31/5/13 BELETRIXI WII (OLD) MSD.

AGJ 1st ha	alf (f+) 37		
Con. 9678-13.		(OLD COURSE)	GS-4978
		(3 Hours)	[Total Marks: 100
		is compulsory. questions out of remaining six questions le data wherever necessary.	ons.
1 (0)	Transain MEST and	stagad in nantium	
• • •	•	stocol used in pentium.	10
(b)) For 10-bit device,	explain data steering logic for pentiur	n. 10
2. (a)	Explain pentium b	branch prediction logic.	10
(b)	Explain various s	pecial cycles of pentium.	10
3. (a)	Draw and explain	pentium Burst bus cycle with one wait	state per Quadword. 10
` '	•	ne structure with split line access.	10
` '			
4. (a)	Master A wants	to perform 2 transactions with 3 dat	ta phases and 1 data phase 10
	respectively. Mas	ter B wants to perform only one trans	action with one data phase.
	Master A has alre	eady requested. Master B of higher	priority is now requesting.
	Explain with neat	timing diagram, bus arbitration in PCI.	
(b)	Explain Bus Acces	ss Lathency in PCI.	10
5 (-)	Danie DOI diene		
5. (a)	Explain PCI signa	is:—	10
	(i) FRAME		
	(ii) PAR64		
	(iii) LOCK (iv) SBO		
	(v) <u>SBO</u> (v) <u>TRDY</u>		10
(h)		errupt chaining process.	1 U
(0)	m in toi, oxpium in	orrapt orraning process.	
6. (a)	Explain following	terms of USB bus –	10
	(i) Host co	ntroller and its functions	
	(ii) NAK ar	d ACK token	
	(iii) Transac	tion frame.	
(b)	Explain following	signals in SCSI.	10
	ATN, MSG,	BSY, SEL	
7. (a)	Explain protocol f	or data read/write commands in IDE.	10
• • •	*	wave switching in PCI bus.	5
` '	What is sector inte		5

P3-upq-Feb.-13KL-165 A4 E

(c) MOS capacitor.

• •	873–13.	· (OLD (COURSE)	GS-44	135
			Hours)	[Total Marks:	
N.R. ·	1) Question No. 1 is	•			- • •
·	2) Attempt any four (•	ng six questions		
·	3) Assume suitable de		•		
					1
1. (a)	Design a CMOS logic	gate for the fu	inction:—		5
	$f = \overline{A + (B + C)}$	$\overline{(D+E)}$			
(b)	Compare ion implantat	tion and diffusi	on.		5
(c)	Explain the flat band c	ondition.			5
(d)	Explain channel length	modulation of	MOSFET.		5
2 (a)	Calculate the zero bias	threshold volt	age for an NMO	S silicon gate transistor that	10
2. (u)				0 ²⁰ cm ⁻³ gate oxide thickness	10
	$t_{ox} = 200^{\circ} A$ and $Q_{ss} =$	$2 \times 10^{10} \text{ cm}^{-2}$	2		
	Explain latchup in CM				10
2 D.	arv a aircuit dia aram -a	tiak diagram a	nd lawout 'I Icin	g lambda based design rule.	20
J. DI	aw a chicult diagram, s	tick diagram a	nu layout. Osni	g lailibua bascu ucsigii luic.	20
4. (a)	What is scaling. Explain	n constant voltag	ge and constant fi	eld scaling in detail with their	10
	merits and demertis.				10
(b)	Compare resistive, enh	ancement, depl	letion load NMC	S and CMOS inverter.	10
5. (a)	Explain the complete f	abrication proc	ess steps for a C	MOS inverter using a n-well	10
	process (cross sections	-			
(b)	Explain CMOS design				10
	(i) N. P Well	(iii)	Poly		
	(ii) Active	(iv)	Contact.		
6. (a)	Differentiate butting ar	nd buzzied conf	tact.		10
` '				put NAND gate based on the	10
			W	e depletion load transistor is	
	reference inverter. In re	eference inverte	$\frac{1}{L}$ ratio of the	e depletion load transistor is	
	4/1 and the (W/L) of	the driver tran	sistor is 2/1. Als	so draw schematic.	
7 117	ite short notes on :—				20
, . VV I	(a) Hot electron effe				
	(b) CZ method of wa		3		

15: 1st half.13-shilpa(i)

Con. 8299-13.

(OLD COURSE)

GS-4333

(3 Hours)

[Total Marks: 100

N.B.: (1) Question No. 1 is compulsory.

- (2) Attempt any four questions out of remaining six questions.
- (3) Assume suitable data wherever required.
- (4) Illustrate answer with sketches wherever required.
- (5) Figures to the right indicate full marks.
- 1. (a) Choose the most suitable temperature transducer for measuring the temperature 20 in each of the following:—
 - (i) Rapidly changing temperature
 - (ii) Very small temperature changes about 40°C
 - (iii) Very high temperature (> 1500°C)
 - (iv) Highly accurate temperature measurement
 - (v) Wide temperature variations.
 - (b) Describe the operation of a Piezo-electric transducer.
 - (c) What are the objectives of a DAS?
 - (d) Define the following terms:-(any two)
 - (i) repeatability
 - (ii) rangeability
 - (iii) reproducibility
 - (iv) sensitivety.
- 2. (a) List different flow measuring devices, with a neat sketch, explain the operation 10 of a magnetic flowmeter. What are its advantages and limitations?
 - (b) For the first order instrument, find the step response and ramp response. 10
- (a) Explain the principle of Hall effect and how it can be used for measuring angular 10
 displacement.
 - (b) Explain the operation of resistance strain gauges and hence derive the 10 expression for gauge factor.
- 4. (a) Discuss the Piezo-electric transducer with proper signal conditioning circuits 10 for vibration measurement.
 - (b) Explain briefly:—

10

- (i) photo conductive cell
- (ii) photo voltaic cell.
- 5. (a) What is LVDT? Explain the use of phase sensitive detector for operation of 10 LVDT.
 - (b) Give different types of load cell configuration. Hence explain effect of 10 temperature variations for force measurement.

16: 1st half.13-shilpa(i)

Con. 8299-GS-4333-13.

2

- 6. (a) Describe the Multichannel Analog Multiplexed Data Acquisition System. State 10 its merit and demerits over Digital Multiplexing Data Acquisition System.
 - (b) Explain Absorbtion type and Transmission type of Torque measurement. 10
- 7. Write short notes on :-
 - (a) Virtual Instrumentation
 - (b) Optical Pyrometer
 - (c) Data logger.

20

3:1ST HALF-13 (q)-JP

Con. 7751-13.

B.E (ETAX) for VIT (old)

Filter Though Application

(OLD COURSE)

GS-4213

(3 Hours)

Total Marks: 100

- (1) Question No. 1 is compulsory.
 - Attempt any four of the remaining six questions.
 - Assume suitable additional data wherever necessary.
- Answer the following:—

20

- (a) Compare FIR and IIR filters.
- (b) Compare rectangular and Hamming window with respect to main and side lobe characteristics.
- (c) Explain 'Ideal filter characteristics are not realisable'.
- (d) Sketch the locations of all zeros of a linear phase FIR filter if the zeros are at $0.5 \, e^{j \pi/3}$ and 0.2.
- (a) The desired response of a low pass filter is –

15

$$H_Q(e^{jw}) = e^{-j3w}$$
 $|w| \le \frac{3\pi}{4}$
= 0 otherwise

(b) Explain the characteristics of different window functions.

3. (a) Prove that $S = \frac{2}{T} \left[\frac{1-z^{-1}}{1+z^{-1}} \right]$ and $w = 2 \tan^{-1} (\Omega T / 2)$ in Bilinear transformation. 15

Also explain mapping between s-plane and z-plane.

(b) Write a short note on the intutive method of IIR filter design.

Design a Butterworth filter using impulse invariance and Bilinear transformation 15 method for the following specifications. Assume T = 1 sec.

$$0.8 \le \left| H\left(e^{jw}\right) \right| \le 1$$
 for $0 \le \left| w \right| \le 0.2 \pi$
 $\left| H\left(e^{jw}\right) \right| \le 0.2$ for $0.6 \pi \le \left| w \right| \le \pi$

(b) Prove that zeros in linear phase FIR filter occur at reciprocal location.

€on. 7751-GS-4213-13.

2

5. (a) Determine the coefficient of a linear phase FIR filter of length M ≠ 15 having 15 symmetric unit impulse reponse and frequency satisfying the following condition –

$$H_{v}\left(\frac{2\pi k}{15}\right) = \begin{cases} 1 & k = 0, 1, 2, 3\\ 0.4 & k = 4\\ 0 & k = 5, 6, 7 \end{cases}$$

(b) Write a short note on Gibbs phenomenon.

5

6. (a) Explain digital filter design technique using Kaiser window.

10 10

(b) Explain the impulse invariance technique of designing IIR filters.

7. Write short notes on (any two):—

20

- (a) Analog frequency transformation
- (b) Frequency warping effect on Bilineaar transformation
- (c) Limit cycle oscillation due to quantisation.

134: 1ST HALF-13 (r)-JP

Con. 9206-13. GS-4633 (OLD COURSE) (3 Hours) Total Marks: 100 Question No. 1 is compulsory. Attempt any four questions out of remaining six questions. Assume suitable data if required but justify the same. 1. Answer the following questions (any four):— **20** (a) Define random variables and differentiate between discrete and continuous random variables. (b) Show that entropy is maximum when all the messages are equiprobable. (c) Differentiate between offset and non-offset QPSK (d) Show that duobinary signaling suffers from error propogation while precoded duobinary signaling does not. (e) What is matched filter? How it differs from optimum filter. A discrete memoryless channel has six symbol as shown with probabilities: 10 Message M_3 **M**, Probability $0.25 \quad 0.2$ $0.12 \quad 0.08$ 0.30.05Find the codewords, average no. of bits per message, code efficiency, redundancy and variance using Huffman coding. (b) For a (7, 4) linear block code (hamming code):— 10 Design Generator Matrix (ii) Find the code vectors for the message:— 0011 1010 Write the Parity check matrix. Detect and correct the error of any in the following received code word: 0111100 0001001 (a) A convolutional encoder has following impulse response **12** $G_1 = \{1, 1, 0\}, G_2 = \{1, 1, 1\}, G_3 = \{1, 0, 1\}$ (i) Sketch the encoder Find the code word for the message 11001 Draw the code tree, state diagram and trallis diagram for the above codeword. Differentiate between:— 8 Source coding and channel coding Systematic and non-sysmatic cyclic code.

		•	
Co	n. 9	206-GS-4633-13. 2	
4.	(a)	Draw the block diagram of BPSK modulator and demodulator and describe the following:—	10
		(i) Distance between two transmitted symbol and effect of noise	
		(ii) Power spectral density and hence bandwidth for BPSK.	
	(b)	Differentiate between:—	10
		(i) MPSK and MFSK	
		(ii) Duobinary encoding and modified duobinary encoding.	
5.	(a)	Why MSK is called shaped QPSK? Justify with relevant waveform.	10
	(b)	Prove that for the 16-ary QASK digital modulation techniques, the Euclidian distance is given by –	10
		$d = 2\sqrt{0.4 \text{ Eb}}$	
6.	(a)	Draw the block diagram of DS-SSS transmitter and receiver. Obtain the expression for the signal at the output of each block and show that the original sequence can be recovered at the receiver output.	10
	(b)	What are Pseudo-noise sequence in spread spectrum technology? Why they are used in spred spectrum modulation? Draw a neat diagram to generate a P-N sequence (assume any No.)	10
7.	Wri	te short notes on the following (any four):—	20
		(a) ISI and Eye diagram	
		(b) Tapped-delay line equalizer	

(c) Nyquist criteria for distributionles baseband signal

(e) Lempel ziv coding with suitable example.

(d) Central limit theorem