B-E (Jin) Ext ond Discrete Time At Pricerry

QP Code: 29718

Time: 3 hrs

Marks: 100

NOTE.

- 1) Question No. I is compulsory.
- 2) Attempt any four questions from the remaining Six questions
- 3) Assumptions made should be clearly stated.
- 4) Assume any suitable data wherever required but justify the same.

Q1

20

- a) Find y(n) using frequency domain analysis if $x(n) = \{1, 2, -1\}$ and $h(n) = \{3, 2\}$
- b) Identify the following filters based on their passband by sketching their frequency response $h(n) = \{1, -0.5\}$
- c) Obtain a digital filter transfer function $H(\omega)$ by applying Impulse invariance transformation on the analog TF

$$H_a(s) = \frac{s+2}{s^2+4s+3}$$
 Use $f_s = 1Ksa/sec$

d) Find convolution of $x_1(n) = \{1, 2, 3, 4\}$ with $x_2(n) = \{5, 6, 7, 8\}$ when both the signals are periodic

Q2

- a) Determine 8 point FFT for a continuous time signal using DIT FFT algorithm $x[n] = \{1,2,1,2,02,1,2\}$
- b) $x(n) = \{1 + 5j, 2 + 6j, 3 + 7j, 4 + 8j\}$.
 - i. Find DFT X(K)
 - ii. Using the results above and not otherwise find DFT of $x_1(n) = \{1,2,3,4\}$

Q3

a) Perform circular convolution and circular crosscorrelation of

$$x_1(n) = \cos\frac{2\pi n}{N} \quad \text{with} \quad x_2(n) = \sin\frac{2\pi n}{N} \quad 0 \le n \le N-1$$

b) One of the zeros of an anti symmetric FIR filter is at 0.5∠60°. Show the locations of other zeros. What is the minimum order of this filter? Also find the transfer function and impulse response of this filter 10

Q4

- a) Consider the sequence $x[n] = 4\delta(n) + 3\delta(n-1) + 2\delta(n-2) + \delta(n-3)$. Let X(K) be the six point DFT of x(n). Find the sequence w(n) that has six point DFT W(K) such that $W(K) = Re\{X(K)\}$
- b) Determine parallel and cascade form realization of

10

$$H(Z) = 0.7 \frac{1 - 0.36z^{-2}}{(1 + 0.1z^{-1} - 0.72z^{-2})}$$

Q5

a) The desired response of a low-pass filter is

$$-\frac{3\pi}{4} \leq \omega \leq \frac{3\pi}{4}$$

$$=0 \qquad \frac{3n}{4} \le |\omega| \le \pi$$

Determine the frequency response $H(e^{j\omega})$ for M=7 using a Hamming window

[TURN OVER

QP Code: 29718

b) Find poles of a low pass Butterworth filter for N=3. Sketch location of pole plane. Also find normalized transfer function.	es in s 10
Q 6	
a) Explain the need of a low pass filter with a decimator and mathematically prove that	40
$\omega_{\rm y} = \omega_{\rm x} D$	10
b) Explain Goertzel's Algorithm	10
Q7 Write notes on	20
a) Interpolation process	
b) Chirp Z Algorithm	
c) Adaptive echo cancellation	
d) Frequency sampling realization of FIR filters	

QP Code: 29920

		(3 Hours)	[Total Marks: 100
ľ	N.B. :	 Question No.1 is compulsory. Answer any four out of remaining six questions. Illustrate answers with sketches. Use of smith chart is compulsory. 	
	• •	Explain amplification process in TWT. Differentiate between waveguides and transmission lines.	55
	` '	With a neat diagram explain the working of a PIN diode. List out different characteristics of microwaves.	55
2.	(a)	Mention different types of electron flow. Explain Brillouin flan expression for Brillouin magnetic field Br.	low and derive 10
	(b)	Describe operation of O-type and M-type devices in brief.	10
3.	• •	Describe the mechanism of velocity modulation in a two cand hence obtain an expression for the bunched beam current out condition for maximum power output.	
	(b)	Explain the procedure of measurement of dielectric constant frequency.	at microwave 10
\ .	(b)	What are the steps to solve a double stub matching problem. Using the multiple reflection viewpoint explain the princip of a quartor wave transformer.	
	(a) (b)	Describe different modes of oscillation of Gunn Diode. Explain the working of a negative resistance parametric am	plifier. 10
	• •	With neat diagrams explain the working of a Guun Diode. Explain the working of magic Tee. Design a circulator using	g Magic Tees. 10
		te short notes on the following:	
		(a) Hybrid junctions	5
	*****	(b) Power dividers (c) Microsyck filters	5
		(c) Microwave filters(d) Compare klystron with magnetron.	5
		(d) Compare klystron with magnetron.	5