Enclosure to Item No. 4-20 27.5.2009

UNIVERSITY OF MUMBAI

Revised Syllabus for the Third Year Electronics & Telecommunication Engineering (Semester V & VI)

(With effect from the academic year 2009-2010)

Principal Sardar Patel Institute of Technology Bhavans Andheri Campus Munshi Nagar, Andheri (West). Mumbai - 400 058.

ya

<u>Third Year Engineering (Semester V & VI) (Revised) Course for Academic</u> <u>Year 2009-10.</u> <u>Electronics and Telecommunication Engineering.</u>

		No. (of Period	s per	Duration					
			week	-	of		N	la		
Sr.		(60	minutes	each)	Theory	rks				
No	Subjects	Lect	Practi-	Tuto	papers	Theory	Term-	Prac-	Oral	Total
		ure	cal	-rial	(Hours)		work	tical (3 Hrs.)		
1.	Random Signal Analysis	4	2		3	100	25	-	-	125
2.	Microprocessors & Microcontrollers - I	4	2	-	3	100	25	25	-	150
3.	RF Circuit Design	4	2	-	3	100	25	25	-	150
4.	Signals and System	4	2	-	3	100	25	-	25	150
5.	Principles of Control Systems	4	2	-	3	100	25	-	25	150
6.	Electronic hardware workshop	-	3	-	-	-	-	-	50	50
7.	Environment Studies	2	-	1*	2	50	25	-	-	75
	Total	22	1	1		550	150	5	100	850

Scheme for TE, Semester V

*Tutorial at classroom level

University of Mumbai				
CLASS: T.E. (Elect	ronics & Telecommunication	Semester	- V	
Engineering)				
SUBJECT: R	andom Signal Analysis			
Periods per week	Lecture	4		
(Each of 60 min.)	Practical	2		
	Tutorial	-		
		Hours	Marks	
Evaluation System	Theory Examination	3	100	
	Practical examination	-	-	
	Oral Examination	-	-	
	Term Work	-	25	
	Total		125	

Module	Contents	Hours
Objective	The objective of this course is to analyze the behavior of signals and random phenomena, with special emphasis on its applications to communication engineering, signals and linear systems.	-
1	Introduction to Probability: Classical and relative-frequency-based definitions of probability; sets, fields, sample space and events; axiomatic definition of probability; joint and conditional probabilities, independence, total probability; Bayes' Rule and applications. Random variables: Definition of random variable, Cumulative Distribution Function (CDF), Probability Mass Function (PMF), Probability, Density functions (PDF) and properties, some Special distributions: Uniform, Gaussian and Rayleigh distributions; Binomial, and Poisson Distributions; Mixed Random Variables.	6 hrs 6 hrs
2	Functions of one random variable: Functions of one random variable and their distribution and density functions, mean, variance and moments of a random variable, Chebyshev, Markov inequality, characteristic functions, moment theorem. Functions of two random variable: Bivariate distributions, joint distribution and density, properties, marginal statistics, independence, one function of two random variables. two functions of two random variables; joint moments, covariance and correlation- independent, uncorrelated and orthogonal random variables; joint characteristic functions, conditional distributions, conditional expected values.	6

3	Stochastic Convergence and limit theorems: Sequence of random variables, convergence everywhere, almost everywhere, MS,in probability, in distribution and comparison of convergence modes, strong law of large numbers (without proof); Central Limit Theorem (without proof) and its significance.	7hrs
4	Random processes: Discrete and continuous time random processes; probabilistic structure of a random process; mean, autocorrelation and autocovariance functions; stationarity- strict- sensestationary(SSS)andwide-sense stationary (WSS), ergodic processes: autocorrelation function of a WSS process and its properties, cross-correlation function.	7hrs
5	LTI Systems with stochastic inputs spectral representation of a real WSS process power spectral density and properties, cross- power spectral density and properties, auto- correlation function and power spectral density of a WSS random sequence; linear time-invariant system with a WSS process as an input: stationarity of the output, autocorrelation And power-spectral density of the output; examples of random processes: white noise process and white noise sequence; Gaussian process; Poisson process	7hrs
6	Markov Chains: Introduction, Homogeneous chain, stochastic matrix, Randomwalks, highertransition probabilities and the Chapman-Kolmogorov equation, classification of states.	7hrs

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Question number 1 will be compulsory and cover all modules.
- 4. Remaining questions will be mixed in nature. (e.g. Suppose Q.2 has part
- (a) from, module 3 then part (b) will be from any module other than module 3.)
- 5. In the question paper, weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Term work:

Term work shall consist of minimum five experiments & 3 tutorials and a written test. The distribution of marks for term work shall be as follows,

Laboratory work (Experiments and Journal)	,	· 15 marks
Laboratory work (Experiments and Journal)		. 13 Шагкэ.

Test (at least one)

: 10 marks.

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Practical list

- 1. Simulation of discrete random variable and estimation of its PMF & CDF
- 2. Study of uniform, exponential, Rayleigh and Gaussian density functions
- 3. To study relation between distribution and density functions.
- To calculate P(x₁≤X≤x₂), P(X≤x), P(X≥x), P(x₁≤X≤x₂), from distribution and or density function
- 5. Study of mixed random variable
- 6. Study of joint density/distributions.
- 7. Study of power spectral density
- 8. Study of random process.
- 9. Study of ergodic process
- 10. Study of LTI system with stochastic input

Recommended Books:

1. A. Papoulis and S.U. Pillai, Probability, Random Variables and Stochastic Processes, 4th Edition, McGraw-Hill, 2002

2. P.Z. Peebles, Probability, Random Variables and Random Signal Principles, 4th edition, Mc-Graw Hill, 2000

3. H. Stark and J.W. Woods, Probability and Random Processes with Applications to Signal Processing, 3e, Pearson edu

4. Wim C Van Etten, Introduction to Random Signals and Noise, Wiley

5. Miller, Probability and Random Processes-with applications to signal processing and communication, first ed2007, Elsevier

	University of Mumbai			
CLASS: T.E. (E	lectronics & Telecommunication	Semester	- V	
Engineering)			-	
SUBJECT: Micro	processors & Microcontrollers - I			
Periods per wee	k Lecture	4		
(each of 60 min.) Practical	2		
	Tutorial	-		
		Hours	_ 	Marks
Evaluation Syste	m Theory Examination	3		100
	Practical examination	3		25
		-		-
	Ierm Work	-		25
Madula				
	Contents	• • •		Hours
Objective	Objective of this course is to students the fundament microprocessor and microcor	introduce t ntals of ntroller.	o the	-
Pre-requisite	Concept of Basic Electron Logic Systems	ics and D	oigital	-
1	Basics of 8085:			10
	Basic 8085 microproce	ssor archite	ecture	
	and its functional blo	ocks,		
	8085 microprocessor	IC pin outs	s and	
	signals, address, data	and contr	ol	
	buses,			
	8085 features			
	Interrupt system of 80	85		
	Stack and subroutine			
	Types of memory and	memory		
	interfacing			
	Decoding techniques nartial	 absolute 	and	
	 Mapping techniques - 	I/O map	ned I /	
	O and memory map	ned I / O	Jou . ,	
	□ Serial I/O lines of 8085	and the		
	implementation asyn	chronous s	serial	
	data communication us	ing SOD an	d SID	
2	Programming with 8	085:		8
	, , , ,			
	Basic instruction set,			
	Timing states, machin	e cycles a	nd	
	instruction cycles			
	Instruction Timing diagr	am and ,		
	interrupt process and	timing diagr	ram of	
	Writing assombly land		rame	
	Writing assembly lang	indexing	ranis,	
	operations related p	ograms		
	Stacks and subroutin	es operati	ons	
	related programs		ono	

	 Conditional call and return instructions operations related programs Debugging programs. 	
3	Study and Interfacing of peripherals 8155/8255, 8253/8254, 8259 with 8085	7
4	 Basics of 8051: Comparison of microprocessor and microcontroller, Architecture and pin functions of 8051 chip controller, CPU timing and machine cycles, Internal memory organization, 	8
	 Program counter and stack, Input/output ports, Counters and timers, Serial data input and output Interrupts. Power saving modes 	
5	Programming with 8051: Instruction set, addressing modes, immediate, registers, direct and indirect data movement and exchange instructions, push and pop op-codes, arithmetic and logic instructions, bit level operations, jump and call instructions, input/ output port programming, programming timers, asynchronous serial data communications, timer and hardware interrupt service routines. Interfacing of LCD display, hex keyboard, ADC0808, DAC0808 and Stepper motor with 8051 Current trends in microprocessors and practical implementation	8
6	Introduction to ARM Processor ARM family architecture Register architecture. Memory Access and addressing modes. Arithmetic and Logical Instructions Branching Instructions	10
	Comparative study of salient features of 8051 and its derivatives like 89C51, 89C52, 89C2051 AND 89C2052 Current processor and controller survey. (cost, availability, popularity)	02

- 1. Question paper will be comprise of total 7 questions, each of 20 marks.
- 2. All questions must be analytical and design oriented.
- 3. Only 5 questions need to be solved.
- 4. Question number 1 will be compulsory and will cover all modules.
- 5. Remaining questions will be mixed in nature. (e.g.- suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)
- 6. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 7. No question should be asked from pre-requisite module.

Practical/Oral Examination:

Practical Examination will be based on experiments performed from the list of experiment given in the syllabus and the evaluation based on the same experiment. Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus.

Term work:

Term work shall consist of minimum ten experiments and a written test. The distribution of marks for term work shall be as follows:

Laboratory work (Experiments and Journal)	: 15 marks.
Test (at least one)	: 10 marks.

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Practical list

8085 Based (Max 02)

01) Addition and subtraction of two 8-bit numbers with programs based on different addressing modes of 8085A.

02) Addition and subtraction of two 16-bit numbers. (Using 2's complement method, also programs which access numbers from specified memory locations.)

03) Addition and subtraction of two 16-bit BCD numbers. (using DAA instruction.)

04) Multiplication of two 8-bit numbers using the method of successive addition and Shift & add.

05) Division of two 8-bit numbers using the method of successive subtraction and shift & subtract.

- 06) Block transfer and block exchange of data bytes.
- 07) Finding the smallest and largest element in a block of data.
- 08) Arranging the elements of a block of data in ascending and descending order.
- 9) Converting 2 digit numbers to their equivalents.
 - a) BCD to HEX and b) HEX to BCD
- 10) Generating delays of different time intervals using delay subroutines and measurement of delay period on CRO using SOD pin of 8085A.
- 11) Generation of Fibonacci Series.

Application Based (Max 2)

- 1) Program controlled data transfer using 8255 PPI.
 - A) To INPUT data bytes from peripheral port and to store them in memory.
 - B) To OUTPUT data bytes from memory to peripheral port.
- 2) Study of interrupts by enabling them in main line program and then executing different subroutines when TRAP, RST 7.5, RST 6.5 & RST 5.5 are activated.
- 3) Interfacing 7 segment LED display using 8255A in static and dynamic mode.
- 04) Interfacing ADC 0808/0809.
- 05) Interfacing DAC 0808.
- 06) Interfacing stepper motor with microprocessor using 8255A in Half and Full

excitation.

- 07) Interfacing a Centronics type printer.08) Interfacing of Thumbwheel switches.09) Interfacing of 8253 / 8254.

8051 experiments (Max 2)

Arithmetic operations

Packing and unpacking

Ascending and descending

8051 timer based experiment

Transmission of character using RS 232 to PC(preferably on bread board)

16 * 2 LCD and Hex keyboard interface (preferably on bread board)

ADC or DAC interface (any application) (preferably on bread board)

On latest:

Experiments are to be performed on Proteus VSM Platform (Min 4) To design and test circuits on

- 1. LED blinking.
- 2. 7segments display.
- 3. 16x2 multiple character LCD.
- 4. Run stepper motor/DC motor.
- 5. Implement square wave.
- 6. Temperature display using
- 7. Demonstration of traffic lights.
- 8. Speed control of motor.

Using ARM Professor

- 1. Mazidi & Mazidi, The 8085 Microcontroller & Embedded system, using Assembly and C, 2nd edi, Pearson edu.
- 2. Microprocessors and Interfacing 8085, Douglas V Hall, Tata Mc Gram Hill
- 3. Microprocessor-Architecture, programming and application with 8085, Gaonkar, Penram International.
- 4. Crisp, Introduction To Microprocessors & Microcontrollers, 2e, Elsevier, 2007
- 5. Steve Ferber, ARM system-on-chip architecture, 2e, Pearson education.
- 6. Calcut,8051 Microcontrollers:An Applications Based Introduction, Elsevier
- 7. DV Kodavade, S Narvadkar, 8085-86 Microprocessors Architecture Progg and Interfaces, Wiley
- 8. Udayashankara V, Mallikarjunaswamy, 8051 Microcontroller, TMH
- 9. Han-Way Huang, Using The MCS-51 Microcontroller, Oxford University Press.
- 10. Ayala, 8051 Microcontroller , Cengage (Thomson)
- 11. Rout, 8085 Mictoprocessor, Cengage (Thomson)

University of Mumbai					
CLASS:T.E. (Electro	CLASS:T.E. (Electronics & Telecommunication				
Engineering)					
SUBJECT:	RF Circuit Design				
Periods per week	Lecture	4			
(each of 60 min.)	Practical	2			
	Tutorial	-			
		Hours	Marks		
Evaluation System	Theory Examination	3	100		
	Practical examination	3	25		
	Oral Examination	-	-		
	Term Work	-	25		
	Total		150		

Module	Contents		
Objective	The objective of this course is to introduce to the students the fundamentals of active & passive components and circuits used at RF.	-	
Pre-requisite	Concept of Basic Electronics and Wave Theory.	-	
1	 Introduction Importance of Radiofrequency design, Dimensions and units, frequency spectrum. 1] RF behaviour of passive components: High frequency resistors, capacitors & inductors. 2] Chip components and Circuit board considerations : Chip resistors, chip capacitors, surface mounted inductors. 	04	
2	 Transmission Line Analysis: Two-wire lines, Coaxial lines and Microstrip lines. Equivalent circuit representation, Basic laws, Circuitparametersforaparallelplate transmission line. 1] General Transmission Line Equation: Kirchhoff voltage and current law representations, Traveling voltage and current waves, general impedance definition, Lossless transmission line model. 2]Microstrip Transmission Lines. 3] Terminated lossless transmission line: Voltage reflection coefficient, propagation constant and phase velocity, standing waves. 4] Special terminated lossless line, Short circuittransmissionline,Opencircuit transmission line, Quarter wave transmission line. 5] Sourced and Loaded Transmission Line: 	10	

	Phasor representation of source, Power considerations for a transmission line, input impedance matching, return loss and insertion loss.	
3	The Smith Chart: Reflection coefficient in Phasor form, Normalized Impedance equation, Parametric reflection coefficient equation, graphical representation, Impedance transformation for general load, Standing wave ratio, Special transformation conditions. Admittance Transformations: Parametric admittance equation, Additional graphical displays. Parallel and series Connections: Parallel connections of R and L connections, Parallel connections of R and L connections, Series connections of R and C connections, Series	10
4	RF Filter Design: Filter types and parameters, Low pass filter, High pass filter, Bandpass and Bandstop filter, Insertion Loss. Special Filter Realizations: Butterworth type filter, Chebyshev type filters, Denormalization of standard low pass design. Filter Implementation: Unit Elements, Kuroda's Identities and Examples of Microstrip Filter Design. Coupled Filters: Odd and Even Mode Excitation, Bandpass Filter Design, Cascading bandpass filter elements, Design examples.	12
5	Active RF Components: Semiconductor Basics: Physical properties of semiconductors, PN-Junction, Schottky contact. Bipolar-Junction Transistors: Construction, Functionality, Temperature behaviour, Limiting values. RF Field Effect Transistors: Construction, Functionality, Frequency response, Limiting values. High Electron Mobility Transistors: Construction, Functionality, Frequency response.	8
6	Active RF Component Modeling: Transistor Models: Large-signal BJT Models, Small-signal BJT Models, Large-signal FET Models, Small-signal FET Models. Measurement of Active Devices: DC Characterization of Bipolar Transistors, Measurements of AC parameters of Bipolar Transistors, Measurement of Field Effect Bipolar Transistors Transistor Parameters. Scattering Parameter Device Characterization.	10

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. All questions must be analytical and design oriented.
- 3. Only 5 questions need to be solved.
- 4. Question number 1 will be compulsory and cover all modules.
- 5. Remaining questions will be mixed in nature. (e.g.- suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)
- 6. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 7. No question should be asked from pre-requisite module.

Practical/Oral Examination:

Practical Examination will be based on experiments performed from the list of experiments given in the syllabus and the evaluation will be based on the same experiment. Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus.

Term work:

Term work shall consist of minimum eight experiments and a written test. The distribution of marks for term work shall be as follows, Laboratory work (Experiments and Journal) : 15 marks. Test (at least one) : 10 marks. The final certification and acceptance of term-work ensures the satisfactory performance of term-work ensures term ensu

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Practical list

- 1. Characterization of resistors.
- 2. Characterization of Inductors
- 3. Characterization of capacitors.
- 4. Study of Q in RLC Series resonance circuits.
- 5. Study of Q in RLC Parallel resonance circuits.
- 6. LP Filter Design
- 7. HP Filter Design
- 8. BP Filter Design
- 9. Tutorial on Smith Charts.
- 10. DC Characterization of BJT.
- 11. DC Characterization of FET.

- 1. Reinhold Ludwig, Pavel Bretchko, RF Circuit Design, Pearson Education Asia.
- 2. Joseph J. Carr, Secrets of RF Circuit Design, Tata McGraw-Hill.
- 3. W.Alan Davis , K K Agarwal, Radio Freuency circuit Design, Wiley
- 4. Pozar, Microwave Engineering, John Wiley.
- 5. Mathew M. Radmanesh, RF & Microwave Design Essential,
- 6. Ian Hickman, Practical RF Handbook, Elsevier

	University of Mumbai		
CLASS: S.E. (Electr	onics & Telecommunication	Semester	- V
Engineering)			
SUBJECT: S	Signals and System		
Periods per week	Lecture	4	
(each of 60 min.)	Practical	2	
	Tutorial	-	
		Hours	Marks
Evaluation System	Theory Examination	3	100
	Practical examination	-	-
	Oral Examination	-	25
	Term Work	-	25
	Total		150

Module	Contents	Hours
Objective	objectives of this course is to study and analyse characteristics of continuous, discrete Signals and systems.	-
Pre-Requisite	Concept of Fourier Series/Transform, Laplace Transform.	-
1	REPRESENTATION OF SIGNALS Continuous and discrete time signals: Classification of Signals – Periodic aperiodic ,even – odd – energy and power signals – Deterministic and random signals – complex exponential and sinusoidal signals – periodicity – properties of discrete time signal –impulse functions and its properties – Transformation in independent variable of signals: time scaling, time shifting. Determination of Fourier series representation of continuous time and discrete time periodic signals, properties of continuous time and discrete time Fourier series.	8
2	ANALYSIS OF CONTINUOUS TIME SIGNALS AND SYSTEMS Continuous time Fourier Transform and Laplace Transform analysis with examples – properties of the Continuous time Fourier Transform and Laplace Transform basic properties, Parseval's relation, and convolution in time and frequency domains. Basic properties of continuous time systems: Linearity, Causality, time invariance, stability, magnitude and Phase representations of frequency response of LTI systems -Analysis and characterization of LTI systems using Laplace transform & application in electrical networks, Computation of impulse response and transfer function using Laplace transform.	10

	· · · · · · · · · · · · · · · · · · ·	
3	SAMPLING THEOREM AND z-TRANSFORMS Representation of continuous time signals by its sample - Sampling theorem – Reconstruction of a Signal from its samples, aliasing – discrete time processing of continuous time signals, sampling of band pass signals. Basic principles of z-transform - z-transform definition – region of convergence – properties of ROC – Properties of z-transform – Poles and Zeros – inverse z-transform using Contour integration - Residue Theorem, Power Series expansion and Partial fraction expansion, Relationship between z-transform and Fourier transform.	10
4	DISCRETE TIME SYSTEMS Computation of Impulse response & Transfer function using Z Transform., LTI-DT systems - Characterization using difference equation, Block diagram representation, Convolution, Properties of convolution and the interconnection of LTI Systems, Causality and stability of LTI Systems. DTFT, DTFT Properties and examples	10
5	SYSTEMS WITH FINITE AND INFINITE DURATION IMPULSE RESPONSE Systems with finite duration and infinite duration impulse response – recursive and non-recursive discrete time system – realization structures – direct form – I, direct form – II, Transpose, cascade and parallel forms.	10
6	State Space Analysis Representation and Solution for continuous and discrete time LTI System	05

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. All questions must be analytical.
- 3. Only 5 questions need to be solved.
- 4. Question number 1 will be compulsory and covering the all modules.
- 5. Remaining questions will be mixed in nature. (e.g.- suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)
- 6. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
 7. No question should be asked from pre-requisite module.

Oral Examination:

Oral Examination will be based on any experiment performed from the list of experiments given in the syllabus and the entire syllabus.

Term work:

Term work shall consist of minimum four experiments and five tutorials and a written test. The distribution of marks for term work shall be as follows,

Laboratory work (Experiments and Journal)	: 15 marks
Test (at least one)	: 10 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Practical list

- 1. Study of operations on signals.
- 2. Step and impulse response of system.
- 3. Impulse response using Laplace Transform.
- 4. Study of Sampling Theorem.
- 5. Study of Discrete Time Fourier Transform.
- 6. Pole-Zero plot of Z-transform
- 7. Realization structures of System

- 1. Simon Haykins, Signal and Systems 2nd edition. , Wiley
- Oppenheim, Signals and System,2nd, Pearson edu
 H P Hsu, 'Signals and Systems', TMH, 2006
- 4. Rao S.S., Signals and System, TMH
- 5. Zeimer RE, Signals & System: Continuous and Discrete, 4e, Dorling Kindersley(India) Pvt Ltd
- Lathi B.P., Linear systems and signals, 2nd edi, Oxford Uni Press
 S. Salivahanan, e.t. 'Digital Signal Processing,' TMH, 2005
- 8. Stuller, Signal & Systems, Cengage (Thomson)
- 9. Nagoor Kani. Signals and systems. Tata MacGraw-Hill,2009

	University of Mumbai		
CLASS: T.E. (Electi Engineering)	onics & Telecommunication	Semester	– V
SUBJECT: Princ	iples of Control Systems		
Periods per week	Lecture	4	
(each of 60 min.)	Practical	2	
	Tutorial	-	
		Hours	Marks
Evaluation System	Theory Examination	3	100
	Practical examination	-	-
	Oral Examination	-	25
	Term Work	-	25
	Total		150

Module	Contents	Hours
Objective	Objective of this course is to understand fundamentals of control systems that has wide applications in industries. To understand optimal performance of the system, understanding and applying to conventional control strategies.	-
Pre-requisite	Concept of electrical network	-
1	Introduction: Open loop and closed loop systems, basic structure of a feedback control system. Dynamic Models and Responses: Dynamic model of an RLC network, state variable model, impulse response model, transfer function model, standard test/disturbance signals and their models, transfer function model and dynamic response of a second order electrical system.	10
2	Mathematical Modelling of Systems Basic units of a feedback control system, reduction of system block diagrams, signal flow graphs, Mason's gain rule, block diagram reduction using Mason's gain rule, error detector, block diagram model of a typical control system using simplified sub- system, transfer function blocks.	10
3	Feedback Control System Characteristics: Stability, sensitivity, disturbance rejection, steady state accuracy, transient and steady state responses of a second order system. Effect of additional zeros and pole locations and dominant poles, steady state error constants, system type numbers and error compensation.	8

4	System Stability analysis and compensation Design System stability bounds, Routh stability criterions, relative stability and range of stability, root locus concept, system characteristic equation, plotting root loci.	10
5	Nyquist Criterion and Stability Margins: Nyquist stability criterions, Nyquist plot, gain and phase margins, bode plot of magnitude and phase and determination of stability margins.	10
6	Control Systems Components: (Transfer function approach) DC servomotors, Synchros, Stepper motor	5

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. All questions must be analytical.
- 3. Only 5 questions need to be solved.
- 4. Question number 1 will be compulsory and covering all modules.
- 5. Remaining questions will be mixed in nature. (e.g.- suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)
- 6. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 7. No question should be asked from pre-requisite module.

Oral Examination:

Oral Examination will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus.

Term work:

Term work shall consist of minimum six experiments and a written test. The distribution of marks for term work shall be as follows, Laboratory work (Experiments and Journal) : 15 marks.

Test (at least one)

: 10 marks.

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Practical list

- 1. Type '0' and Type '1' control system.
- 2. Closed Loop Control System.
- 3. Study of Bode Plot
- 4. Error Detector
- 5. Linear System Simulator
- 6. Series Control System
- 7. Time Response of first and second order systems (RLC).

Simulations:

- 1. Time Response analysis
- 2. Frequency response analysis
- 3. Stability analysis

- 1. Control Systems- Principles and Design- M. Gopal, Tata Mc-Graw Hill Publication
- 2. Norman Nise, Control Sysmtem Engineering 4th edition, wiley
- 3. Srivastava Manjita et, Control System, TMH.
- 4. Control Systems Engineering-I.J Nagrath and M.Gopal New Age International Publishers
- 5. Modern Control Engineering- Katsuhiko Ogata,4e, Pearson edu
- 6. Les Fenical, Control System, Cengage Learning

University of Mumbai				
CLASS: T.E. (Elect Engineering)	ronics & Telecommunication	Semester	- V	
SUBJECT: Elect	ronic Hardware Workshop			
Periods per week	Lecture	-		
(Each of 60 min.)	Practical	2		
	Tutorial	-		
		Hours	Marks	
Evaluation System	Theory Examination	-	-	
	Practical examination	-	-	
	Oral Examination	-	50	
	Term Work	-		
	Total		50	

Module	Contents	Hours
Objective	The objective of this course is to introduce to the students the basics of circuit assembly and debugging. To encouraging the students to design and implement innovative ideas.	-
Pre-Requisite	Concept of Basic Electronics, Digital Logic & Electrical Engg. Fundamentals	
1	Study of soldering and PCB Design Students are expected to select any experiment* that they have already performed in earlier semester. Soldering and testing are to be done for the selected experiment. Schematic as well as PCB design is to be carried out using any software tool. A report is to be prepared.	06
2	Analogue Project (Design and implementation) Students are expected to design any project*, of analogue circuit/system, discrete and/or IC based, of their choice (which can be used as experimental set-up in the laboratory). PCB design, fabrication, testing and implementation should be done. Students may use the software simulation for verification of hardware implementation. Documentation of the project is to be in standard IEEE format. Project report should include abstract in 100 words (max), key words, introduction, design, simulation, implementation, results/ results comparison, conclusion and references.	10

3	Digital Project (Design and implementation)	12
	(Design and implementation) Students are expected to design any project*, of digital circuit/ system of their choice, may involve microprocessor/ microcontroller (which can be used as experimental set-up in the laboratory). PCB design, fabrication, testing and implementation should be done. Students may use the software simulation for verification of hardware implementation. Documentation of the project is to be in standard IEEE format. Project report should include abstract in 100 words (max), key words, introduction design simulation implementation	
	results/ results comparison, conclusion and references.	

* To be approved by the concerned faculty. Students will work in group, Minimum 2 students in each group but not more than 3.

Oral Examination:

Oral Examination will be based on any experiment performed and on the entire syllabus.

Term work:

Students will work in group, Minimum 2 students in each group but not more than 3. Term work shall consist of minimum TWO Projects.

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work / term-work.

Recommended Books:

1. Bossart, Printed Circuit Boards: Design and Technology, Tata McGraw Hill

	University of Mumbai		
CLASS: T.E. (Elect Engineering)	ronics & Telecommunication	Semester	- V
SUBJECT: E	nvironmental Studies		
Periods per week	Lecture	2	
(Each of 60 min.)	Practical	-	
	Tutorial	1	
		Hours	Marks
Evaluation System	Theory Examination	2	50
	Practical examination	-	-
	Oral Examination	-	-
	Term Work	-	25
	Total		75

Objective : This of environmental co	course is to create environmental awareness, of variety ncerns.	
Module	Contents	Hrs
1	The Multidisciplinary nature of environmental studies Definition, scope and importance Need for public awareness	1
2	 Natural resources Renewable and non-renewable resources Natural resources and associated problem a. Forest resources: Uses and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forests and tribal people. b. Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems. c. Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies. d. Food resources: World food problems overgrazing, effects of modern agriculture, fertilizer- pesticide problems, water logging, salinity, case studies. e. Energy resources: Growing energy needs, renewable and non renewable energy sources. Case studies. f. Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification. Role of an individual in conservation of natural resources. Equitable use of resources for sustainable lifestyles. 	4

2	Ecosystems	3
5	\Box Ecosystems	U
	Concepts of an ecosystem Structure and function of an ecosystem	
		1
	Producers, consumers and	
	□ Energy flow in the eccevator	
	Energy now in the ecosystem.	
	Ecological succession.	
	pyramids	1
	Introduction, types, characteristic	
	features, structure and function of the	
	a) Forest ecosystem	
	b) Grassland ecosystem	
	c) Desert ecosystem	
	d) Aquatic ecosystem (ponds, streams,	
	lakes, rivers, oceans, estuaries)	
4	Biodiversity and its conservation	4
	Introduction Definition, genetic species	
	and ecosystem diversity	
	Bio-geographical classification of India	
	Value of biodiversity: Consumptive	
	use, productive use, social, ethical, aesthetic and option values	
	☐ Bio-diversity at global, national, local	
	levels	
	India as a mega diversity nation	
	Hot spots of bio-diversity	
	Threats to biodiversity: Habitat loss, poaching of wild life men wildlife conflicte.	
	of which the, than-which e contracts	
		d
	and Ex-situ conservation of biodiversity: In –situ	
5	Environmental Pollution Definition	4
	Causes, effects and control measures	of:
	a) Air pollution	
	b) Water pollution	
	c) Soil pollution	
	d) Marine pollution	
	e) Noise pollution	
	f) Thermal Pollution	
	g) Nuclear Hazards	
	Solid waste management : Causes, affe	ect
	and control measures of urban a	nd
	□ Role of an individual in provention of	
	 Pollution case studies 	
	□ I Onation Case studies □ Disaster management: Elegade	
	earthquake, cvclone and land slides	

6	Social issues and environment	4
	From unsustainable to sustainable	
	development	
	Urban problems related to energy	
	Water conservation, rain water harvesting,	
	watershed management	
	□ Re-settlement and rehabilitation of	
	people: Its problems and concerns. Case	
	studies	
	Environmental ethics: issues and possible	
	solution	
	Climate change, global worming, acid	
	rain, ozone layer depletion, nuclear	
	accidents and holocaust. Case studies	
	Wasteland reclamation	
	Consumerism and waste products	
	Environment protection act	
	Air(Prevention and control of pollution) act	
	Wildlife protection act	
	Forest conservation act	
	Issues involved in enforcement of	
	environmental legislation public	
	awareness	
7	Human population and the environment	4
	Population growth, variation among	
	nations	
	Population Explosion- family welfare	
	program	
	Environment and human health	
	Human rights	
	□ Value education	
	□ HIV/AIDS	
	Women and Child Welfare	
	Role of information technology in	
	environment and human health	
	Case studies	
8	Understanding Existence and Co-existence	
	Interrelation and Cyclicity between Material	
	order, Bio-order, Animal order and Human order	
	Understanding the numan conduct: Relationship	
	III Falliny, JUSILE III Dellavior, Human Values,	
	Endeavor and Objectives Interrelationship in	
	Society Mutual Fulfillment and Cyclicity in	
	Nature	

- 1. Question paper will be comprising of total 7 questions, each of 10 marks.
- 2. Only 5 questions need to be solved.
- 3. Question number 1 will be compulsory and covering the all modules.
- 4. Remaining questions will be mixed in nature. (e.g. suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Term work:

Term work shall consist of minimum five projects (PROJECTS SHALL BE DESIGNED ON THE SAME GUIDE- LINE OF GIVEN TEXT BOOK) and a written test.

The distribution of marks for term work shall be as follows,

Laboratory work (Tutorial/Project and Journal)

Test (at least one)

: 15 marks : 10 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

- 1. Erach Bharucha, text book of environmental studies, Universities Press/Orient Blackswan
- 2. Jagdish Krishnawamy , R J Ranjit Daniels, " Environmental Studies", Wiley India Private Ltd. New Delhi
- 3. Anindita Basak, Environmental Studies, Pearson
- 4. Deeksha Dave , "Textbook of Environmental Studies", Cengage learning, THOMSON INDIA EDITION
- 5. Benny Joseph" Environmental Studies"Tata McGRAW HILL
- 6. D. L. Manjunath, Environmental Studies, Pearson
- 7. R.Rajgopalan, Environmental Studies, Oxford
- 8. Alok Debi, Environmental science and Engineering", University press
- 9. A nagraj, Jeevan Vidya-A Primer

<u>Third Year Engineering (Semester V & VI) (Revised) Course for Academic</u> <u>Year 2009-10,</u> <u>Electronics and Telecommunication Engineering,</u>

		No	. of Period	ls per				Mai	rks	
Sr		week	(60 minute	es each)	Duration					
No	ubjects	Lect ure	Practi- cal	Tuto- rial	Theory papers (Hours)	Theor y	Term- work	Prac -tical (3 Hrs.)	Oral	Total
1.	Microprocessors &	4	2	-	3	100	25	25	-	150
	Microcontrollers- II									
2.	Antenna & Wave Propagation	4	2	-	3	100	25	-	25	150
3.	Industrial Economic & Telecom regulation	2	-	1*	2	50	25	-	-	75
4.	Digital Communication	4	2	-	3	100	25	25	25	175
5.	TV & Video	4	2	-	3	100	25	-	25	150
6.	Elective	4	2	-	3	100	25		25	150
	Total	22	10	1		550	150	50	100	850

TE, Semester VI

* In tutorial we should have case study/ Industrial Visit along with routine exercises.

SCHEME FOR OFFERING ELECTIVE TO STUDENTS (Any ONE): TE, VI Semester

SEM VI:	SEM VI:	SEM VI:	SEM VI:	SEM VI:
1. ACOUSTICS	2. MICRO	3.RADAR	4. DIGITAL	5. NEURAL
ENGINEERING	ELECTRONICS	ENGINEERING	TELEPHONY	NETWORKS
				& FUZZY
				LOGIC

University of Mumbai						
CLASS: T.E. (Electronics & Telecommunication Semester - VI Engineering)						
SUB	SUBJECT: Microprocessors & Microcontrollers-II					
Periods per week	Lecture		4			
(each of 60 min.)	Practical		2			
	Tutorial		-			
		Hours	Marks			
Evaluation System	Theory Examination	3	100			
	Practical examination	3	25			
	Oral Examination	-	-			
	Term Work	-	25			
	Total		150			

Module	Contents	Hours
Objective	The objective of this course is to introduce to the students 16 bit Microprocessors & Microcontrollers	-
Pre-requisite	concept of 8 bit Microprocessor and Microcontroller	-
1	8086 and 8088 Microprocessors: Architecture and organization of 8086/8088 microprocessors family, bus interface unit, 8086/8088 hardware pin signals, timing diagram of 8086 family microprocessors, simplified read/ write bus cycles, 8086 minimum and maximum modes of operation, 8086/8088 memory addressing, address decoding, memory system design of 8086 family, timing considerations for memory interfacing, input/output port addressing and decoding, introduction to 8087 floating point coprocessor and its connection to host 8086.	9
2	8086 assembly language programming: Addressing modes, 8086 instruction formats and instruction set, data transfer, arithmetic, bit manipulation, string, program execution transfer and program control instructions, machine codes of 8086 instructions, assemble language syntax, assembler directives, initialization instructions, simplesequential and looping programs in assemble language, debugging assembly language	08
3	Programmable Interface and peripheral devices: Interfacing of 8155, 8255 and 8259 with 8086 and study and interfacing of 8257 DMA controller with 8086. • Comparative study of salient features	7

	of 8086, 80196, 80296, 80386, 80486 and Pentium	
4	 PIC Controllers: PIC 18 memory organisation CPU registers Pipelining Instruction format Addressing modes Sample of PIC 18 Instructions Overview of the 8- bit MCU Market 	9
5	 PIC 18 Assembly language Programming Assembly language programme structure Assembler directives Writing programmes to perform arithmetic computations Programme loops Reading and writing data in programme memory Logic Instructions Using programme loop to create time delays Rotate instructions Using rotate instructions to perform multiplication & divisions. 	9
6	 Parallel Ports I/O Addressing. Synchronization Overview of the PIC 18 parallel ports Interfacing with simple output devices 	8

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. All questions must be analytical and design oriented.
- 3. Only 5 questions need to be solved.
- 4. Question number 1 will be compulsory and will cover all modules.
- 5. Remaining questions will be mixed in nature. (e.g.- suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)
- 6. In the question paper, weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 7. No question should be asked from **pre-requisite module**.

Practical/ Oral Examination:

Practical Examination will be based on experiments performed from the list of experiment given in the syllabus and the evaluation based on the same experiment. Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus.

Term work:

Term work shall consist of minimum eight experiments and a written test. The distribution of marks for term work shall be as follows, Laboratory work (Experiments and Journal) : 15 marks.

Test (at least one)

: 15 marks. : 10 marks.

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Practical list

8086 (any 4)

1. Write a program to arrange block of data in i) ascending and (ii) descending order

2. Write a program to find out any power of a number such that Z = X N is , where programmable and X is unsigned number.

3. Write a programmable delay routine.

- 4. Write a program to find out largest number in a block.
- 5. Experiment on string instructions.
- 6. Write a programme to multiply 32 bit number.

PIC 18

Experiments are to be performed on Proteus VSM Platform (any 4) To design and test circuits

- 1. Addition, subtraction
- 2. BCD Adder
- 3. Multiplication Division
- 4. 4 bit LCD driver
- 5. Working of ADC / DAC
- 6. Demonstration of Traffic light
- 7. Implement door bell
- 8. Data Logger
- 9. Working of calculator

On latest: Students can perform

To design and test circuits on Graphical based LCD, Interface external memory, Temperature display, Key pad interface using AVR controller.

- 1) Microprocessors and Interfacing, Douglas V Hall, Tata Mc Gram Hill
- 2) Han Way Huang, PIC Microcontroller, Cengage learning
- Design with PIC MicrocontrollersBy John B. Peatman, Pearson Education Asia LPE
- 4) The 8086/8088 Family, John Uffenbuck, Pearson Media, LPE
- 5) DV Kodavade, S Narvadkar, 8085-86 Microprocessors Architecture Progg and Interfaces, Wiley
- 6) Ajay Deshmukh, Microcontrollers, TMH
- 7) Smith, Programming The Pic Microcontroller With Mbasic(CD), Elsevier
- 8) Gaonkar Ramesh, Fundamentals of microcontrollers and applications in embedded systems, Penram International publishing.
- 9) Martin Bates, PIC Microcontrollers, 2e, Elsevier.

University of Mumbai						
CLASS: T.E. (Electi El	CLASS: T.E. (Electronics & Telecommunication Engineering)					
	SUBJECT: Antenna & Wave Propagation					
Periods per week	Lecture		4			
(each of 60 min.)	Practical		2			
	Tutorial		-			
		Hours	Marks			
Evaluation System	Theory Examination	3	100			
	Practical examination	-	-			
	Oral Examination	-	25			
	Term Work	-	25			
	Total		150			

Module	Contents	Hours
Objective	The objective of this course is to introduce to the students the basics of radiating elements and effect of propagation of radio waves in actual environment.	-
Pre-requisite	Concept of Electromagnetic field and transmission line.	-
1	ANTENNA FUNDAMENTALS	10
	Introduction, basic antenna parameters, Radiation pattern, radiation power density, radiation intensity, directivity, beam efficiency, aperture concept, effective height, polarization, input impedance, gain,radiation efficiency, beam width, bandwidth, beam efficiency, FRIIS transmission equation Basic concepts of Maxwell's equation, vector potential, wave equation, near field and far field radiation, dual equations for electric and magnetic current sources.	
2	Linear wire antennas Infinitesimal dipole its radiation field, radiation resistance, radiation sphere, ear field, far field directivity, small dipole, finite length dipole, half wave length dipole, linear elements near or on infinite perfect conductors, ground effects and their application, Folded dipole, sleeve dipole and their applications Loop Antenna: Small loop comparison of small loop with short dipole, radiation patterns its parameters and their application.	10

3	Arrays: Linear arrays, planner arrays and circular arrays. Array of two isotropic point sources, non isotropic sources, principle of pattern multiplication linear arrays of n elements, broadside, Endfire radiation pattern, directivity, Beamwidth and null directions, array factor. Antenna analysis using Dolph- Tschebyscheff.	9
4	Frequency Independent Antennas: Theory, Log periodic and Yagi antenna. Microstrip antennas: Rectangular & circular patch, circular polarization and feed network.	7
5	Reflector antennas: Plane reflector, corner reflector, procedures, Radiation mechanisms Dielectric wave, dielectric resonator, dielectric horn antenna.	5
6	Antenna MeasurementAntenna Ranges, Radiation Pattern, Gain and directivity, Polarization.Radio wave propagationGround wave propagation,Ionospheric propagation	5

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. All questions must be analytical.
- 3. Only 5 questions need to be solved.
- 4. Question number 1 will be compulsory and covering the all modules.
- 5. Remaining questions will be mixed in nature. (e.g.- suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)
- 6. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 7. No question should be asked from **pre-requisite module**.

Oral Examination:

Oral Examination will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus.

Term work:

Term work shall consist of minimum eight experiments and a written test. The
distribution of marks for term work shall be as follows,
Laboratory work (Experiments and Journal): 15 marks.Test (at least one): 10 marks.

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Practical list

- 1. Draw radiation pattern and find parameters of monopole, dipole antenna
- 2. End fire array
- 3. Broadside array
- 4. Log periodic antenna
- 5. Helical antenna
- 6. folded dipole
- 7. Reflector antenna
- 8. Rhombic antenna
- 9. Loop antenna with n number of turns
- 10. Any micro-strip antenna

- 1) Antenna Theory analysis and design-Costantine A. Balanis, John Wiley publication
- 2) Antennas-John D. Kraus, Tata McGraw Hill publication
- 3) Electromagnetics- Jordan Balmann, Prentice Hall of India publication
- 4) Harish A. R., Antenna and wave propagation, Oxford University Press.

	University of Mumbai				
CLASS: T.E. (El	CLASS: T.E. (Electronics & Telecommunication Engineering)			∩ester - VI	
SUBJECT	Inc	lustrial Economics & Telecomm	unication Re	gulation	
Periods per week	ζ	Lecture		2	
		Practical		-	
(each of 60 min.)		Tutorial		1	
			Hours	Marks	
Evaluation Systen	n	Theory Examination	2	50	
		Practical examination	-	-	
		Oral Examination	-	-	
		Term Work	-	25	
		Total		75	
		Contents		Hours	
Objective	TI th E ex In	ne objective of this course is to le students the basic conomics & Management (posure to Telecommunication Idia/ in general.	introduce to concepts and give on Regulati	of them on in	

Pre-requisite	General understanding of trade and	-
	management	
1	BASIC CONCEPTS IN ECONOMICS	4
	Demand, supply, elasticity of demand and supply, competition, monopoly, oligopoly, monopolistic competition, causes creating categories of monopoly organization, price determination u n d e r perfect competition and monopoly, price discrimination, equilibrium of firm under competition and monopoly. Functions of money, supply and demand for money, money price level and inflation, black money, consequences. meaning, magnitude and	
2	 Banking and Taxation system of Country. Function of commercial banks, multiple credit creation, banking system in India, shortcomings and improvement. Central banking: Function of central banking illustrated with reference to RBI, monitory policy meaning, objectives and features. Sources of public revenue: principles of taxation, direct and indirect taxes, distribution of incidence, tax structure, reform of tax system. 	5
3	International Trade and economic crises of 2008, Theory of international trade, balance of trade and payment, theory of protection, tariffs and subsidies, foreign exchange control, devaluation.	4

4	Basic concept of management-Planning, organization, communication, Leadership & motivation. Marketing management and marketing Mix- Product, Place, price and promotion	4
5	Telecommunications Regulation-The Task of Regulation, Markets and marketfailure, The rules of regulationThe Framework for Regulation, Legalframeworks, Instruments of regulation,Enforcement, Dangers of regulation andoperational aspectsRegulatory Strategy and Price Controls, Marketstrategies/ structures, Engineering andtechnologyRegulation and the Future(John Buckley, Telecommunications Regulation)	4
6	National Telecom Policy 1994, New Telecom Policy 1999, Guidelines For Uplinking From India, Broadband Policy 2004, Guidelines For Obtaining License For Providing Direct-To-Home (DTH) Broadcasting Service In India. TRAI Act 1997, Cable Network Act, TRAI Regulation. ITU's role in global communications. (<u>http://www.trai.gov.in/Default.asp</u> <u>http://www.itu.int/net/home/index.aspx</u> <u>http://www.itu.int/net/about/index.aspx</u> Black, Telecommunications Law In The Internet Age, 2002, Elsevier)	5

- 1. Question paper will comprise of total 7 questions, each of 10 marks.
- 2. Only 5 questions need to be solved.
- 3. Question number 1 will be compulsory and will cover all modules.
- 4. Remaining questions will be mixed in nature. (e.g.- suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)
- 5. In the question paper, weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Term work:

Term work shall consist of minimum five tutorials, case study/ Industrial Visit reports and a written test.

The distribution of marks for term work shall be as follows,

Tutorial work (Tutorials, Case study & Report) Test (at least one) : 15 marks. : 10 marks.

The final certification and acceptance of term-work ensures the satisfactoryperformance of laboratory work and minimum passing in the term-work.

- John Buckley, Telecommunications Regulation, Institution of Electrical Engineers © 2003, Published by: The Institution of Electrical Engineers, London, United Kingdom. (ISBN:0852964447)
- 2. http://www.trai.gov.in/Default.asp
- 3. <u>http://www.itu.int/net/home/index.aspx</u>
- 4. <u>http://www.itu.int/net/about/index.aspx</u>
- 5. Black, Telecommunications Law In The Internet Age, 2002, Elevier
- 6. Patrick Welch and Gerry Welch, Economics: Theory and Practice, wiley.
- 7. Economics: Samuelson
- 8. Modern Economic theory: Dewt & Warma
- 9. Indian Economy: A.N Agrawal
- 10. Marketing Management: V.S Ramaswamy
- 11. Finance for non-finance mangers: B.K Chaterji
- 12. Management: Hampton David
- 13. Management: Stephen Robbins and Mary Coulter
- 14. Marketing Management, a South Asian perspective, Philip Kotler, Kevin Keller, Abraham Koshy and Mithileshwar Jha

University of Mumbai				
CLASS: T.E. (Electronics & Telecommunication Engineering)		Sen	nester - VI	
	SUBJECT: Digital Communica	ation		
Periods per week	Lecture		4	
(each of 60 min.)	Practical		2	
	Tutorial		-	
		Hours	Marks	
Evaluation System	Theory Examination	3	100	
	Practical examination	3	25	
	Oral Examination	-	25	
	Term Work	-	25	
	Total		175	

Module	Contents	Hours
Objective	The objective of this course is to introduce to the students the Basics of Digital Communication	-
Pre-requisite	Fundamentals of Communication.	-
1	Information theory Entropy, Shannon Theorem, Shannon - Hartley theorem	5
2	Baseband Transmission: Discrete PAM signals, power spectra of discrete PAM signals, inter symbol interference, Nyquist's criterion for distortionless baseband transmission, Pulse shaping, line codes, correlative coding, eye diagram, equalization.	5
3	Digital Modulation: Representation of band pass modulated signal, vector space representation, Gram, Schmidt procedure, signal energy and correlation, ASK, FSK, PSK, DPSK, M-aryl PSK, M-aryl FSK, QPSK, OQPSK, MSK, QAM-Introduction, Modulation, Modulation, demodulation, signal space diagram, spectrum, bandwidth efficiency, power efficiency, probability of error, applications, carrier and timing recovery circuits.	14
4	Base band Detection: Detection of binary s i g n a l s - Matched filters, decision threshold in matched filters, error probability, maximum likelihood receiver structure, correlation realization of matched filter.	5

5	Error Control Systems:	14
	Overview, power and band limited channels, optimum	
	decoding, decoded error rate.	
	Error Control Block Codes:	
	Introduction, code rate and code distance, some	
	algebraic concepts, generator matrix, of a linear block	
	code, systematic form of G, parity check matrix	
	of a linear blockcode, decoding	
	mechanism, hamming codes, extended	
	hamming codes, shortened hamming codes,	
	systematic for of H matrix, cyclic codes,	
	generator matrix for cyclic codes, polynomial	
	multiplication and division, systematic cyclic	
	codes, practical systematic encoders, binary BCH	
	codes, shortened cyclic codes, cyclic redundancy	
	check(CRC) codes, interleaving, Non	
	algebraic decoding of cyclic codes, Maggot decoding,	
	decoding shortened cyclic codes, burst detection(
	error) trapping), application areas.	
6	Convolution Codes:	10
	Introduction, generator polynomial and optimal	_
	codes, puncturing code trellis, free distance.	
	Viterbi decoding, hard decision Viterbi decoding	
	decoding window, soft decision Viterbi decoding, code	
	spectra, recursive systematic codes, code transfer	
	function, application areas.	
	ranouori, approation aroadi	

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. All questions must be analytical.
- 3. Only 5 questions need to be solved.
- 4. Question number 1 will be compulsory and covering the all modules.
- Remaining questions will be mixed in nature. (e.g.- suppose Q.2 has part (a) from, module 3 then part(b) will be from any module other than module 3.)
- 6. In the question paper, weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 7. No question should be asked from **pre-requisite module**.

Practical/ Oral Examination:

Practical Examination will be based on experiments performed from the list of experiments given in the syllabus and the evaluation will be based on the same experiment.

Oral Examination:

Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus.

Term work:

Term work shall consist of minimum eight experiments and a written test. The distribution of marks for term work shall be as follows, Laboratory work (Experiments and Journal) : 15 marks. Test (at least one) : 10 marks. The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Practical list

- 1. Measurement of bit error rate
- 2. Measurement of coding gain
- 3. Study of ASK,
- 4. Study of BFSK
- 5. Study of BPSK
- 6. Study of generation of cyclic codes
- 7. Measurement of bandwidth efficiency of QAM
- 8. Study of equalizer's performance parameters
- 9. Study of eye diagram using oscilloscope
- 10. Study of QPSK waveform using digital oscilloscope
- 11. Measurement of bandwidth efficiency of QPSK
- 12. Study of MSK generation and detection.

- 1. Digital Communications-Simon Haykin, John Wiley & Sons publication
- 2. Principles of Digital Communication, Taub schilling, TMH, 3rdedi
- 3. Coding Techniques: An introduction to Compression to compression and error control-Graham wade, Palgrave
- Digital Communications 2nd edition-Bernard Sklar Pearson Education Asia publication
- 5. Modern Digital and Analog Communication Systems, BP Lathi, 3e, Oxford
- 6. Communication Systems-B.P Lathi, BS Publications (Hyderabad)

University of Mumbai					
CLASS: T.E. (Electronics &	Telecommunication Engineering)	Semes	ter – VI		
SUBJECT	: Television & Video Engineering	·			
Periods per week	Lecture	4			
	Practical	2			
(each of 60 min.)	Tutorial	-			
	Hours Marks				
Evaluation System	Theory Examination	3	100		
	Practical examination	-	-		
	Oral Examination	-	25		
	Term Work	-	25		
	Total		150		

Module	Contents	Hours
Objective	The objective of this course is to introduce to the students the basics of picture transmission and reception.	-
Pre- requisite	Basic concepts of Communication Engineering	-
1	Elements of Basic Television System: Introduction to video system, sound and picture transmission, scanning process, video signal, aspect ratio, horizontal and vertical resolution, video bandwidth and interlaced scanning, composite video signal for monochrome TV, video signal standards, sound and video modulation, VSB transmission and reception, (CCIR – B standards).	10
2	TV camera tubes: Basic principle, image orthicon, vidicon, plumbicon, solid-state image scanners.	5
3	Color TV: Compatibility considerations, Colour theory, chromaticity diagram, generation of colour TV signals, luminance signal, chrominance signal, frequency interleaving process, colour sub- carrier frequency, colour picture tubes, colour picture tube requirements, degaussing, purity convergence, circuit colour receivers set up procedure.	10
	Colour TV systems NTSC encoder and decoder, SECAM encoder and decoder. PAL encoder and decoder.	7
4	Television Receiver and its Testing:Block schematic, VSB correction, Choice of IF's, RF tuner, AGC,video IF section, sync separation, AFC, sound section, SMPS.Troubleshooting–ProcedureTroubleshooting,television test charts, introduction to various test instruments. ColourTV receivers, antenna, RF tuner, AFT, video IF amplifier,video detector sound section, first video amplifier	9

	delay line colour burst circuit, AGC amplifier, phase discriminator, phase identification amplifier and colour killer, reference oscillator, vertical deflection system, horizontal deflection system, EHT.	
5	Advanced TV Systems: CCTV, Cable TV, Direct Broadcasting Satellites, Digital TV.	7
6	IPTV Multicasting, RTSP, RTCP	5

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. All questions must be analytical.
- 3. Only 5 questions need to be solved.
- 4. Question number 1 will be compulsory and covering the all modules.
- 5. Remaining questions will be mixed in nature. (e.g.- suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)

15

- 6. In the question paper, weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 7. No question should be asked from pre-requisite module.

Oral Examination:

Oral Examination will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus.

Term work:

Term work shall consist of minimum six experiments and a written test.

The distribution of marks for term work shall be as follows,

Laboratory work (Experiments and Journal)

······································	-
marks. Test (at least one)	10
marks.	

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Practical list

- 1. Waveform analysis at different points in a color TV receiver kit.
- 2. Different video patterns using test pattern generator.
- 3. Video IF and detector section
- 4. Sound IF and output section
- 5. Horizontal and Vertical Section.
- 6. Chroma section.
- 7. Fault finding
- 8. Alignment of monochrome and color TV receivers.

- 1. Monochrome and Color Television-Gulati R.R, Wiley Eastern Limited publication.
- 2. Television and video engineering- R.G.Gupta Tata Mc Graw Hill publication.
- 3. Television and video engineering- Dhake A.M, Tata McGraw Hill publication.
- 4. Video Demystified, 4e, Keith Jack, Elsevier

CLASS: T.E. (Elect	University of Mumbai ronics & Telecommunication	Semester	- V
Elective SUBJECT:	ACOUSTICS ENGINEERING		
Periods per week	Lecture	4	
(Each of 60 min.)	Practical	2	
- · ·	Tutorial	-	
		Hours	Marks
Evaluation System	Theory Examination	3	100
	Practical examination	-	-
	Oral Examination	-	25
	Term Work	-	25
	Total		150

Module	Contents	Hours
Objective	The objective of this course is to introduce to the students the fundamentals of radiation, reception, absorption and attenuation of acoustic waves.	-
1	Acoustics waves – Linear wave equation – sound in fluids – Harmonic plane waves Energy density – Acoustics intensity – Specific acoustic impedance – spherical waves - Describer scales. Reflection and Transmission: Transmission from one fluid to another normal and oblique incidence – method of images.	10
	RADIATION AND RECEPTION OF ACOUSTIC WAVES	
2	Radiation from a pulsating sphere – Acoustic reciprocity – continuous line source - radiation impedance-Fundamental property of transducers. Absorption and attenuation of sound Absorption from viscosity – complex sound speed and absorption – classical absorption coefficient.	10
3	PIPES RESONATORS AND FILTERS Resonance in pipes – standing wave pattern absorption of sound in pipes – long wavelength limit – Helmoltz resonator - acoustic impedence - reflection and transmission of waves in pipe – acoustic filters – low pass, high pass and band pass. Noise, Signal detection, Hearing and speech Noise, spectrum level and band level – combing band levels and tones – detecting signals in noise – detection threshold – the ear – fundamental properties of hearing – loudness level and loudness – pitch and frequency - voice	10
3	voice	10

4	ARCHITECTURAL ACOUSTICS:	12
	Sound in enclosure – A simple model for the growth of sound in a room – reverberation time - Sabine, sound absorption materials – measurement of the acoustic output of sound sources in live rooms – acoustics factor in architectural design. Environmental Acoustics: Weighted sound levels speech interference – highway noise – noise induced hearing loss – noise and architectural design specification and measurement of some isolation design of portions.	
5	TRANSDUCTION	10
	Transducer as an electives network – canonical equation for the two simple transducers transmitters – moving coil loud speaker – loudspeaker cabinets – horn loud speaker, receivers – condenser – microphone – moving coil electrodynamics microphone piezoelectric microphone – calibration of receivers.	
Theory Examination	.	

¹ Theory Examination:

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Question number 1 will be compulsory and covering the all modules.
- 4. Remaining questions will be mixed in nature. (e.g.- suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Oral Examination:

Oral Examination will be based on any experiment/ Tutorial performed from the entire syllabus.

Term work:

Term work shall consist of minimum six experiments/ Tutorials and a written test. The distribution of marks for term work shall be as follows,

Laboratory work (Experiments and Journal) : 15 marks.

Test (at least one)

: 10 marks.

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Recommended Books:

1. Lawrance E. Kinsler, Fundamental of Acoustics, 4th ed., Wiley

University of Mumbai				
CLASS: T.E. (Electronics & Telecommunication Engineering)		Ser	nester - VI	
E	lective SUBJECT: RADAR ENGIN	NEERING		
Periods per week	Lecture		4	
(Each of 60 min.)	Practical		2	
	Tutorial	-		
		Hours	Marks	
Evaluation System	Theory Examination	3	100	
	Practical examination	-	-	
	Oral Examination	-	25	
	Term Work	_	25	
	Total		150	

Module	Contents	Hours
Objective	The objective of this course is to introduce different radar systems and their applications.	-
Pre-requisite	Concept of Principles of Communication & Electromagnetic waves.	-
1	Introduction Nature of Radar, Maximum Unambiguous Range, Radar Waveforms, Simple form of Radar Equation, Radar Block Diagram and Operation, Radar Frequencies and Applications. Related Problems.	5
2	RadarEquation:PredictionofRangePerformance,MinimumDetectableSignal,Receiver Noise and SNR,Integration ofRadarPulses,RadarCrossSection ofTargets (simpletargets-sphere,cone-sphere),TransmitterPower,PRFandRangeAmbiguities,SystemLosses(qualitative treatment).RelatedProblems.	7
3	CW and Frequency Modulated Radar : Doppler Effect, CW Radar – Block Diagram, Isolation between Transmitter and Receiver, Non- zero IF Receiver, Receiver Bandwidth Requirements, Applications of CW radar. FM-CW Radar, Range and Doppler Measurement, Block Diagram and Characteristics (Approaching/ Receding Targets), FM-CW altimeter, Measurement Errors, Multiple Frequency CW Radar.	10
4	Radar Clutters: Surface clutter radar equations, sea clutter, land clutter, effects of weather on radar angles echoes.	5

5	MTI and Pulse Doppler Radar: Introduction, Principle, MTI Radar with - Power Amplifier Transmitter and Power Oscillator Transmitter, Delay Line Cancellers – Filter Characteristics, Blind Speeds, Double Cancellation, Staggered PRFs. Range Gated Doppler Filters. MTI Radar Parameters, Limitations to MTI Performance. Non-coherent MTI, MTI versus Pulse Doppler Radar.	9
6	TrackingRadar:TrackingwithRadar,SequentialLobing,ConicalScan,MonopulseTrackingRadar–AmplitudeComparisonMonopulse(one- and two- coordinates),PhaseComparisonMonopulse.TargetReflectionCharacteristicsandAngularAccuracy.Tracking inRange,AcquisitionandScanningPatterns.Comparison of Trackers.Frackers.Frackers.Frackers.	5
	DetectionofRadarSignalsinNoise:Introduction,MatchedFilterReceiver–ResponseCharacteristics andDerivation,CorrelationFunctionandCross-correlationReceiver,EfficiencyofNon-matchedFilters,Matched Filter with Non-white Noise.Non-whiteNoise.	5
	Radar Receivers – Noise Figure and Noise Temperature. Displays – types. Duplexers – Branch type and Balanced type, Circulators as Duplexers. Introduction to Phased Array Antennas – Basic Concepts, Radiation Pattern, Beam Steering and Beam Width changes, Series versus Parallel Feeds, Applications, Advantages and Limitations.	7

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Question number 1 will be compulsory and covering the all modules.
- 4. Remaining questions will be mixed in nature. (e.g.- suppose Q.2 has part(a) from, module 3 then part (b) will be from any module other than module 3.)
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Oral Examination:

Oral Examination will be based on any experiment/ Tutorial performed from the entire syllabus.

Term work:

Term work shall consist of minimum six experiments/ Tutorials and a written test. The distribution of marks for term work shall be as follows,

Laboratory work (Experiments and Journal)	: 15 marks.
Test (at least one)	: 10 marks.

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

- Introduction to Radar System M. I. Skoh1ik, Mc-Graw Hill Publication
 Radar Principles, Peyton Peebles, Wiley
 Radar, Edde, Pearson edu

University of Mumbai				
CLASS: T.E. (Electronics & Telecommunication Engineering)		Ser	nester - VI	
Elective SUBJECT: MICRO ELECTRONICS				
Periods per week	Lecture		4	
(each of 60 min.)	Practical	2		
	Tutorial		-	
			Marks	
Evaluation System	Theory Examination	3	100	
	Practical examination	-	-	
	Oral Examination	-	25	
	Term Work	-	25	
	Total		150	

Module	Contents	Hours
Objective	The objective of this course is to introduce to the students the fundamentals of IC development.	-
Pre-requisite	Concepts of Basic Electronics	-
1	Introduction to IC fabrication General classification of Monolithic circuits, Definitions of LSI,MSI,VLSI, Thin Film technology- Thin Film conductor materials, resistor materials and Substrate materials, Thin Film processing techniques, thin film resistor and capacitor design guidelines, concept of sheet resistance. Various important steps of MOS bipolar IC fabrication such as Crystal growing, wafer cleaning, oxidation, annealing, patternization using photolithography technique, diffusion, metallization, ion-implantation etc. (only qualitative treatment).	10
2	Bipolar Technology Basics of BJT, its technological structures as implemented in silicon crystal- planar epitaxial transistor, ripple diffused transistor, Bipolar IC process, Monolithic BJT construction, Lateral and Vertical BJTs, Parasitic effects in BJTs, Isolation techniques-PN junction isolation ,Dielectric isolation, Monolithic planar diode configurations.	10
3	MOSFET Technology Basics of MOSFETs, overview of MOSFET Technologies- PMOS, NMOS, CMOS technology, basic PMOS and NMOS structures as implemented in Sicrystal, PMOS Vs. NMOS technology, NMOS IC process steps, parasitic effects in MOSFETs, Short channel effects, Hot electron effects in MOSFETs. CMOS fabrication processes-N well, P well, Twin tub process.	10
4	Basic Circuit elements Monolithic resistors (construction and characteristics)-Diffused resistors ,Epitaxial	10

	resistors, Pinched resistors, Ion Implanted resistors, MOS resistors. Monolithic Capacitors- Junction capacitors, MOs capacitors, poly-poly capacitors, MOS device as capacitor, IC inductors, IC crossovers.	
5	BASIC CIRCUITS Simple bipolar N A N D g at e operation and its realization in silicon structure (using p-n junction isolation technique). A depletion load and enhancement N-MOS inverter and depletion load NAND and NOR gate operation, their technological structures as implemented in silicon crystal. Drawing stick diagrams, color coded mask layout using Lambda (λ)-based (or micron-based) design rules. The CMOS inverter (NOT gate) and NAND gate structure, its stick diagram and mask layout. Parasitic effects in CMOS structure (inverter).	12

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Question number 1 will be compulsory and covering the all modules.
- 4. Remaining questions will be mixed in nature. (e.g.- suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Oral Examination:

Oral Examination will be based on any experiment/ Tutorial performed from the entire syllabus.

Term work:

Term work shall consist of minimum six experiments/ Tutorials and a written test. The distribution of marks for term work shall be as follows,

Laboratory work (Experiments and Journal): 15 marks.Test (at least one): 10 marks.The final certification and acceptance of term-work ensures the satisfactory

performance of laboratory work and minimum passing in the term-work.

List of Experiments:

- 1. Study of BJT and MOSFET characteristics using circuit simulator
- 2. Comparison of different logic families
- 3. Study of static response of Logic gates in different technologies.
- 4. Study of transient response of Logic gates in different technologies
- 5. Layout of BJT and MOSFET using software like Magic
- 6. Layout of simple logic circuit like NAND gates, Adders

Objective of all above experiments is to relate theory and experiments for better understanding of the subject. In addition to above experiments Instructors can design two experiments to simulate different process steps such as oxidation, diffusion or ion implantation. For this, they can use any free software or write Matlab or "C" code.

- 1. Integrated Circuits K.R. Botkar (Ninth Edition), Khanna publishers
- 2. Principles of CMOS VLSI Design-Neil H.E Weste, Kamran Esheaghian, Addison Wealey.
- 3. Basics VLSI Design, systems and circuit-Douglas A Pucknel, K Eshranghian
- 4. Introduction To VLSI Design-Eugene D. Fabricius-Mc Graw Hill International Edition
- 5. Microelectronics- J Millman and Grabel , Tata Mc Gaw Hill publisher
- 6. VLSI technology- S.M Sze
- 7. Fabrication principles-S.K Gandhi

	University of Mumbai		
CLASS: T.E. (Elect	ronics & Telecommunication	Semester	- V
Engineering)			
Elective SUBJEC	CT: DIGITAL TELEPHONY		
Periods per week	Lecture	4	
(each of 60 min.)	Practical	2	
	Tutorial	-	
		Hours	Marks
Evaluation System	Theory Examination	3	100
	Practical examination	-	
	Oral Examination	3	25
	Term Work	-	25
	Total		150

Module	Contents	Hours
Objective	The objective of this course is to introduce to the students the fundamentals of switching and telephony.	-
		-
1	Telephony Background An overview of telephone networks, transmission system, switching system, Signaling, echo cancellation, working principles of telephone, DC (pulse) and DTMF (tone) signaling	8
2	Traffic analysis Traffic characterization, loss systems, network blocking probabilities, delay systems	8
3	Digital switching and networks: Space division switching, time division switching, time space time (TST) switch, space time space (STS) switch, comparison of TST and STS switches, network synchronization, control and management, timing, timing inaccuracies, network synchronization, network control, Network management	08

4	.39	13
	Integrated service digital network (ISDN)	
	ISDN overview, ISDN interfaces and functions,	
	usernetworkinterface,ISDNprotocol	
	architecture,	
	ISDN physical layer: basic user - network	
	interface, primary rate user- network interface, U interface,	
	ISDN data link layer: LPAD protocol, terminal	
	adaptation, bearer channel data link control,	
	ISDN network layer: basic call control, control of	
	supplementary services,	
	Broadband ISDN (B - ISDN) :	
	Architecture , Protocols	
	Digital subscriber loop (DSL): ADSL,	
	HDSL, VDSL, Fiber in loop, wireless local	
	loop (WLL).	
	Signaling System Number 7 (SS7): SS7	
	Architecture signaling date link level, signaling	
	link level, network level, signaling connection	
	control part	
5	Introduction to IP telephony and related protocols:	9
	Overview of TCP/IP protocol	
	Resource reservation protocol (RSVP), multi	
	protocol label switching, real time	
	protocol	
	(RTP), session initiation protocol (SIP). H.323	
	standard, media gateway control protocol	
6	Voice over packet networks:	6
	Voice over ATM, ATM cell format, ATM protocol	
	stack, ATM adaptation layer, IP over ATM, frame	
	relay over ATM.	

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Question number 1 will be compulsory and covering the all modules.
- 4. Remaining questions will be mixed in nature. (e.g.- suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)
- 5. In the question paper, weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Oral Examination:

Oral Examination will be based on any experiment/ Tutorial performed from the entire syllabus.

Term work:

Term work shall consist of minimum six experiments/ Tutorials and a written test. The distribution of marks for term work shall be as follows,

Laboratory work (Experiments and Journal)	: 15 marks.
Test (at least one)	: 10 marks.

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

- 1. Digital Telephony—JOHN BELLAMY—Wiley Series
- 2. ISDN and Broadband ISDN with Frame Relay and A TM William Stalling. 4th Edition, Pearson education Asia publication
- 3. Telecommunication Switching and Networks—Thiagrajan Viswanathan—PHI Publication
- 4. Voice over packet n/w, David J Wright, John wiley and sons, Ltd.
- 5. Telecommunication swithing and n/ws Gnanasivam p, New Age Inernation, second edition.
- 6. IP Telephony Oliver Hersent, David Gurle & Jean Pierre Petit. Pearson Education Asia publication

	University of Mumbai		
CLASS: T.E. (Elect	ronics & Telecommunication	Semester	- V
Engineering)			
Elective SUBJEC	CT: NEURAL NETWORKS & FU	ZZY LOGIC	
		-	
Periods per week	Lecture	4	
(Each of 60 min.)	Practical	2	
	Tutorial	-	
		Hours	Marks
Evaluation System	Theory Examination	3	100
	Practical examination	-	-
	Oral Examination	-	25
	Term Work	-	25
	Total		150

Module	Contents	Hours
Objective	This course attempts to provide a thorough understanding of neural networks and fuzzy logic that are key components of soft computing.	-
1	Fuzzy logic and Neural Networks, Approximations of Multivariate functions, Non – linear Error surface and optimization.	6
	Fuzzy Logic Systems: Basics of fuzzy logic theory, Crisp and fuzzy sets. Basic set operations. Fuzzy relations, Compositin of Fuzzy relations, Fuzzy inference, Fuzzification and	
2	Defuzzification.	9
	Fuzzy logic control: Mamdani and Takagi and Sugeno architectures. Applications to pattern recognition.	5
3	Neuralnetworks:Singlelayernetworks, Perceptron. Activation functions. Adaline: its training and capabilities, weights learning, Multilayer perceptrons : error back propagation, generalized delta rule. Radial basis function networks and least square training algorithm.	6
4	Kohenen self – organizing map and learning vector quantization networks. Recurrent neural networks, Simulated annealing neural networks. Adaptive neuro-fuzzy information systems (ANFIS), Applications to control and pattern recognition.	10
5	Evolutionary Computing : Genetic algorithms : Basic concepts, encoding , fitness function, reproduction. Differences of GA and traditional optimization methods. Basic genetic programming concepts Applications.	9

6	Neuro-dynamics	7
	Attractors, Neurodynamical model, Hopfield	
	Models, Brain-state-in- a-box model,	

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Question number 1 will be compulsory and covering the all modules.
- 4. Remaining questions will be mixed in nature. (e.g.- suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Oral Examination:

Oral Examination will be based on any experiment/ Tutorial performed from the entire syllabus.

Term work:

Term work shall consist of minimum six experiments/ Tutorials and a written test.

The distribution of marks for term work shall be as follows,

Laboratory work (Experiments/Tutorials and Journal)	: 15 marks.
Test (at least one)	: 10 marks.

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

- 1. Timothy J. Ross, Fuzzy Logic with Engineering Applications, MacGraw-Hill
- 2. Shivanandam and Deepa, Principles of Soft Computing, Wiley
- 3. Jang JSR, Sun CT, Mizutani E, Neuro-Fuzzy and Soft Computing, PHI
- 4. Kosko, Neural Networks and Fuzzy Systems, Pearson edu
- 5. Simon Haykin, Neural Networks A comprehensive foundation, 2e, Pearson edu
- 1. Rajsekaran S, Vijaylakshmi Pai, Neural Networks, Fuzzy Logic, and Genetic Algorithms, PHI
- 2. Hagan, Demuth, Beale, 'Neural Network Design', Thomson Learning