(OLD COURSE)

Q.P. Code: 4707

(3 Hours)

[Total Marks: 100

N.B.: (1) Question No. 1 is compulsory.

- (2) Attempt any four questions out of remaining six questions.
- 1 (a) Show that every square matrix A can be uniquely expressed as P+iQ, where 5 P and Q are Hermitian matrices.
 - (b) Evaluate $\int_{0}^{1+i} (x^2 iy) dz$, along the path $y = x^2$.
 - (c) Evaluate $\int_{0}^{\infty} \frac{\cos 6t \cos 4t}{t} dt$
 - (d) Show that $\sin x$, $\sin 3x$, $\sin 5x$,, form a set of orthogonal elements over $(0, \pi/2)$.
- 2. (a) Reducing the following matrix to normal form and hence find its rank 6

$$A = \begin{bmatrix} 1 & 2 & -2 & 3 \\ 2 & 5 & -4 & 6 \\ -1 & -3 & 2 & -2 \\ 2 & 4 & -1 & 6 \end{bmatrix}$$

- (b) Obtain the Fourier expansion of $f(x) = \left(\frac{\pi x}{2}\right)^2$ in the interval $0 \le x \le 2\pi$ and $f(x+2\pi) = f(x)$.
- (c) Find the Laplace Transform of the following:

i)
$$\frac{\cos 2t \sin t}{e^t}$$
 (ii) $t \int_{0}^{t} e^{-4u} \sin 3u du$

Q.P. Code: 4707

2

3. (a) Obtain the expansion of $f(x) = x(\pi - x)$, $0 < x < \pi$ as a half range cosine series. Hence show that

(i)
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

(ii)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}$$

(b) Test for consistency and solve:

$$5x_1 + 3x_2 + 7x_3 = 4$$

$$3x_1 + 26x_2 + 2x_3 = 9$$

$$7x_1 + 2x_2 + 10x_3 = 5$$

(i)
$$\tan^{-1} \left(\frac{a}{s}\right)$$

(c)

4. (a) Find analytic function
$$f(z) = u+iv$$
, where $u+v=e^x(\cos y+\sin y)$.

6

Find fourier series for $f(x) = \sqrt{1 - \cos x}$, in (0, 2π) and hence deduce that

.

$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1} = \frac{1}{2}$$

6

$$\frac{s}{(s^2+a^2)(s^2+b^2)}$$

(b) Evaluate $\int_{c}^{c} \frac{e^{z}}{z^{2}+1} dz$ over the circle |z|=2.

6

(c) Find all possible Laurent's expansions of
$$f(z) = \frac{z^2 - 1}{z^2 + 5z + 6}$$
, around $z = 1$.

Q.P. Code: 4707

3

- 6. (a) Using Residue theorem evaluate $\int_{c}^{c} \frac{z^2}{(z-1)^2(z-2)} dz$, where C is |z| = 2.5
 - (b) Find the Fourier expansion of

 $\int 0, \quad -2 < x < -1$

$$f(x) = \begin{cases} 0, & -2 < x < -1 \\ 1+x, & -1 < x < 0 \\ 1-x, & 0 < x < 1 \\ 0, & 1 < x < 2 \end{cases}$$

- (c) Solve $(D^3-2D^2+5D)y=0$ with y(0)=0, y'(0)=0 and y''(0)=1.
- 7. (a) For the following matrix A, find non-singular matrices P and Q such that PAQ is in normal form. Also find rank of A.

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & -1 \end{bmatrix}$$

- (b) Find the Laplace Transform of $f(t) = |\sinh t|, t \ge 0$
- (c) Find the real part of an analytic function whose imaginary part is,

$$v = x^2 + \frac{x}{x^2 + y^2} - y^2$$