(OLD COURSE)

QP Code: 4596

(3 Hours)

[Total Marks: 100

N.B. (1) Question no. 1 is compulsory.

- (2) Attempt any four questions from remaining six questions
- (3) Figures to the right indicate full marks.
- 1. (a) Find A^{-1} where

 $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 1 \end{bmatrix}$ Also verify that A(adj A) = |A|.I

- (b) Find L{ $te^{-4t} \sin 3t$ }
- (c) Find the Fourier series of $f(x) = 1-x^2$ on the interval (-1, 1)
- (d) Find z-transform of $f(x) = \frac{\alpha^k}{k}$, $k \ge 1$
- 2. (a) Find L [sinh⁵ t]
 - (b) Find the Fourier series for

$$f(x) = \begin{cases} -\pi & -\pi \le x < 0 \\ x & 0 \le x \le \pi \end{cases}$$

(c) Find the rank of

$$A = \begin{bmatrix} 2 & 1 & 3 & 4 \\ 3 & -1 & 2 & 2 \\ 4 & 1 & 0 & -1 \\ 9 & 1 & 5 & 6 \end{bmatrix}$$

by reducing it to normal form.

3. (a) Find
$$L^{-1}\left\{\frac{\left(s^2+2s+3\right)}{\left(3^2+2s+2\right)\left(s^2+2s+5\right)}\right\}$$

by convolution theroem.

(b) Prove that every Hermitian matrix A can be written as P+ iQ where P is real symmetric and Q is real skew-symmetric matrix

[TURN OVER

RJ-Con. 8875-15.

(c) Find half rage cosine series for $f(x) = (x-1)^2$ where 0 < x < 1 8

- Hence find $\sum_{n=1}^{\infty} \frac{1}{n^2}$ and $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$
- 4. (a) Solve $\frac{d^2y}{dt^2} + \frac{2dy}{dt} + y = 3te^{-t}$

Given y(0)=4, y'(0)=2 using Laplaces transformation

(b) Prove that $f_1(x) = 1$, $f_2(x) = x$, $f_3(x) = \left(\frac{3x^2 - 1}{2}\right)$

are arthogonal over (-1, 1)

- (c) Find λ and μ such that the equations $x + 2y + \lambda z = 1$, $x + 2\lambda y + z = \mu$, $\lambda x + 2y + z = 1/8$ have (i) no solution (ii) only one solution (iii) infinite many solutions
- 5. (a) Find $L^{-1} \left\{ \tan^{-1} \frac{2}{s^2} \right\}$
 - (b) Prove that $A = \frac{1}{3} \begin{bmatrix} -2 & 1 & 2 \\ 2 & 2 & 1 \\ 1 & -2 & 2 \end{bmatrix}$ is orthogonal and hence find A^{-1}
 - (c) Find the Fourier Sine Transform of f(x) if

f(x) = 0 0 < x < a $= x a \le x \le b$ = 0 x > b

- . (a) Prove that if A is a skew-symmetric matrix of odd order then A is singular
 - (b) Obtain complex form of Fourier series of $f(x) = e^{ax}$ in $(-\pi, \pi)$, where a is not an integer. 6
 - (c) Find inverse z-transform of $F(z) = \frac{1}{(z-3)(z-2)}$ if RCC is (i) |z| < 2 (ii) 2 < |z| < 3 (iii) |z| > 3

TURN OVER

QP Code: 4596

7. (a) Find
$$L^{-1}\left\{\frac{e^{4-3s}}{(s+4)^{5/2}}\right\}$$

(b) If $f(k) = 4^k U(k)$ and $g(k) = 5^k U(k)$ then find the z - transform of $f(k) * g(k)$
(c) Obtain Fourier series for

$$f(x) = x + \frac{\pi}{2} \qquad -\pi < x < 0$$
$$= \frac{\pi}{2} - x \qquad 0 < x < \pi$$

Hence deduce that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$

Also deduce that $\frac{\pi^4}{96} = \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots$

SE Sem 10 (and) Comp. Engg. DL DA 01/06/15

(OLD COURSE) Q.P. Code: 4605

		(3 Hours) [Total Marks: 100			
N.	В.	(1) Question No. 1 is compulsory.			
		(2) Attempt any four out of remaining Q.2 to Q.7.\			
		(3) Assume suitable data if required.			
			,		
	(a)	Subtract $(10)_{10} - (33)_{10}$ using 2's complement number system.			
		Convert JK FlipFlop to T FlipFlop.			
į	(c)	What are error detecting and error correcting codes.	5		
	(d)		5		
	` /		•		
2.	(a)) Simplify the logic function using k-map and implement it using AND-OR			
- •	(**)	gates.			
		$F(A, B, C, D) = \Sigma m (0, 1, 2, 4, 8, 9, 12) + d (11,15)$			
	(b)		10		
	(~)	1			
3	(a)	Explain any one shift register using Jk Flip Flops	10		
	- •	Design full adder using AND-OR gates.	10		
	(0)	1001611 1011 00001 00001			
1	(a)) Implement the following function using single 8:1 multiplexers.			
Т•	(4)	$f(A,B,C,D) = \Sigma m(0, 1, 4, 5, 9) + d(11)$			
	(L)	Perform without conversion.	10		
,	(0)	(i) $(44B)_{H} - (1AD)_{H}$ (ii) $(77)_{8} * (32)_{8}$			
	•	(1) (1)			
5	(a)	Reduce using Boolean Algebra	10		
J.	(4)				
		(i) $AB + \overline{AC} + A\overline{B}C(AB + C)$ (ii) $(A + \overline{B} + AB)(A + \overline{B})(\overline{AB})$	4 0		
	(b)	Design full subtracter using universal gates NAND.	10		
			40		
6.	(a)	Using Quine Mc-cluskey method, simplify the following function and	10		
		design using NOR gates.			
		$F(A,B,C,D) = \pi M(0,1,4,5,10,11,12,14)$			
	(b)	Explain the transfer characteristics of TTL NAND gate.	10		
-	** 7		2 0		
7.	Wr	rite short notes on :	20		
		(a) Arithmatic Logic Uit			
		(b) Universal gates (c) Applications of Flip Flore			
		(c) Applications of Flip Flops (d) Weighted codes			
		(d) Weighted codes.			

S. E. Seron 3 (Old) (Examp) . 5/6/ DSGT (OLD COURSE) Q.P. Code: 4607 5/6/15

(3 Hours)

[Total Marks: 100

N.B.: (1) Solve any four questions out of remaining five questions.

- (2) All questions carry equal marks as indicated by figures to the right.
- (3) Assume appropriate data whenever required. State all assumptions clearly.

Q.1 a) Use mathematical induction to show that

(05M)

1+2+3...+n=n (n+1)/2 for all natural number values of n.

b) Find the generating function for the following finite sequences

(05M)

i) 2,2,2,2,2,2

ii) 1,1,1,1,1,1

c) a)
$$A \oplus B = (A-B) \cup (B-A) b) (AUB) = A^c \cap B^c$$

(05M)

d) How many vertices are necessary to construct a graph with exactly 6 edges in which each vertex is of degree 2. (05M)

Q.2 a) Find if the following two graphs are isomorphic.

(04 M)

b) Let the functions f,g, and n defined as follows:

(M80)

 $f:R \rightarrow R$, f(x)=2x+3

g: $R \rightarrow R$, g(x)=3x+4

h: $R \rightarrow R$, h(x)=4x

Find gof, fog, ich, , gofoh

c) Consider set $G = \{1,2,3,4,5,6\}$ under multiplication module 7

(08 M)

- Find the multiplication table of the above.
- Find the inverse Of 2,3, and 5,6
- Prove that it is a cyclic group
- Find the orders and subgroups generated by {3,4} and {2,3} !V.

Q.3 a) How many friends must you have to guarantee that at least five of them will have birthdays in the same month. (04 M)

b) Show that the (3,6) encoding function e: $B^3 \rightarrow B^6$ defined by

(M 80)

e(000)=0000000 e(001)=000110 e(010)=010010 e(011)=010100 e(100)=100101 e(101)=100011

e(110)=110111

e(111)=110001 is a group code.

c) Let R be a relation on set $S = \{a,b,c,d,e\}$, given as $R = \{(a,a),(a,d),(b,b),(c,d),(c,e),(d,a),(e,b),(e,e)\}$ Find transitive closure using Warshall's Algorithm.

(M 8C)

- Q.4 a) Draw Hasse Diagram for the poset A = {1, 2, 3, 6, 12, 24, 36, 72} under the divisibility relation. Is this poset a lattice? Justify (04 M)
 - b) Consider Z together with binary operations of @ and @ which are defined by (08 M)

$$x \oplus y = x + y - 1$$

$$x G y = x + y - xy$$

then prove that (Z, Θ , O) is a ring.

c) Solve
$$a_1 - a_{r-1} - 6a_r = -30$$
 given $a_0 = 20$, $a_1 = -5$

(08 M)

- Q.5 a) Let R be the relation on the set of integers defined by x R y if x-y is divisible by 4. Show that R is an equivalence relation. (04 M)
 - b) i) Determine Hamiltonian Cycle and path in graph shown in (a)
 - ii) Determine Euler Cycle and path in graph shown in (b)

c) A survey of 500 television watchers produced the following information:

285 watch football games, 195 watch hockey games, 115 watch basket ball games, 45 watch football and basketball games, 70 watch football and hockey games, 50 watch basketball and hockey games. 50 do not watch any three kinds of games. Find:

(08 M)

- i) How many in the survey watch all 3 kinds of games?
- ii) How many watch exactly one of the sports languages?
- iii) Draw Venn Diagram showing results of the survey.

- 6. (a) Show that if every element in a group is its own inverse, then the group must be abelian. (04 M)
 - (b) Let H = (08 M)

	1	0	0
	0	1	1
	1	1.	1
•	1	0	0
	0	1	. 0
	0	0	1

Be a parity check matrix. Determine the group code $e_H: B^3 \rightarrow B^6$

(08 M)

- (c) Solve the recurrence relation $a_r a_{r-1} a_{r-2} = -30$ given $a_0 = 20$, $a_1 = -5$
- (08 M)
- 7. (a) If f: A→ B be both one-to-one and onto then prove that f⁻¹: B → A is also both one- (04 M) to-one and onto
 - (b) Define the following with examples

(08 M)

- (i) Subgroup
- (ii) Distributive Lattice
- (iii) Quantities
- (iv) Reflexive closure
- (C) If addition and multiplication modulo is defined on set of integres $R = \{0,2,4,6,8\}$ then (08 M) show that the system is an integral domain.

SE Cold) COA Sem III (Comp.) (OLD COURSE)

11/6/2015

QP Code: 4611

(3 Hours) Total Marks: 100 N.B.: (1) Question No. 1 is compulsory. (2) Attempt any four questions out of the remaining six questions. (3) Assume suitable data wherever required. (4) Figures to the right indicate full marks. Explain Booth's Algorithm with example. 10 Explain the Von Newmann architecture with the help of diagram. 10 Explain the interleaved memory in detail. 10 Explain different mapping technique of Cache Memory. 10 Compare and explain static and dynamic data flow computers. 10 Explain SPARC processor in detail. 10 Explain with neat diagram systolic processor. 10 Explain design of control unit with respect to softwired and hardwired (b) 10 approach. 10 Explain IEEE 754 formats. Explain with example. 10 Explain different instruction formats with suitable example. 10 List and explain the characteristics of memory. 10 List and explain various page replacement techniques. 20 Solve any two. Comparison of RISC and CISC (b) RAID Difference between SRAM & DRAM (d)Wave front Array.

RJ-Con.: 12535-15.