Sem VII CBGS Electronics

QP Code: 728800

(3 Hours)

[Total Marks: 80

N.B.: (1) Question no. 1 is compulsory

- (2) Solve any three from the remaining five questions
- (3) Assume suitable data if necessary.
- (4) Figures to the right indicate full marks.
- 1. Attempt any four of the following.

20

- (a) Differentiate between an artificial neural network and a digital computer.
- (b) What are excitatory and inhibitory weighted interconnections?
- (c) Differentiate between supervised and unsupervised learning.
- (d) What is a membership function?
- (e) Explain the delta rule of learning with an example.
- 2. (a) With the help of a flow chart, explain Single Continuous Perceptron
 Training Algorithm.
 - (b) Implement the perceptron learning rule for the following set of input training vectors:

 $X_1 = [1 -1 \ 0 \ 1]^t$; $X_2 = [0 \ 1.5 -0.5 \ -1]^t$; $X_3 = [-1 \ 1 \ 0.5 \ -1]^t$ The learning constant, c = 0.1 and the desired responses for X_1 , X_2 and X_3 are $d_1 = -1$, $d_2 = -1$ and $d_3 = 1$ respectively. Assume the initial weight vector to be $W^1 = [1 \ -1 \ 0 \ 0.5]^t$ and obtain the updated weight vector after one epoch.

- 3. (a) With the help of a flow chart, explain error back propagation algorithm. 10
 - (b) Give the network architecture of an Adaline network and discuss its training procedure.
- 4. (a) What are Discrete Hopfield Networks? Explain how patterns are stored in them.
 - (b) With a neat architecture, explain the training algorithm of Kohonen selforganizing feature maps.
- 5. (a) Two fuzzy sets are defined as:

$$\underline{A} = \left\{ \frac{1}{2} + \frac{0.3}{4} + \frac{0.5}{6} + \frac{0.2}{8} \right\}$$

$$\mathbf{E} = \left\{ \frac{0.5}{2} + \frac{0.4}{4} + \frac{0.1}{6} + \frac{1}{8} \right\}$$

[TURN OVER]

QP Code: 728800

2

Perform union, intersection, difference and complement over these fuzzy sets.

(b) Explain any four defuzzification methods with suitable diagrams.

10

Write short notes on any four:

(a) Learning factors

(b) Perceptron convergence theorem

(c) Adaptive Resonance Theory

(d) Hebbian learning

(e) Adaptive neuro-fuzzy infonnation systems

Q. P. Code: 11130

Time: 3 Hours.

Max, Marks: 80

N.B	1)	Question No. 1 is compulsory.	6 10 B
	2)	Solve any three questions from the remaining questions:	17-66 C
	3)	Assume suitable data if necessary.	
1.	Solve a	ny four of the following. (5 marks each)	(20)
	(a)	What is the significance of High K and Low K dielectric in EMOS process?	
	(b)	Explain the difference between contact, proximity and projection printing?	\$ 50 S
	(c)	Describe the SIMOX method for fabrication of SOI.	C. C. C.
	(d)	Enlist the steps for obtaining Silicon from Sand.	5.00
	(e)	Explain the difference between Positive Photo resist and Negative Photo Resist.	Last.
2.	(a)	Explain Float zone method for Silicon crystal growth. What are its advantages?	(10)
	(b)	Classify the types of Thin Film Deposition methods	(04)
	(c)	Explain the LPCVD process with neat diagram. Also enlist its advantages	(06)
3.	(a)	Enlist the steps for fabrication of CMOS inverter using twin tub process. Draw vertical cross-sectional views starting from the substrate till the gate and source and drain formation in the fabrication of CMOS inverter using twin tub process.	(10)
	(b)	Draw layout of CMOS NOR gate along with its circuit diagram.	(05)
	(c)	Explain buried and butting contact.	(05)
			(00)
4.	(a)	Explain Steps of Lithography with suitable diagrams. Also classify Lithography techniques.	(10)
	(b)	46 49 48 48 18 18 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	(10)
5.00	(a)	Describe with the help of a neat diagram Hayness-Schokley experiment for measurement of Drift Mobility of n-type semiconductor.	(10)
	(b)	Explain Deal Groove model for Oxidation process. Explain where dry and wet oxidation processes are used during MOSFET fabrication process.	(10)
6. 6.	Write sh	ort notes on any four of the following. (5 marks each)	(20)
10 6 CO		FINETS Automatic Test equipment	
3.0	CALAG	Hall effect and resistivity measurement.	
56.00		BICMOS	
44	0 0	Fabrication of carbon nanotube transistor.	

B.E. Sem-VII (Electronics) CBSGS 15/01/2017 Embedded System Derign

Q.P.Code: 013691

(3 Hours)

[Total Marks: 80]

	2	 Question no. 1 is compulsory Solve any three from the remaining five questions. Assume suitable additional data if necessary. 		
	Q1	Answer the following questions.	(20)	
	b) c)	Typically list the various data types along-with memory size supported by a C compiler.		
	d)	Compare the serial communication protocols RS - 232C and RS - 485 protocols.		
((22 a)	Write a note on the interrupt structure of Cortex - M architecture.	(10)	
a) Exp lgori	plain the utilisation bound in task scheduling in light of Rate Monotonic Scheduling thm.	(10)	
((3) a)	What is a task and various states that a task can lie in for an embedded environment.	(10)	
b) Explain briefly the register structure of Cortex-M3 architecture along-with the function of various special registers.				
Q4 a) Compare the features of Cortex - A8 and Cortex - R4 architectures.				
b)Expl	ain the operation and significance of following MicroC/OS - II functions		
a	OSS	SemPend(); & OSSemPost(); b) OSMboxPost(); & OSMboxPend();	(10)	
Q	5) a)	Write a brief note on boundary scan architecture.	(10)	
b)	Exp	lain the various inter- process/task communication and synchronisation tools like nores, mutex, mailbox and pipe used by an RTOS environment.	(10)	
	6)	Write short notes on (Any two) (10 - 2)	(20)	
	b)	Problem of priority inversion and mechanism to prevent the same. MSP-430 architecture and its low power capability. Design metrics for a typical embedded system.	- DOW!	

BELETRXI II VD

1301// 1113/ D.E. (ELECTROPICS ENOU)(SENT VII) VLSI DESIDIN

(O2) Q.

Q. P. Code: 10831

(3 Hours)

(Total Marks: 100

N.B.:

- (1) Question No. 1 is Compulsory.
- (2) Attempt any Four out of remaining six questions.
- (3) Assume suitable data wherever necessary.
- 1. Answer any **FOUR**.

(20)

- (a) Explain velocity saturation effect in a long channel MOSFET. How does it affect the current in a short channel device?
- (b) "NMOS pass transistor cannot pass strong logic 1". Justify the statement.
- (c) Draw the schematic and stick diagram of 2 input NAND gate in CMOS technology.
- (d) Differentiate between the process of ion implantation and diffusion in fabrication of a MOS transistor.
- (e) Design a 2:1 MUX using transmission gate logic and write a verilog module for the circuit designed.
- Q.2. (a) MOS system that is characterized by $t_{OX} = 200 A^{\circ}$ and $N_A = 10^{15} / cm^3$. An n- type (10) poly gate is used with $N_{d,poly} = 2X10^{19} / cm^3$. The fixed oxide charge is approximated as $Q_{OX} = q (10^{10}) C / cm^2$ and is the dominant oxide charge term. Calculate the flat band voltage, the threshold voltage before a threshold ion implant and the value of the acceptor ion implant dose N_I needed to set V_{T0} to 0.7V.
 - (b) Explain the working principle and I-V characteristics of an n- channel enhancement (10) type MOSFET with the help of appropriate diagrams.
- Q.3. (a) Plot the voltage transfer characteristics of a depletion load NMOS inverter and (10) derive the expressions for critical voltage points. What is the impact of increase in K_R value on the characteristics?
 - (b) Implement the following Boolean function in CMOS logic: Y = (D + E + A)(B + C) (10)
 - Draw the optimized stick diagram of the logic gate using Euler path.
- Q.4. (a) An nMOS transistor is to be fabricated. Describe its fabrication steps giving the (10) mask sequence. Sketch the masking steps in cross-section view.
 - (b) Describe the hot electron and short channel effects in a MOSFET and explain how (10) they affect the device characteristics.
- Q.5. (a) Draw the schematic diagram, stick diagram and mask layout of a CMOS inverter (10) with $K_R=1$ using λ based design rules.
 - (b) Explain various sources for power dissipation in digital CMOS circuit. (10)
- Q.6. (a) Design a clocked SR latch using CMOS technology and write verilog code for the
 - (b) Compare both the scaling methods. Show analytically how power dissipation, (10) maximum operating frequency, current density and I_{dss} is affected in terms of scaling factors.
- Q.7. Write short notes on any two:

(20)

- (a) Buried and Butting contacts
- (b) MOS capacitance
- (c) CMOS latch up & its prevention