(OLD COURSE)

QP Code: MV-17880

(3 Hours)

[Total Marks: 100

- Question No. 1 is compulsory. N.B.:
 - Attempt any four out of remaining six questions.
 - Make suitable assumptions if required and justify the same.
 - A figure to right indicates the full marks
- (a) Find L $\{t e^{2t} \sin 3t\}$

(b) Use adjoint method to find the inverse of

- (c) Find P, if $f(z) = r^2 \cos 2\theta + ir^2 \sin p\theta$ is analytic

(d) Find Fourier Series for f(x) = |x| in (-1, 1)

(a) Show that $u = \cos x \cosh y$ is harmonic function. Find its harmonic conjugate and corresponding analytic function.

- (b) Show that the set of functions $\sin(2n+1)x$; $n=0,1,2,\ldots$ is orthogonal over $[0, \frac{\pi}{2}]$. Hence construct orthonormal set of functions
- (c) Show that every hermitian matrix can be uniquely expressed as P + iQ where P is real symmetric & Q is real skew - symmetric matrix.

(a) Find the Laplace transform of each of the following:-

(i) $\frac{e^{-t} \sin 2t}{t}$ (ii) $te^{3t} \cosh 2t \sinh \cos 3t$.

(b) Find half range sine series for the function

$$f(x) = x \qquad 0 \le x \le \frac{\pi}{2}$$

$$= \pi - x$$

$$\frac{\pi}{2} \le x \le \pi$$

(c) Find non-singular matrices P & Q such that PAQ is normal form, Hence find the rank of matrix A. Where

$$A = \begin{bmatrix} 1 & 3 & 2 & 5 \\ 6 & 12 & 14 & 17 \\ 3 & 2 & 1 & 5 \end{bmatrix}$$

QP Code: MV-17880

- 2 -

4. (a) Investigate for what values of λ & u the equations

$$x + 2y + 3z = 4$$

$$x + 3y + 4z = 5$$

$$x + 3y + \lambda z = \mu$$

have (i) no solution, (ii) a unique solution, (iii) an infinite no. of solution.

(b) Find inverse laplace transform of the following.

(i)
$$\frac{e^4 e^{-3s}}{(s+4)^{5/2}}$$
 (ii) $\frac{s}{(s^2+4s+5)}$

- (c) Expand the fourier series for the function $f(x) = x^2 x$ in $(0, 2\pi)$
- 5. (a) Using convolution theorem, find the inverse laplace tranform of

$$\overline{\left(s^2+a^2\right)\left(s^2+b^2\right)}$$

- (b) Find analytic function whose imaginary part is given as $v = tan^{-1} \left(\frac{y}{x} \right)$ 6
- (c) Find fourier series for the function

$$f(x) = \begin{cases} x & 0 \le x \le \pi \\ (2\pi - x) & \pi \le x \le 2\pi \end{cases}$$

- 6. (a) Using Laplace transform, Solve the following differential equation $(D\hat{\mathbf{D}} 3D + 2) \otimes = 4 e^{2t}$ with y(0) = 3 y'(0) = 5
 - (b) Find the fourier series for the function

$$\mathbf{f}(\mathbf{x}) = \begin{cases} \pi \mathbf{x} & 0 < \mathbf{x} < 1 \\ 0 & 1 < \mathbf{x} < 2 \end{cases}$$

(c) Determine 1, m, n & find A⁻¹ if A is orthogonal

$$A = \begin{bmatrix} c & 2m & n \\ 1 & m & -n \\ 1 & -m & n \end{bmatrix}$$

7. (a) Evaluate the following integral by Laplace tranform

$$\int_{0}^{\infty} e^{-2t} \sin^2 3t \, dt$$

(b) Using Residue theom, evaluate

$$\int_{0}^{2\pi} \frac{d\theta}{5 - 3 \cos \theta}$$

TURN OVER

QP Code: MV-17880

- 3 -

(c) Reduce the following matrix to normal form & find it's rank

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 6 & 2 & 7 & 3 \\ A = \begin{vmatrix} 4 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{vmatrix}$$

6