find its 10 mean and variance.

ITURN OVER

QP-Con. 6862-15.

		10
(b)	Let $X_1 X_2$ be a sequence of random variables.	1×
	Define 1) Convergence almost anywhere	
	2) Convergence in probability	
	4) Convergence in Distribution	
	for the above sequence for a random variable X.	
		10
O5(a)	State and prove Chapman-Kolmogorov equation.	10
		10
(b)	1) Define clentral Link Theorem and get the g	
	2) Describe sequence of random variables.	20
06(2)	Explain power spectral density function. State its important properties and prove	0
Q0(4)	any one property.	
	1	10
(b)	Show that the random process given by	
	$x(t) = A\cos\left(w_0 t + \sigma\right)$	
	where A and w ₀ are constants and θ is uniformly distributed over ($0,2\pi$) is	
	Wide Sense stationary(WSS).	
07(a)	Three boys A. B. C play a game of throwing a ball to each other. A always	10
Q7(a)	throws the ball to B and B always throw the ball to C, however C is just as likely throws the ball to B as to A. Find the transition matrix. Show that the process is	
	to throw the ball to b as to rain the three the states.	
	IVINIKO VIGINI ZINGO DINGOLI J HILL I	10
		10

(b) Write Short notes on any two *

- 1) Ergodic Process
- 2) Poisson Process
- 3) Gaussian Process

QP-Con. 6862-15.