QP Code: 31256

(3 hours)

Total Marks: 80

1. Question No. 1 is compulsory. 2. Attempt any three questions out of remaining. 3. Assume suitable data if necessary and justify the assumptions. 4. Figures to the right indicate full marks. For the given causal sequences $x(n) = \{8, 9, 2, 3\}$ and $h(n) = \{4, 3, 6\}$ find the Q1 cross correlation. State the condition for stability of LTI system and determine for the given discrete time system $h(n) = (0.3)^n u(n) + 5\delta(n)$, is stable or not. Differentiate IIR and FIR systems. 05 For the causal signal $x(n) = \{2, 2, 4, 4\}$ compute four point DFT using DIT-05 FFT. Check whether following system y(n) = 2x(n-1) + x(2n) is: Q2 10 2. Causal or non-causal Linear or non Linear 4. Static of Dynamic 3. Time variant or Time invariant Draw the radix 2 DIT flow graph and find the DFF of the sequence $x(n) = \{10,$ 10 11, 8, 5) using FFT flow graph. A For $x(n) = \{234513\}$, plot the following Discrete Time signals: 10 Q3 1.) x(n-1)4.) x(-n)u(n)Determine whether or not the following signals are periodic. 10 If periodic specify its fundamental period. 1. $x(n) = \sin(0.25\pi n + 0.4)$ 2. $x(n) = \cos(0.5n\pi) + \sin(0.25n\pi)$ For the FIReligital filter with impulse response given by 10 Q4 $h(n) = 2\delta(n) + 3\delta(n-1) + 4\delta(n-3) + \delta(n-4)$ sketch the magnitude response of the filter B State any five DFT properties.

[TURN OVER]

10

FW-Con. 9945-16.

QP Code: 31256

__ 2___

- Q5 A Find circular convolution of $x_1(n) = \{5, 6, 2, 1\}$ and $x_2(n) = \{3, 2, 1, 4\}$ by computing DFT of $x_1(n)$ and $x_2(n)$.
 - B Compute Linear Convolution of causal sequence $x(n) = \{7, 6, 4, 5, 2, 4, 5, 2, 3\}$ 10 and $h(n)=\{1\ 2\ 3\ 1\}$ using fast overlap save method.
- Q6 A Write a detailed note on Carls' Correlation Coefficient Algorithm.
 - B Write a detailed note on DSP Processor and Architecture.

10

19

MIS BOY PORTON

Artificial Intelligence.

QP Code: 31334

(3 Hours)

[Total Marks: 80]

- N. B.: (1) Each question carry 20 marks.
 - (2) Question 1 is compulsory.
 - (3) Attempt any three (3) from the remaining questions.
 - (4) Assume suitable data wherever required.
- 1. Attempt any four (4) questions from the following:

20

- (a) Draw and explain architecture of Expert System.
- (b) Explain Hill-climbing algorithm with an example.
- (c) Give PEAS description for a Robot Soccer player. Characterize its environment.
- (d) Explain Turing test designed for satisfactory operational definition of intelligence.
- (e) Prove that A* is admissible if it uses a monotone heuristic.
- (f) Compare and Contrast problem solving agent and planning agent.
- 2. (a) Explain decision tree learning with an example. What are decision rules? 10 How to use it for classifying new samples?
 - (b) Write first order logic statements for following statements:

10

- (i) If a perfect square is divisible by a prime p then it is also divisible by square of p.
- (ii) Every perfect square is divisible by some prime.
- (iii) Alice does not like Chemistry and History.
- (iv) If it is Saturday and warm, then Sam is in the park.
- (v) Anything anyone eats and is not killed by is food.
- 3. (a) Design a planning agent for a Blocks World problem. Assume suitable 10 initial state and final state for the problem.
 - (b) Find the probabilistic inference by enumeration of entries in a full joint 10 distribution table shown in figure 1.
 - (i) No cavity when toothache is there
 - (ii) p (Cavity! toothache or catch)

	toothache		¬toothache	
	catch	¬catch	catch	¬catch
cavity	.108	.012	.072	.008
¬cavity	.016	.064	.144	.576

Figure 1.

[TURN OVER

- 4. (a) Compare following informed searching algorithms based on performance measure with justification: Complete, Optimal, Time complexity and space complexity.
 - a) Greedy best first
 - b) A*
 - c) Recursive best-first (RBFS)
 - (b) Apply alpha-Beta pruning on example given in Figure 2 considering first 10

Figure 2.

- 5. (a) Explain how genetic algorithm can be used to solve a problem by taking a suitable example.
 - (b) Consider the graph given in Figure 3 below. Assume that the initial state is A and the goal state is G Find a path from the initial state to the goal state using DFS. Also report the solution cost

Figure 3.

- 6. (a) Explain the steps involved in converting the propositional logic 10 statement into CNF with a suitable example
 - (b) What are the basic building blocks of Learning Agent? Explain each of them with a neat block diagram.