S.E. ETRX Sem-III

(REVISED COURSE) Engg. Maths TI RK-1239

(3, Hours)

[Total Marks: 100

- (1) Question No. 1 is compulsory. N.B.
 - Attempt any four out of remaining six questions. **(2)**
 - Make suitable assumptions if required and justify the same. (3)
 - A figure to right indicates the full marks.
 - Find $L(t \sin^3 t)$ 1. (a)

05

05

Use the adjoint method to find the inverse of

 $\begin{bmatrix} 1 & 0 & -1 \\ 3 & 4 & 5 \\ 0 & 6 & 7 \end{bmatrix}$

(c) Determine the constants a,b,c,d if

 $f(z) = (x^2 + 2axy + by^2) + i(cx^2 + 2dxy + y^2)$ is analytic.

05 05

(d) Find complex form of Fourier Series for $f(x) = e^{-x}$ in (-1, 1)

(a) Show that $v = e^x \sin y$ is harmonic function. Find its harmonic 2. conjugate and corresponding analytic function.

08

(b) Show that the set of functions $\frac{\cos x}{\sqrt{\pi}}$, $\frac{\cos 2x}{\sqrt{\pi}}$, $\frac{\cos 3x}{\sqrt{\pi}}$,..... from a orthonormal set in the interval $(-\pi,\pi)$.

06

(c) Using Green's theorem evaluate $\int (x^2ydx + x^2dy)$ where c is the

boundary described counter clockwise of the triangle with vertices (0,2), 06 (2,0) and (4,2)

(a) Find the Laplace transform of each of the following:-3.

(i) $\int_0^t u \cos^2 u du$ (ii) $te^{3t} \sin 3t$

06

(b) Find half range sine series for the function

 $f(x) = \frac{2x}{3}, \qquad 0 \le x \le \frac{\pi}{3}$ $=\frac{\pi-x}{3}, \qquad \frac{\pi}{3} \le x \le \pi$

06

Find non-singular matrices P & Q such that PAQ is normal form. Hence find its rank where A is given by

 $A = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \\ 3 & 1 & 1 \end{vmatrix}$

Solve the system of equations 3x + 3y - z = 11, 2x - y + 2z = 9, 06 4. 4x + 3y + z = 25Find the inverse Laplace transform of the following (ii) $\frac{8e^{-3s}}{(s_1+4)^3}$ (i) $\cot^{-1}(as)$ 06 Expand the function f(x) with period 2 into a Fourier Series. (c) $f(x) = \pi x \,, \qquad 0 \le x \le 1$ $1 \le x \le 2$ 08 Using Convolution theorem, Find the inverse Laplace transform of the 5. following $\frac{s^2}{(s^2+a^2)(s^2+b^2)}$ 06 Find the analytic function and its imaginary part if real part is (b) $u = x^3 - 3xv^2 + 3x^2 - 3v^2 + 1$ **06** · Prove that $\vec{F} = (v^2 \cos x + z^3)i + (2v \sin x - 4)j + (3xz^2 + 2)k$ is a (c) conservative field. Find (i) scalar potential (ii) the work done in moving an object in this field from (0, 1, -1) to $(\frac{\pi}{2}, -1, 2)$. 08 Using Laplace transformation, solve the following equation. 6. (a) $(D^2 + 3D + 2)y = 2(t^2 + t + 1)$, with y(0) = 2 & y'(0) = 006 Find the orthogonal trajectories of the family of curves 06 $x^3v - xv^3 = c$ Find the inverse Z - transform of (c) $F(z) = \frac{1}{(z-3)(z-2)}$ If ROC is (i) |z| < 2 (ii) 2 < |z| < 3 (iii) |z| > 308 Evaluate the following integral by using Laplace transform 7. $\int_{0}^{\infty} \frac{\cos 4t - \cos 3t}{t} dt$ 06 Find the bilinear transformation which maps the points 2, i, -2 onto 08 points 1, i, -1 and also find the fixed points. Find Fourier integral representation of

 $f(x) = e^{ax}, \qquad x \le 0, a > 0$

 $x \ge 0, a > 0$

Con. 3379-11.

(3 Hours)

RK-1245

[Total Marks: 100

N.B.: (1) Question No. 1 is compulsory

(2) Attempt any four out of remaining six questions.

- (3) Assume suitable data wherever required but justify the same.
- (4) Figures to the right indicate full marks.
- 1. Solve the following —

20

(a) State the properties of positive real function.

(b) Find poles and zeros of the impedance of the following network and plot it on s-plane.

- (c) Explain Y-parameters interms of Z-parameters.
- (d) State the properties of Hurwitz polynomial.
- 2. (a) The reduced incidence matrix of an oriented graph is.

10

10

$$\mathbf{A} = \begin{bmatrix} 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & -1 & -1 \\ -1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- (i) Draw the graph.
- (ii) How many trees are possible for this graph?
- (iii) Write TIE set and Cut set.
- (b) The switch is closed at t = 0. Find value of I, di/dt, d^2i/dt^2 at $t = 0^+$. Assume 10 initial current of inductor to be zero for circuit given below.

3. (a) Find Thevenin's equivalent of circuit shown below to the left of X-X'.

Con. 3379-RK-1245-11.

(b) Determine the node voltage at node (1) and (2) of network shown in figure 10 below by using nodal analysis.

4. (a) Find Z and Y parameters.

10

(b) Realise the function in FI and FII forms.

10

$$Y(s) = \frac{s(s+2)(s+6)}{(s+1)(s+4)(s+8)}$$

5. (a) Check the following polynomials for Hurwitz. (i) $P(s) = s^4 + s^3 + 4s^2 + 2s + 3$ (ii) $P(s) = s^3 + 4s^2 + 5s + 20$.

10

10

use continued fraction Expansion. (b) Calculate the mesh currents for the circuit shown.

Con. 3379-RK-1245-11.

6. (a) Find three loop currents at $t = 0^+$.

10

(b) Find magnitude of VCCS by mesh analysis.

· 10

7. (a) Find i through circuit as shown in **figure** below if the switch is closed at t = 0. 10

Test which of the following are positive functions.

(i)
$$\frac{s+2}{s^2+3s+2}$$
 (ii) $\frac{s^2+6s+2}{s^2+3s+5}$

(ii)
$$\frac{s^2 + 6s + 2}{s^2 + 3s + 5}$$

82: 1st half.11-PH(i)

Con. 3081-11.

(3 Hours)

RK-1236

[Total Marks: 100

- N.B.: (1) Question No. 1 is compulsory.
 - (2) Solve five questions in total.
 - (3) Assume suitable data wherever required.
- Attempt following :-

20

- Explain, with appropriate examples, open loop and closed loop control system. (a)
- Derive the expression for peak time of second order underdamped control (b) system for unit step input.
- What are the effects of feedback on control system? (c)
- Explain the comparisons between the Time response analysis and Frequency response analysis of control system.
- What are the standard test inputs? Explain each in brief. (e)
- (a) Explain various rules for block diagram reduction process. 2.

5 5

- (b) Explain the Mason's Gain formula with reference to Signal Flow Graph Technique.
- (c) Determine the transfer function of a control system shown by following block 10 diagram.

(a) Obtain the overall transfer function of a control system shown by following Signal 10 3.

(b) Derive the output response of a second order underdamped control system for 10 unit step input.

- Derive the transfer function of a DC servometor.
- Explain synchro as an error detector. 10
- (a) Show the pole locations of a second order control system for various values of 5 5. damping ratio.
 - (b) Derive the time response of first order control system for unit step input. Show 5 the graph of error and output with respect to time.

10

10

10

Draw the Bode plot of a control system shown by following transfer function-10

$$G(s) = \frac{64(s+2)}{s(s+05)(s^2+32s+64)}$$

- (a) Derive the value of k_p , k_v and k_a for type 0, type 1 and type 2 control system. (b) What is the effect of adding zero to a control system? 5 5

 - Draw the polar plot of a RC filter circuit shown below-10

(a) Sketch the Root locus for a open loop transfer function of a control system-

G(s) H(s) =
$$\frac{K}{s(s+4)(s^2+4s+10)}$$
.

Determine the stability of a system shown by following open loop transfer function using Nyquist criterion -

G(s) H(s) =
$$\frac{(4s+1)}{s^2(s+1)(2s+1)}$$
.

S.F. ETRX III (RW)

[Total Marks: 100

Digital system Design 1 RK-1242

ws-Scan Paper -3 2 Con. 3837-11.

(3 Hours)

N.B.: Question No. 1 is compulsory. Solve any four from rest six.

1.	Answer the following questions: Each question carries 5 marks. (a) Construct Hamming code for BCD 0111. Use even parity.	20
	(b) Construct an EX-OR gate using universal gates.	
	(c) Draw the circuit of 2-input TTL NAND gate.	
	(d) Explain with example self-complementing codes	
2.	(a) Simplify the following 4 variable Boolean expression using Quine-McCluskey method $F = \Sigma m (0,1,3,7,9,15) + d(8,11)$	10
	(b) For the expression $Y = (P + Q)(Q'+R')$	
	i) Convert to standard POS	4
	ii) Reduce using K-map	4
	iii) Construct circuit using NOR gates only	2
3.	(a) Implement the following expression using IC 74138, 3:8 active low decoder and additional gates	
	$F(A,B,C,D) = \pi M (0,6,7,8,12,13,14,15)$	10
	(b)Find the reduced SOP form using K-map	5
	$F(A,B,C,D) = \Sigma M \; (0,6,7,8,12,13,14,15)$ Implement using only NAND gates (c) Explain the term " noise margin" and its values for TTL and CMOS families.	5

4.	(a)Design and explain 8 bit binary adder using IC 7483	10
- 1.	(b) Design an clocked MN flip-flop using JK flip-flop. The function table of MN flip-flop is as follows: M N Q _{n+1} 0 0 Q _n '	10
	0 1 0 1 0 1 1 1 Q _n	
5.	(a) Explain and draw MOD – 10 asynchronous counter using T- FF. Draw output waveforms and show where glitches occur.	10
	(b) A parking lot has 4 parking slots. A car requires 1 empty slot, a tempo requires 2 empty adjacent parking slots and a truck requires 3 empty adjacent parking slots. Each slot has a sensor which indicates a 1 when slot is full and indicates a 0 when slot is empty. Generate 3 outputs: car, tempo and truck which indicate which vehicle should be allowed to park.	10
6.	(a)Construct a ring counter using IC 74194 and draw the output waveforms.	10
	(b) Consider the expression $Y = AD' + BD$. Find out whether any hazard exits in the hardware implementation. If yes, eliminate the hazard.	10
7.	(b) Draw and explain a 9 - bit even parity checker using IC 74180	10
	(a) Implement the function using single IC 74151 and some gates $F = \Sigma m (1,2,4,7,10,13,14)$	10

Con. 3265-11.

Busic Electronics circuits SE (ETRX) Sem - III RK-1233

(3 Hours)

[Total Marks: 100

(1) Question No. 1 is compulsory.

- (2) Answer any four out of remaining six questions.
- (3) Assume any suitable data wherever required.
- Answer the following questions :-
 - (a) Compare common base, common collector and common emitter BJT amplifier. 5 Derive the condition for zero temperature drift biasing of FET. 5
 - (c) Draw the circuit diagram of voltage multiplier and explain its operation.
 - 5 Explain Zener as Voltage Regulator. (d) 5
- (a) Draw the common emitter $r\pi$ equivalent circuit of the BJT transistor with RE unbypassed 10 2. and drive the expression for the following :-
 - (i) Input resistance
 - Output resistance (ii)
 - (iii) Voltage gain.
 - (b) Derive the equations for A_v , Z_i , Z_0 and determine A_v , Z_i and Z_0 for a given network. 10

- (a) Draw a circuit diagram of a fullwave rectifier with C filter. Derive expression for ripple 10 factor and also explain the basic rectifier operation.
 - (b) For the given circuit find :-
 - (i) Determine Z_i , Z_0 and A_v no load
 - (ii) A_v with load
 - (iii) A

Design a single stage CS JFET amplifier using potential divider biasing for the following 20 specification:-

 V_0 = 2V, f_L = 20 Hz, ID = 3·3 \pm 0·6 mA | A_V | = 11. Use BFW 11 Calculate R_i, R₀ and V₀ (max) for the designed amplifier.

- Design a single stage CE amplifier for voltage gain AV \geq 170, $V_0 = 6V$ rms, $F_L = 20$ Hz, $S_{ICO} \ge 10$. Calculate Z_i , Z_0 and A_v for the designed circuit. 20 Use a suitable transistor from the data sheet.
- (a) Explain construction, working principle and characteristic of E MOSFET.
 - (b) Compare L and C Filter.
 - (c) Comapre MOSFET and FET.

10

10

	short note on the following :-	20
(a)	Schottky diode	
(b)	Diode clamping circuits: Working and waveforms.	
(c)	Temperature effects in MOSFET	
(d)	Transistor as a switch.	TURN OVER

DBEC DATA SHEET

type	Pdma @ 25°	Pdmax Icmax @ 25°C @ 25°C	V CE E	Vaso	V _{CEO} (Sus)	S _{ES}	V CER Volts	V ago	-	D.C.		CHITCHI	Fain	Small	Signal	4 . J		7	0	above
	Watis	s Amps	d.c.		volts d.c.volts d.c.	•	d.c.	d.c.	ပ	min	179.		max.	min.	typ.	max.	1	max.	<u>*</u>	2.52 M. C.
,	115.5	15-0	1.1	8	9	-70	06	7	200	2			۶	2	5					
	20.0	ያ	0.1	જુ	20	55	8	· •	200	25	2 5	· .	2 2	. X	2 %	125		o v))
	30.0	4.0	1.0	20	40	.1.	1	90	150	?			3 5	1 5	: §			, c	n (, ,
	S-0	0-7		70	9	65		•	200	\$ 5		-	2 2	Ş	3 8			1 0) v	
	0.25			20	45	- 20	ı	•	125	115			3 5) (, <u>c</u>			١.		6
NP)	0-225	0,5	0.25	85	30	1	1	1	100	35)	}	AS		•	<u>.</u>	i	l •.
	0.25			20	45	20	1	9	125	200	. ~		\$5	240	8	8		0.0	1, 1	
type	hie	hoe	hre		θja ·															
	2.7 K D	18μ τ	1.5 × 10	_	0.4°C/mw	BFW 11-		. wain	-JFET MUTUAL CHARACTERISTICS	WACTE	RISTICS									
PNP)	1.4 K D	25µ C	3.2 × 10-		 	-Vas vol	olts	9	0.2	3	9.0	0.8 1.0	0 1.2	1.6	2.0	2.4	2.5	3.0	3.5 4.0	[E
	4.5 A &	p 를	01 × 7		C-4-C/M×	Ine max.	r. mA	10	0-6	8.3	7.6 6	6-8	1 5.4	4.2	3.1	2:2	╀-	┿	+-	ıl-
				1		Ibs typ.	ΨY	7.0	0-9	5.4	4.6	4.0 3.3	3 2.7	13	┢	0.2	_	+-	┿╌	ı la
	12 D	ı				Ibs min.	. mA	4.0	3-0	2.2	1.6	1.0 0.5	500	8	-	00	 	┿	┿	ا د
	G o															1	 	┨	4	7
el JFET	Ľ						•	•												
		Ves max.	V pa max. Volts	١.	Vas max. Volts	P, max. @25°C	T, max.	ğ	/par	=	freical)		-V, Volts	olts	2	46	Derate	ر		6.5
		20	20		20	300 mW	175°C	ပ	2 mA		3000 H C	a	9		50 KD		2 mW/°C		0.59	0-59°C/mW
(typical)		30	30		30	300 mW	200°C	1	J mA		\$600 u rr		2.5		50 KO				000	10 605 C