SEITTIM (Rev.) 2915/2012 Digital logic Design & application

c. Programmable logic devices

b. Race around condition and its remedy in master slave JK Flip flop.

d.Priority encoders.

Con. 4469	GN-8348
(3 Hours)	[Total Marks 100
N.B.N. B.: (1) Question NO.1 is compulsory (2) Solve any four out of remaining six questions.	
a. Convert (243) ₅ into equivalent base 8 number and base 7 number.	(4)
b. Perform the following operations –	(6)
1) (F8F) ₁₆ + (D49) ₁₆ 2) (762) _{BCD} + (238) _{BCD} 3) (246) ₁₀ - (435) ₁₀ using 2's complement method.	
c. Convert SR flip flop to JK flipflop.	(5)
d. With the help of suitable example, explain how hamming code is able	to locate
and correct single bit error.	(5)
 a. Implement one digit BCD adder using IC 7483. Explain its working. I design to implement 4 digit BCD adder. 	Expand your (10)
b. Implement 2 bit comparator using active low decoder.	(10)
3. a. Implement 4 bit Asynchronous up counter. Also sketch the timing dia	grams. (10)
b. Explain bidirectional shift register with the help of neat diagram.	(10)
 a. Design Mod 12 synchronous up counter using JK Flipflops and NANE Design the counter as lock out free counter. 	gates only. (12)
b. Script VHDL Code for 3:8 decoder	(8)
5. a. Draw the circuit diagram of TTL NAND Gate and explain its working.	(10)
b.Implement full adder using two 4:1 Multiplexers and additional gates	(10)
6. a Using Quine McClusky method of minimization minimize $F = Em (8,9,10,11,13,15,16,18,21,24,25,26,27,30,31)$.	(10)
.b Implement BCD to Excess 3 code converter using NOR Gates only.	(10)
7. Write short notes on any two. a. CAD Tools	(20)

102 : 1st half-12-(i)JP

9 E/III/ sem-III (Rev) 24/5/2012 Duter structure & Algorithms

Con. 3893-12.

GN-5382

10

10

(3 Hours)	[Total Marks :	1	00

- N.B. (1) Question No. 1 is compulsory.
 - (2) Attempt any four questions from remaining six questions.

1.	(a)	What are linear and non-linear data structures?	į
	(b)	What are Asymptotic notations?	į
	(c)	Why is it necessary to analyze an algorithm?	Ę
	(d)	What are Expression trees?	

- (a) Develop an algorithm to delete a node from the given binary search tree. Consider 10 all cases.
 - (b) Explain the method of Huffman Encoding. Apply Huffman Encoding method for 10 the sentence 'STRUCTURE'. Give Huffman code of each symbol.
- (a) What is a Priority Queue ? Explain the Insertion and Deletion operations on 10 Priority Queue if it is implemented using Array.
 - (b) Write any pattern matching algorithm and explain it with suitable example. 10
- (a) Explain selection sort and write a program to implement selection sort. Compare 10
 it with Binary Sort.
 - (b) Write an algorithm and explain with an example RADIX SORT method. 10
- (a) Using Prim's and Kruskal's algorithm find minimum spanning tree for the following 10 graph:

- (b) Give an INFIX expression, write a program to convert it to its 'PREFIX' from.
- 6. (a) Write a program to implement 'QUICK SORT' and comment on its complexity. 10
 - (b) Write a program to implement 'towers of Hanoi' using recursions.

7.	Write de	own short notes on any four :	20
	(a)	Expression and realization of ADT's in Java	
	(b)	Comparison of sorting algorithms	
	(c)	Infix, Prefix and Postfix expressions	
	(d)	Space and time complexity	
	(e)	Recursion.	

V-L-1st-Hf-Ex-12-BB-99

Con. 3568-12.

GN-5393

(3 Hours)

[Total Marks: 100

N.B.:(1) Question No. 1 is compulsory.

- (2) Solve any four out of remaining six questions.
- (3) Answers to subquestions should be answered together.

1. (a) If
$$A = \begin{bmatrix} 3 & 2 & 2 \\ 1 & 3 & 1 \\ 5 & 3 & 4 \end{bmatrix}$$
, find adj A, A^{-1} . Also find B such that $AB = \begin{bmatrix} 3 & 4 & 2 \\ 1 & 6 & 1 \\ 5 & 6 & 4 \end{bmatrix}$. 5

(b) Find L
$$\left\{\frac{\cosh 2t \sin 3t}{t}\right\}$$
.

5

5

(c) A regular function of constant magnitude is cosntant.

5

- (d) Find the Fourier series for $f(x) = 1 x^2$ in (-1, 1).
- 2. (a) Expand $f(x) = \begin{cases} \pi x & 0 < x < 1 \\ 0 & 1 < x < 2 \end{cases}$ with period 2, into a Fourier series. 6
 - (b) Find the orthogonal trajectories of the family of curves e^{-x} (x siny y cosy) = c. 7
 - (c) Using convolution theorem, prove that, $L^{-1}\left\{\frac{1}{s}\tan^{-1}a_{s}\right\} = \int_{0}^{t} \frac{1}{u}\sin audu$. 7
- (a) Show that every square matrix A can be uniquely expressed as P + iQ.
 Where P and Q are Hermitian matrices.
 - (b) Using Cauchy's residue theorem, evaluate, $\oint_C \frac{12z-7}{(z-1)^2(2z+3)} dz \text{ where } 7$ C is the circle (i) $|z| = \frac{1}{2}$ (ii) |z+i| = 3.
 - (c) Solve the following equation by using Laplace transform, $\frac{dy}{dt} + 2y + \int_0^t y dt = \sin t$ 7 given that y(0) = 1.

(b) Find Fourier series for
$$f(x) = \sqrt{1 - \cos x}$$
 $0 < x < 2\pi$ and hence show that 7

$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1} = \frac{1}{2}.$$

(c) Evaluate
$$\int_{0}^{\infty} t \sqrt{1 + \sin t} dt$$
.

[TURN OVER

2

5. (a) Using Residue theorem, Evaluate $\int_{0}^{2\pi} \frac{d\theta}{5-3\cos\theta}$.

6

(b) Reduce the following matrix to normal form and find its rank.

7

(c) (i) Express the function as Heaviside's unit step function and find their Laplace transforms.

f(t) = 0 0 < t < 1= t^2 1 < t < 3= 0 t > 3.

(ii) Find L { f(t) } where f(t) = t 0 < t < 1= 0 1 < t < 2

3

and f(t) is a periodic function with period 2.

(a) Investigate for what values of λ and μ the equations—

6

$$x + 2y + 3z = 4$$

$$x + 3y + 4z = 5$$

$$x + 3y + \lambda z = \mu$$

have (i) no solution (ii) a unique solution (iii) an infinite number of solution.

(b) Show that the set of functions $\sin(2 n + 1) x$, n = 0, 1, 2, ---- is orthogonal over $[0, \pi/2]$. Hence construct orthogonal set of functions.

Find all Laurent's expansions of the function $f(z) = \frac{2-z^2}{z(1-z)(2-z)}$.

7

7

7. (a) Find L { cost cos 2t cos 3t }.

6

- (b) Show that the vectors [1, 0, 2, 1], [3, 1, 2, 1], [4, 6, 2, -4], [-6, 0, -3, -4] are linearly dependent and find the relation between them.
- (c) Obtain half range sine series for f(x) where $f(x) =\begin{cases} x & 0 < x < \frac{\pi}{2} \\ \pi x & \frac{\pi}{2} < x < \pi \end{cases}$ 7

Hence find the sum of $\sum_{2n=1}^{\infty} \frac{1}{n^4}$.

Hence deduce that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + - - - -$

SE IIT III (Rev) 1915/2012 . Electronics Devices & circuits.

mk.H.1stHlf12.62

Con 4055-12

GN-5387

(3 Hours)

[Total Marks: 100

N.B. (1)	Question	No.	is	compulsory	1

- (2) Solve any four questions from remaining six questions.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data if necessary.
- (a) Explain the working of a Non-inverting adder using Op-amp.
 (b) Explain three terminal voltage regulator.
 (c) State and explain Barkhausen criterion for oscillator.
 (d) Explain Practical integrator.
- 2. (a) For differential amplifier find I_{CO}, V_{CEO}, Ad, Ac and CMRR.

- (b) Explain internal block diagram of monostable multivibrator using IC 555 and explain 10 one application of it.
- (a) Explain instrumentation amplifier using 3 Op-amp. Find the expression for output 10 voltage.
 - (b) Design astable multivibrator using IC 555 for Fo = 1 kHz, duty cycle = 25%.
- (a) Design a first order lowpass filter for cut-off frequency of 1 kHz and pass band 10 of 10.
 - (b) Draw and explain the working of a triangular and square wave generator using 10 Op-amp.
- (a) What are advantages of active filters? With the help of circuit diagram, explain 10 the operation of second order low pass filter.
 (b) Design Wein bridge oscillator for frequency of 1 kHz.

6.	(a) Design a voltage regulator using IC 723 for the following specifications:-	10
	$V_0 = 5 \text{ V}, I_0 = 100 \text{ mA}, I_{sc} = 150 \text{ mA}, V_{sense} = 0.7 \text{ V}.$	
	(b) A 6 bit DAC has an input 100101 and 10 V reference voltage. Find	10
	(i) Output Voltage	
	(ii) Conversion Resolution.	
7.	Explain the following:—	
	(a) Switching mode regulator	5
	(b) Schmitt trigger in Non-inverting mode	5
	(c) Successive approximation type ADC	5
	(d) RC phase shift oscillator.	5