
BharatiyaVidyaBhavan's

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai)

Revision: SPIT-4-18

Bachelor of Engineering/Technology (B.E./B.Tech)

Computer Engineering (Program Code: UCE)

Final Year Engineering (Sem. VII and Sem. VIII) Effective from Academic Year 2018 -19

Board of Studies Approval:

14/12/2017

Academic Council Approval:

20/01/2018

Dr. D. R. Kalbande **Head of Department**

Dr. Surendra Rathod Dean Academics

Dr. Prachi Gharpure Principal

Sardar Patel Institute of Technology Bhavans Andheri Campus Munsh: Nagar, Andheri (West) Mumbai - 400 058.

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

	Sem-VII				
Course Code	Course Name		cheme ek)	Credits	
		L	T	P	Total
CPC701	Digital Signal Processing	4			4
CPC702	Cryptography and System Security	4			4
CPC703	Artificial Intelligence	4			4
CPE702X	Elective	4			4
CPL701	Network threats and attacks Laboratory	tory 4			
CPCL701	Digital Signal Processing Lab			2	1
CPCL702	Cryptography and System Security Lab			2	1
CPCL703	Artificial Intelligence Lab			2	1
CPEL702X	Elective II			2	1
CP701	Project (Stage I)			6*	3
	Total	16		18	25

Course Code (CPE702X)	Sem. VII Elective
CPE7021	Advance Algorithms
CPE7022	Computer Simulation and Modeling
CPE7023	Image Processing
CPE7024	Software Architecture
CPE7025	Soft Computing
CPE7026	ERP and Supply Chain Management

^{*}Work load of learner in Semester VII is equivalent to 6 hours /week.

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

	Sem-VIII					
Course Code	Course Name		Teaching Scheme (Hrs/week)			
		L	T	P	Total	
CPC801	Data Warehouse and Mining	4			4	
CPC802	Human Machine Interaction	4			4	
CPC803	Parallel and Distributed System	4			4	
CPE803X	Elective-III	4			4	
CPL801	Cloud Computing Lab			2	1	
CPCL801	Data Warehouse and Mining Lab			2	1	
CPCL802	Human Machine Interaction Lab			2	1	
CPCL803	Parallel and Distributed System Lab			2	1	
CPEL803X	Elective-III	-	-	2	1	
CP801	Project (Stage II)			**12	6	
	Total	16		22	27	

Course Code (CPE803X)	Sem. VIII Elective
CPE8031	Machine Learning
CPE8032	Embedded Systems
CPE8033	Adhoc wireless networks
CPE8034	Digital Forensic
CPE8035	Big data Analytics

^{**}Work load of learner in Semester VIII is equivalent to 12 hours /week.

Evaluation Scheme

	B.E./B.Tech Computer Engine	ering (SEM	I VII)		
Course	Course Name			Marks	
Code		ISE	MSE	ESE	Total
CPC701	Digital Signal Processing	20	20	60	100
CPC702	Cryptography and System Security	20	20	60	100
CPC703	Artificial Intelligence	20	20	60	100
CPE702X	Elective-II	20	20	60	100
CPL701	Network threats and attacks Laboratory	40		20	60
CPCL701	Digital Signal Processing Lab	40		20	60
CPCL702	Cryptography and System Security Lab	40		20	60
CPC1703	Artificial Intelligence Lab	40		20	60
CPEL702X	Elective-II Lab 40 20				60
CP701	Project (Stage I)	20	100		
	Total				800
	B.E./B.Tech Computer Enginee	ring (SEM	VIII)		•
Course	Course Name			Marks	
Code		ISE	MSE	ESE	Total
CPC801	Data Warehouse and Mining	20	20	60	100
CPC802	Human Machine Interaction	20	20	60	100
CPC803	Parallel and Distributed System	20	20	60	100
CPE803X	Elective-III	20	20	60	100
CPL801	Cloud Computing Lab	40		20	60
CPCL801	Data Warehouse and Mining Lab	40		20	60
CPCL802	Human Machine Interaction Lab	40		20	60
CPCL801	Parallel and Distributed System Lab	40		20	60
CPEL803X	Elective-III Lab	40		20	60
CP801	Project (Stage II)	150		50	200
	Total				900

	Electives Subjects for B.E.						
	Elective-II	Elective-III					
Course	Subject Name(CPE702X)	Course Subject Name(CPE803)					
Code		Code					
CPE7021	Advance Algorithms	CPE8031	Machine Learning				
CPE7022	Computer Simulation and Modeling	CPE8032	Embedded Systems				
CPE7023	Image Processing	CPE8033	Adhoc wireless networks				
CPE7024	Software Architecture	CPE8034	Digital Forensic				
CPE7025	Soft Computing	CPE8035	Big data Analytics				
CPE7026	ERP and Supply Chain Management						

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

SEMESTER - VII

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
			T	P	L	T	P	Total
		4	-		4	-		4
CDC701	PC701 Digital Signal Processing			Exami	nation	Sche	me	
CFC/01		ISE		MSE	E	SE	,	Total
		20		20	60			100

Pre-requisite Course Codes -					
At end of successful completion of this course, student will be able to					
	CO1	Understand the concept of DT Signal and perform signal manipulation			
Course	CO2	Perform analysis of DT system in time domain			
Outcomes	CO3	Develop FFT flow-graph and Fast DSP Algorithms.			
	CO4	Design DSP System for Real Time Signal Processing			

Module	Topics	Ref.	Hrs.
No.			
1	Discrete Time Signal Introduction to Digital Signal Processing, Discrete Time Signals, Sampling and Reconstruction, Standard DT Signals, Concept of DigitalFrequency, Representation of DT signal using Standard DT Signals, Signal Manipulations (shifting, addition, subtraction, multiplication), Classification of Signals, Linear Convolution formulation (without mathematical proof), Circular Convolution formulation (without mathematical proof), Matrix Representation of Circular Convolution, Linear by Circular Convolution. Auto and Cross Correlation formula evaluation	1,3, 4,8	12
2	Discrete Time System Introduction to Discrete Time System, Classification of DT Systems(Linear/Non Linear, Causal/Non Causal, Time Invariant/Time VariantSystems, Stable/ Unstable), BIBO Time Domain Stability Criteria. LTIsystem, Concept of Impulse Response and Step Response, Concept of IIR System and FIR System, Output of IIR and FIR DTsystem using Time Domain Linear Convolution formula Method.	1,2, 3,4, 7	08
3	Discrete Fourier Transform Introduction to DTFT, DFT, Relation between DFT and DTFT, Properties of DFT without mathematical proof (Scaling and Linearity, Periodicity, Time Shift and Frequency Shift, Time Reversal, Convolution Property and Parsevals' Energy Theorem). DFT computation using DFT properties, Transfer function of DT System in frequency domain using DFT. Linear Circular Convolution using DFT. Response of FIR system calculation in frequency domain using DFT.	1,3,	08

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

4	Fast Fourier Transform	1,3,	06
	Radix-2 DIT-FFT algorithm, DIT-FFT Flowgraph for N=4, 6 & 8,	8	
	InverseFFT algorithm. Spectral Analysis using FFT, Comparison of		
	complex andreal, multiplication and additions of DFT and FFT.		
5	DSP Algorithms	1,3,	08
	Carls' Correlation Coefficient Algorithm, Fast Circular	8,9	
	ConvolutionAlgorithm, Fast Linear Convolution Algorithm, Linear FIR		
	filteringusing Fast Overlap Add Algorithm and Fast Overlap Save		
	Algorithm.		
6	DSP Processors and Application of DSP	5,8	06
	Need for Special architecture of DSP processor, Difference between		
	DSPprocessor& microprocessor, A general DSP processor		
	TMS320C54XXseries, Case study of Real Time DSP applications to		
	Speech SignalProcessing and Biomedical Signal Processing.		
	, , , , , , , , , , , , , , , , , , , ,	Total	48

- [1] Ashok Ambardar, 'Digital Signal Processing', Cengage Learning, 2007, ISBN: 978-81-315-0179-5.
- [2] Emmanuel C. Ifeachor, Barrie W. Jervis, "Digital Signal Processing: A Practical Approach", Pearson Education ISBN 0-201-59619-9
- [3] S. Salivahanan, A. Vallavaraj, C. Gnanapriya, 'Digital Signal Processing' TataMcgraw Hill Publication First edition (2010). ISBN 978-0-07-066924-6.
- [4] AvtarSignh, S.Srinivasan,"Digital Signal Processing', Thomson Brooks/Cole, ISBN: 981-243-254-4
- [5] B. Venkatramani, M. Bhaskar, "Digital Signal Processor", TataMcGraw Hill, Second Edition, (2001). ISBN: 978-0-07-070256-1.
- [6] SanjitMitra, 'Digital Signal Processing : A Computer Based Approach', TataMcGraw Hill, Third Edition
- [7] Dr, ShailaApte, "Digital Signal Processing,", Wiley India, Second Edition, 2013ISBN: 978-81-2652142-5
- [8] ProakisManolakis, 'Digital Signal Processing: Principles, Algorithms and Applications' Fourth 2007, Pearson Education, ISBN 81-317-1000-9.
- [9] Monson H. Hayes, "Schaums Outline of Digital Signal Processing" McGraw Hill Internationalsecond edition. ISBN: 978-00-7163509-7

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total
	Cryptography and System Security	4	-		4	-		4
CPC702				Exami	nation	Sche	me	
CFC/02		ISE		MSE	E	SE	,	Total
		20		20	60			100

Pre-requisite C	ourse C	Codes -			
At end of succes	At end of successful completion of this course, student will be able to				
	CO1	Understand the principles and practices of cryptographic techniques.			
	CO2	Understand a variety of generic security threats and vulnerabilities, and			
		identify & analyze particular security problems for given application.			
Course	CO3	Appreciate the application of security techniques and technologies in			
Outcomes		solving real-life security problems in practical systems.			
	CO4	Design security protocols and methods to solve the specific security			
		problems.			
	CO5	Familiar with current research issues and directions of security.			

Module	Topics	Ref.	Hrs.					
No.								
1	Introduction	1-6	06					
	Security Attacks, Security Goals, Computer criminals, Methods							
	ofdefense, Security Services, Security Mechanisms							
2	Basics of Cryptography	1-6	06					
	Symmetric Cipher Model, Substitution Techniques,							
	TransportationTechniques, Other Cipher Properties- Confusion,							
	Diffusion, Block and Stream Ciphers.							
3	Secret Key Cryptography	1-6	06					
	Data Encryption Standard(DES), Strength of DES, Block CipherDesign							
	Principles and Modes of Operations, Triple DES, International Data							
	Encryption algorithm, Blowfish, CAST-128.							
4	Public Key Cryptography	1-6	04					
	Principles of Public Key Cryptosystems, RSA Algorithm, Diffie-							
	Hellman Key Exchange							
5	Cryptographic Hash Functions	1-6	06					
	Applications of Cryptographic Hash Functions, Secure							
	HashAlgorithm, Message Authentication Codes – Message							
	Authentication Requirements and Functions, HMAC, Digital							
	signatures, DigitalSignature Schemes, Authentication Protocols,							
	Digital Signature Standards.							
6	Authentication Applications	1-6	06					
	Kerberos, Key Management and Distribution, X.509							

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	D' A A A A A A A A A A A A A A A A A A A		
	DirectoryAuthentication service, Public Key Infrastructure, Electronic		
	MailSecurity: Pretty Good Privacy, S/MIME.		
7	Program Security, Operating System Security, Database Security,	1-6	08
	IDS and Firewalls		
	Secure programs, Non-malicious Program Errors, Malicious Software-		
	Types, Viruses, Virus Countermeasures, Worms, Targeted		
	MaliciousCode, Controls against Program Threats, Memory and		
	Address protection, File Protection Mechanism, User Authentication,		
	Security Requirement, Reliability and Integrity, Sensitive data,		
	Inference, Multilevel Databases Intruders, Intrusion Detection,		
	Password Management, Firewalls-Characteristics, Types of Firewalls,		
	Placement of Firewalls, FirewallConfiguration, Trusted systems.		
8	IP Security	1-6	06
	Overview, Architecture, Authentication Header, Encapsulating		
	SecurityPayload, Combining security Associations, Internet Key		
	Exchange, WebSecurity: Web Security Considerations, Secure Sockets		
	Layer and Transport Layer Security, Electronic Payment, Non-		
	cryptographic protocol Vulnerabilities, DoS, DDoS, Session Hijacking		
	and Spoofing, Software Vulnerabilities-Phishing, Buffer Overflow,		
	Format String Attacks, SQL Injection.		
		Total	48

- [1] William Stallings, "Cryptography and Network Security: Principles and Practice", Pearson, 5th edition.
- [2] Bernard Menezes, "Network Security and Cryptography", Cengage Learning, 2nd edition.
- [3] Behrouz A Fourouzan, DebdeepMukhopadhyay, "Cryptography and Network", TMH, 2nd edition.
- [4] Behrouz A. Forouzan, "Cryptography and Network Security", TMH
- [5] Charles P. Pfleeger, "Security in Computing", Pearson Education.
- [6] Matt Bishop, "Computer Security Art and Science", Addison-Wesley.

Course Code	Course Name	Se	Teaching Scheme (Hrs/week)		C	redit	s Assig	gned
		L	T	P	L	T	P	Total
		4	-		4	-		4
CPC703	Artificial Intelligence	Examination Scheme						
CFC/03		ISE		MSE	E	SE	,	Total
		20		20	(60		100

Pre-requisite (Course	Codes -					
At end of succe	At end of successful completion of this course, student will be able to						
	CO1	Ability to develop a basic understanding of AI building blocks presented					
		in intelligent agents.					
	CO2	Ability to choose an appropriate problem solving method and					
Course		knowledge representation technique.					
Course Outcomes	CO3	Ability to analyze the strength and weaknesses of AI approaches to					
Outcomes		knowledge – intensive problem solving.					
	CO4	Ability to design models for reasoning with uncertainty as well as the					
		use of unreliable information.					
	CO5	Ability to design and develop the AI applications in real world scenario.					

Module	Topics	Ref.	Hrs.
No.			
1	Introduction to Artificial Intelligence	1-10	04
	1.1Introduction, History of Artificial Intelligence, Intelligent Systems:		
	Categorization of Intelligent System, Componentsof AI Program,		
	Foundations of AI, Sub-areas of AI, Applications of AI, Current		
	trends in AI.		
2	Intelligent Agents	1-10	04
	2.1Agents and Environments, The concept of rationality, Thenature of		
	environment, The structure of Agents, Types of Agents, Learning		
	Agent.		
3	Problem solving	1-10	14
	3.1Solving problem by Searching: Problem Solving Agent, Formulating		
	Problems, Example Problems.		
	3.2Uninformed Search Methods: Breadth First Search (BFS), Depth		
	First Search (DFS), Depth Limited Search, DepthFirst Iterative		
	Deepening(DFID), Informed Search Methods: Greedy best first Search		
	,A* Search , Memory boundedheuristic Search.		
	3.3 Local Search Algorithms and Optimization Problems: Hill-climbing		
	search Simulated annealing, Local beam search, Genetic algorithms.		
	3.4 Adversarial Search: Games, Optimal strategies, The minimax		
	algorithm, Alpha-Beta Pruning.		
4	Knowledge and Reasoning		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	Knowledge based Agents, The Wumpus World, ThePropositional logic, First Order Logic: Syntax and Semantic,Inference in FOL, Forward chaining, backward Chaining, Knowledge Engineering in First-Order Logic, Unification, Resolution, Introduction to logic programming (PROLOG), Uncertain Knowledge and Reasoning:Uncertainty, Representing knowledge in an uncertaindomain, The semantics of belief network, Inference in beliefnetwork.		
5	Planning and Learning The planning problem, Planning with state space search, Partial order planning, Hierarchical planning, Conditional Planning, Learning: Forms of Learning, Inductive Learning, Learning Decision Tree, Expert System: Introduction, Phases in building Expert Systems, ES Architecture, ES vs Traditional System.	1-10	10
6	Applications Natural Language Processing(NLP), Expert Systems.	1-10	04
		Total	48

- [1] Stuart J. Russell and Peter Norvig, "Artificial Intelligence A Modern Approach "Second Edition" Pearson Education.
- [2] SarojKaushik "Artificial Intelligence", Cengage Learning.
- [3] George F Luger "Artificial Intelligence" Low Price Edition, Pearson Education., Fourth edition.
- [4] Ivan Bratko "PROLOG Programming for Artificial Intelligence", Pearson Education, Third Edition.
- [5] Elaine Rich and Kevin Knight "Artificial Intelligence" Third Edition
- [6] Davis E.Goldberg, "Genetic Algorithms: Search, Optimization and Machine Learning", Addison Wesley, N.Y., 1989.
- [7] Hagan, Demuth, Beale, "Neural Network Design" CENGAGE Learning, India Edition.
- [8] Patrick Henry Winston, "Artificial Intelligence", Addison-Wesley, Third Edition.
- [9] Han Kamber, "Data Mining Concepts and Techniques", Morgann Kaufmann Publishers.
- [10] N.P.Padhy, "Artificial Intelligence and Intelligent Systems", Oxford University Press.

Course Code	Course Name	S	Teaching Scheme Credits As Hrs/week)			s Assig	gned	
		L	T	P	L	T	P	Total
		4	-	-	4	-	-	4
CPE7021	Elective-IIAdvanced Algorithms	Examination Scheme						
CFE/021		ISE		MSE	E	SE	,	Total
		20		20	(60		100

Pre-requisite Course Codes	CSC303 (Data Structure)					
_	CSC402 (Analysis of Algorithm)					
At end of successful completic	on of th	nis course, student will be able to				
	CO1	Able to design algorithms and employ appropriate advanced data structures for solving computing problems efficiently;				
	CO2	Able to analyze the various algorithms from different domains				
Carrena Orata arras	CO3	Have an idea of applications of algorithms in a variety of areas,				
Course Outcomes		including linear programming, computational geometry and				
		maximum flow.				
	CO4	To understand the role of Optimization by using linear programing.				

Module	Topics	Ref.	Hrs.
No.			
1	Introduction	1,2	03
	1.1 Asymptotic notations Big O, Big Θ , Big Ω , O , O notations		
	,Proofs of master theorem, applyingtheorem to solve problems		
2	Advanced Data Structures	1,2	09
	2.1 Red-Black Trees: properties of red-black trees, Insertions,		
	Deletions		
	2.2 B-Trees and its operations		
	2.3Binomial Heaps: Binomial trees and binomial heaps, Operation on		
	Binomial heaps		
3	Dynamic Programing	1,2	06
	3.1 matrix chain multiplication, cutting rod problem and its analysis		
4	Graph algorithms	1,2	06
	4.1 Bellman ford algorithm, Dijkstra algorithm, Johnson's All		
	pairshortest path algorithm for sparse graphs		
5	Maximum Flow	1,2	08
	5.1 Flow networks, the ford Fulkerson method, max bipartitematching,		
	push Relabel Algorithm, The relabel to frontalgorithm		
6	Linear Programing	1,2	08
	6.1Standard and slack forms, Formulating problems as linearprograms,		
	simplex algorithm, Duality, Initial basic feasiblesolution		
7	Computational Geometry	1,2	08

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

7.1 Line Segment properties, Determining whether any pair of segment intersects, finding the convex hull, Finding the closestpair of points.		
	Total	48

- [1] T.H. Coreman , C.E. Leiserson, R.L. Rivest, and C. Stein, "Introduction to algorithms", 2nd edition , PHI publication 2005
- [2] Ellis Horowitz ,SartajSahni , S. Rajsekaran. "Fundamentals of computer algorithms" University press

Course Code	Course Name	Se	achii chem s/we	e	C	redit	s Assig	ned	
		L	T	P	L	T	P	Total	
		4	-	-	4	-	-	4	
CPE7022	Elective-IIComputer Simulation and Modeling	Examination Scheme							
C1 L7022		ISE		MSE	ESE		,	Total	
		20		20	60			100	

Pre-requisite Co	ourse Co	odes -				
At end of success	At end of successful completion of this course, student will be able to					
	CO1	Apply simulation concepts to achieve in business, science,				
engineering, industry and services goals CO2 Demonstrate formulation and modeling skills.						
Course		language/package				
Outcomes	CO4	Generate pseudorandom numbers using the Linear Congruential				
		Method				
	CO5	Evaluate the quality of a pseudorandom number generator using				
		statistical tests				
	CO6	Analyze and fit the collected data to different distributions				

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Introduction to Simulation. Simulation Examples. General Principles.	1,2,3	15
2	2.1	Statistical Models in simulation. Queuing Models	1,2,3	8
3	3.1	Random Number Generation. Testing random numbers (Refer to Third edition) Random Variate Generation: Inverse transform technique, Direct Transformation for the Normal Distribution, Convolution Method, Acceptance-Rejection Technique (only Poisson Distribution)	1,2,3	9
4	4.1	Analysis of simulation data: Input modeling, verification and calibration, Validation of Simulation, Models. Estimation of absolute performance.	1,2,3	12
5	5.1	Application on case study on: Processor and Memory Simulation, Manufacturing and Material Handling	1,2,3	4
			Total	48

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

- [1] Jerry Banks, John Carson, Barry Nelson, and David M. Nicol, "Discrete Event System Simulation; Third Edition", Prentice-Hall
- [2] Jerry Banks, John Carson, Barry Nelson, and David M. Nicol, "Discrete Event System Simulation; Fifth Edition", Prentice-Hall
- [3] Averill M Law,"System Modeling & Analysis", TMH, 4th Edition.

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total
	Elective-IIImage Processing	4	-	-	4	-	-	4
CPE7023		Examination Scheme						
CI E/023		ISE		MSE	ESE			Total
		20		20	60			100

Pre-requisite	Course Co	odes -					
At end of succe	At end of successful completion of this course, student will be able to						
	CO1	Understand the concept of Digital Image and Video Image					
Course	CO2 Explain image enhancement and Segmentation technique.						
Outcome	CO3	Develop fast image transform flowgraph.					
	CO4	Solve Image compression and decompression techniques.					
	CO5	Perform Binary Image Processing Operations.					

Module No.	Unit No.	Topics	Ref.	Hrs.
1	1.1	Digital Image and Video Fundamentals: 1.1 Introduction to Digital Image, Digital Image Processing System, Sampling and Quantization, Representation of Digital Image, Connectivity, Image File Formats: BMP, TIFF and JPEG. ColourModels(RGB, HSI, YUV) Introduction to Digital Video, Chroma Sub-sampling, CCIR standards for Digital Video.	1,2,3	06
2	2.1	Image Enhancement: Gray Level Transformations, Zero Memory Point Operations, Histogram, Processing, Neighbourhood Processing, Spatial Filtering, Smoothing and Sharpening Filters. Homomorphic Filtering.	1,2,3	09
3	3.1	Image Segmentation and Representation: Detection of Discontinuities, Edge Linking using Hough TransformThresholding, Region based Segmentation, Split and Merge Technique, Image Representation and Description, Chain Code, Polygonal Representation, Shape Number, Moments.	1,2,3	09

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

4	4.1	Image Transform:	1,2,3	09
		Introduction to Unitary Transform, Discrete Fourier		
		Transform(DFT), Properties of DFT, Fast Fourier		
		Transform(FFT), Discrete Hadamard Transform(DHT), Fast		
		Hadamard Transform(FHT), Discrete Cosine Transform(DCT),		
		Discrete Wavelet Transform(DWT)		
5	5.1	Image Compression: Introduction, Redundancy, Fidelity Criteria.	1,2,3	09
	5.2	Lossless Compression Techniques : Run Length Coding,		
		Arithmetic Coding, Huffman Coding, Differential PCM		
	5.3	Lossy Compression Techniques: Improved Gray Scale Quantization, Vector Quantization, JPEG, MPEG-1.		
6	6.1	Binary Image Processing: Binary Morphological Operators, Hit-	1,2,3	06
		or-Miss Transformation, Boundary Extraction, Region Filling,		
		Thinning and Thickening, Connected Component Labeling,		
		Iterative Algorithm and Classical Algorithm.		
			Total	48

- [1] Rafel C. Gonzalez and Richard E. Woods, 'Digital Image Processing', Pearson Education Asia, Third Edition, 2009,
- [2] S. Jayaraman, E.Esakkirajan and T.Veerkumar, "Digital Image Processing" TataMcGraw Hill Education Private Ltd, 2009,
- [3] Anil K. Jain, "Fundamentals and Digital Image Processing", Prentice Hall of India Private Ltd, Third Edition.
- [4] S. Sridhar, "Digital Image Processing", Oxford University Press, Second Edition, 2012.
- [5] RobertHaralick and Linda Shapiro, "Computer and Robot Vision", Vol I, II, Addison Wesley, 1993.
- [6] Dwayne Phillps, "Image Processing in C", BPB Publication, 2006
- [7] B. Chandra and D.DuttaMajumder, "Digital Image Processing and Analysis", Prentice Hall of India Private Ltd, 2011
- [8] Malay K. Pakhira, "Digital Image Processing and Pattern Recognition", Prentice Hall of India Private Ltd, Third Edition
- [9] Fred Halshall, "Multimedia Communications: Applications, Networks Protocols and Standards,", Pearson Education 2001
- [10] David A. Forsyth, Jean Ponce, "Computer Vision: A Modern Approach", Pearson Education, Limited, 2011

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
		L	T	P	L	T	P	Total	
		4	-	-	4	-	-	4	
CPE7024	Elective-IISoftware Architecture	Examination Scheme							
CI E/024		ISE		MSE	ESE		,	Total	
		20		20	60			100	

Pre-requisite	Course	Codes -				
At end of succ	At end of successful completion of this course, student will be able to					
Course	CO1	Visualize the architectural concepts in development of large, practical software-intensive applications.				
Outcomes	CO2	Rather than focusing on one method, notation, tool, or process, this new course widely surveys software architecture techniques, enabling us to choose the right tool for the job at hand.				

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1	Basic Concepts:	1,2,3	3
	1.1	Concepts of Software Architecture		
	1.2	Models.		
	1.3	Processes.		
	1.4	Stakeholders		
2	2	Designing Architectures:	1,2,3	2
	2.1	The Design Process.		
	2.2	Architectural Conception.		
	2.3	Refined Experience in Action: Styles and Architectural Patterns.		
	2.4	Architectural Conception in Absence of Experience.		
3	3	Connectors	1,2,3	6
	3.1	Connectors in Action: A Motivating Example.		
	3.2	Connector Foundations.		
	3.3	Connector Roles.		
	3.4	Connector Types and Their Variation Dimensions.		
	3.5	Example Connectors		
4	4	Modeling	1,2,3	4
	4.1	Modeling Concepts.]	
	4.2	Ambiguity, Accuracy, and Precision.]	
	4.3	Complex Modeling: Mixed Content and Multiple Views.		

	4.4	Evaluating Modeling Techniques.		
	4.5	Specific Modeling Techniques		
5	5	Analysis	1,2,3	8
	5.1	Analysis Goals.	1,2,3	
	5.2	Scope of Analysis.		
	5.3	Architectural Concern being Analyzed.		
	5.4	Level of Formality of Architectural Models.		
	3.4	Type of Analysis.		
		Analysis Techniques		
6	6	Implementation and Deployment	1,2,3	4
	6.1	Concepts.		-
	6.2	Existing Frameworks.		
	6.3	Software Architecture and Deployment		
	6.4	Software Architecture and Mobility.		
7	7	Conventional Architectural styles	1,2,3	5
	7.1	Pipes and Filters		
	7.2	Event- based, Implicit Invocation		
	7.3	Layered systems		
	7.4	Repositories		
	7.5	Interpreters		
	7.6	Process control		
8	8	Applied Architectures and Styles	1,2,3	8
	8.1	Distributed and Networked Architectures.		
	8.2	Architectures for Network-Based Applications.		
	8.3	Decentralized Architectures.		
	8.4	Service -Oriented Architectures and Web Services.		
9	9	Designing for Non-Functional Properties	1,2,3	4
	9.1	Efficiency.		
	9.2	Complexity.		
	9.3	Scalability and Heterogeneity.		
	9.4	Adaptability.		
	9.5	Dependability.		
10	10	Domain-Specific Software Engineering	1,2,3	4
	10.1	Domain-Specific Software Engineering in a Nutshell.		
	10.2	Domain-Specific Software Architecture.		
	10.3	DSSAs, Product Lines, and Architectural Styles.		
			Total	48

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

- [1] "Information Technology Project Management", Jack T. Marchewka, 3rd edition, Wiley India, 2009.
- [2] S. J. Mantel, J. R. Meredith and etl.. "Project Management" 1st edition, Wiley India, 2009.
- [3] John M. Nicholas, "Project Management for Business and Technology", 2nd edition, Pearson Education.
- [4] Joel Henry, "Software Project Management, A realworld guide to success", Pearson Education, 2008.
- [5] Gido and Clements, "Successful Project Management", 2nd edition, Thomson Learning.
- [6] Hughes and Cornell, "Software Project Management", 3rd edition, Tata McGraw Hill

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total
	Elective-IISoft Computing	4	-		4	-		4
CPE7025		Examination Scheme						
CPE/023		ISE		MSE	ESE		,	Total
		20		20	60			100

Pre-requisit	e Course	Codes Programming Languages (C, C++, Java)
		Basic Mathematics
At end of suc	ccessful d	ompletion of this course, student will be able to
	CO1	Identify the various characteristics of soft computing techniques.
	CO2	Apply the supervised and unsupervised learning algorithm for real world
		applications.
Course	CO3	Apply &design fuzzy controller system.
Outcomes	CO4	Appreciate the importance of optimizations and its use in computer
Outcomes		engineering fieldsand other domains.
	CO5	Understand the efficiency of a hybrid system and how Neural Network
		and fuzzylogic can be hybridized to form a Neuro-fuzzy network and its
		various applications.

Module No.	Topics	Ref.	Hrs.
1	Introduction to Soft Computing	1-9	04
1	Soft computing Constituents, Characteristics of Neuro Computing and	1-7	04
	Soft Computing, Difference between HardComputing and Soft		
	Computing, Concepts of Learning and Adaptation.		
2	Neural Networks	1-9	14
	Basics of Neural Networks: Introduction to Neural Networks,		
	Biological NeuralNetworks, McCulloch Pitt model,		
	Supervised Learning algorithms: Perceptron (Single Layer,		
	Multilayer), Linear separability, Delta learning rule, Back Propagation		
	algorithm,		
	Un-Supervised Learning algorithms: Winner take all, Self- Organizing		
	Maps, Learning VectorQuantization.		
3	Fuzzy Set Theory	1-9	14
	Classical Sets and Fuzzy Sets, Classical Relations and FuzzyRelations,		
	Properties of membership function, Fuzzyextension principle,		
	Fuzzy Systems- fuzzification, defuzzification and fuzzy controllers.		
4	Hybrid system	1-9	04
	Introduction to Hybrid Systems, Adaptive		
	NeuroFuzzyInferenceSystem(ANFIS).		
5	Introduction to Optimization Techniques		06

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	Derivative based optimization- Steepest Descent, Newton method.		
	Derivative free optimization- Introduction to EvolutionaryConcepts.		
6	Genetic Algorithms and its applications:	1-9	06
	Inheritance Operators, Cross over types, inversion and Deletion,		
	Mutation Operator, Bit-wise Operators, Convergence of GA,		
	Applications of GA.		
		Total	48

- [1] Timothy J.Ross "Fuzzy Logic With Engineering Applications" Wiley.
- [2] S.N.Sivanandam, S.N.Deepa "Principles of Soft Computing" Second Edition, Wiley Publication.
- [3] S.Rajasekaran and G.A.VijayalakshmiPai "Neural Networks, Fuzzy Logic and Genetic Algorithms" PHI Learning.
- [4] J.-S.R.Jang "Neuro-Fuzzy and Soft Computing" PHI 2003.
- [5] Jacek.M.Zurada "Introduction to Artificial Neural Sytems" Jaico Publishing House.
- [6] Satish Kumar "Neural Networks A Classroom Approach" Tata McGrawHill.
- [7] Zimmermann H.S "Fuzzy Set Theory and its Applications" Kluwer Academic Publishers.
- [8] Davis E.Goldberg, "Genetic Algorithms: Search, Optimization and Machine Learning", Addison Wesley, N.Y., 1989.
- [9] Hagan, Demuth, Beale, "Neural Network Design" CENGAGE Learning, India Edition

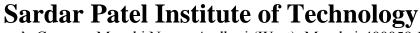
Course Code	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total	
CPE7026	Elective-IIEnterprise Resource Planning and Supply Chain Management (ERP & SCM)	4	-	-	4	-	-	4	
		Examination Scheme							
		ISE		MSE	ESE		,	Total	
		20		20	60			100	

Pre-requisite C	Pre-requisite Course Codes -						
At end of succes	At end of successful completion of this course, student will be able to						
	CO1	To conceptualize the basic structure of ERP and SCM					
	CO2	To identify implementation strategy used for ERP and SCM.					
Course	CO3	To apply design principles for various business module in ERP and					
Outcomes		SCM.					
	CO4	To apply different emerging technologies for implementation of ERP					
		and SCM.					

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Introduction:	1,2,3	02
		What is an Enterprise, Introduction to ERP, Need for ERP,		
		Structure of ERP, Scope and Benefits, Typical business		
		processes		
2	2.1	ERP and Technology: ERP and related technologies, Business	1,2,3	04
		Intelligence, E-business and E-commerce, Business Process		
		Reengineering,		
3	3.1	ERP and Implementation: ERP implementation and strategy,	1,2,3	06
		Implementation Life cycle, Pre-implementation task,		
		requirement definition, implementation methodology)		
4	4.1	ERP Business Modules	1,2,3	08
		Modules: Finance, manufacturing, human resources, quality		
		management, material management, marketing. Sales		
		distribution and service		
5	5.1	Extended ERP:	1,2,3	04
		Enterprise application Integration (EAI), open source ERP,		
		cloud ERP		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Supply	Chain N	Management (SCM)		
6	6.1	Introduction and strategic decisions in SCM	1,2,3	08
		Drivers of Supply chain, Strategic decisions in SCM, Business		
		Strategy, CRM strategy, SRM strategy, SCOR model.		
7	7.1	Information Technology in SCM:	1,2,3	06
		Types of IT Solutions like Electronic Data Inter change (EDI),		
		Intranet/ Extranet, Data Mining/ Data Warehousing and Data		
		Marts, E-Commerce, E- Procurement, Bar coding, RFID, QR		
		CODE		
8	8.1	Mathematical modelling for SCM: Introduction,	1,2,3	06
		Considerations in modelling SCM systems, Structuring the		
		logistics chain, overview of models: models on transportation		
		problem, assignment problem, vehicle routing problem, Model		
		for vendor analysis, Make versus buy model		
9	9.1	Agile Supply Chain: Introduction, Characteristics of Agile	1,2,3	02
		Supply Chain, Achieving Agility in Supply Chain	, ,	
10	10.1	Cases of Supply Chain: 10.1 Cases of Supply Chain like,	1,2,3	02
		News Paper Supply Chain, Book Publishing, Mumbai		
		Dabbawala, Disaster management, Organic Food, Fast Food		
		<u> </u>	Total	48


- [1] V.K. Garg& N.K. Venkatakrishnan, "Enterprise Resource Planning: concepts & practices", PHI.
- [2] R. P. Mohanty, S. G. Deshmukh, "Supply Chain Management Theories & Practices", Dreamtech Press.
- [3] Alexis Leon, "ERP Demystified: II Edition", McGraw Hill.
- [4] Rahul Altekar, "Enterprise wide resource planning: Theory & practice", PHI.

Course	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	T	P	L	T	P	Total
	Network threats and attacks Laboratory			4			2	2
CPL701		Examination Scheme						
CPL/01		IS	ISE		MSE		SE	Total
		4	0	-	-	2	20	60

Pre-requisite Course Codes	CPL601(Network Programming Lab)				
At end of successful completion of this course, student will be able to					
	CO1	Use network-based tools for network analysis			
	CO2	Use techniques for Network scanning			
Course Outcomes	CO3	Identify network vulnerability			
	CO4	Use tools to simulate intrusion detection system			
	CO5	To understand and install a firewall			

Exp. No.	Experiment Details	Ref.	Marks
1	Title: Study the use of network reconnaissance tools like	1,3	5
	WHOIS, dig, traceroute, nslookup to gather information about		
	networks and domain registrars.		
	Objective: Objective of this module to how to gather information		
	about the networks by using different n/w reconnaissance tools.		
	Scope : Network analysis using network based tools		
	Technology: Networking		
2	Title:Study of packet sniffer tools like wireshark, ethereal,	1,2	5
	tcpdump etc. You should be able to use the tools to do the		
	following		
	1. Observer performance in promiscuous as well as non-		
	promiscuous mode.		
	2. Show that packets can be traced based on different filters.		
	Objective: Objective of this module is to observer the performance		
	in promiscuous & non-promiscuous mode & to find the packets		
	based on different filters.		
	Scope: Packet grapping, message and protocol analysis		
	Technology: Networking	1.4	
3	Title: Download and install nmap. Use it with different options to	1,4	5
	scan open ports, perform OS fingerprinting, do a ping scan, tcp port		
	scan, udp port scan, etc.		
	Objective: objective of this module to learn nmap installation & use		
	this to scan different ports.		
	Scope: used for ip spoofing and port scanning		
	Technology: Networking	1.0	_
4	Title: Use the Nessus tool to scan the network for vulnerabilities.	1,3	5
	Objective: Objective of the module is scan system and network		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	analysis.		
	Scope: It used for system analysis, security and process analysis		
	Technology: Networking		
5	Title : Install IDS (e.g. SNORT) and study the logs.	1,2	5
	Objective : Simulate intrusion detection system using tools such as		
	snort		
	Scope: It is used for intrusion detection system vulnerability scans		
	Technology: Networking		
6	Title : Use of iptables in linux to create firewalls.	1,2	5
	Objective: To study how to create and destroy firewall security		
	parameters.		
	Scope : system security and network security		
	Technology: Networking		
7	Title: Mini project		10
	Objective: To implement Networking concepts		
	Scope: To understand Network & system tools		
	Technology: Networking		
	Total M	Iarks	40

- [1] Chris McNab, "Network Security Assessment", O'Reilly
- [2] Andrew Lockhart, "Network Security Hacks", O'Reilly
- [3]DafyddStuttard& Marcus Pinto, "The Web Application Hacker's Handbook 2nd Edition", Wiley Publication(2014).
- [4]DaviOttenheimer& Matthew Wallace, "Securing the Virtual Environment", Willey Publication(2012).

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	T	P	L	T	P	Total
	Digital Signal Processing Lab			2			1	1
CPCL701		Examination Schen				ne		
CPCL/01		ISE		MSE		ESE		Total
		4	0		•	2	20	60

Pre-requisite (Course Codes	CPC701(Digital Signal Processing)				
At end of succe	ssful completion	on of this course, student will be able to				
	CPC701.1 Develop a program to sample a Continuous Time Signal an					
		convert it to DT Signal.				
	CPC701.2	Calculate convolution and correlation of a DT signals and verify				
Course		the results using mathematical formula				
Outcomes	CPC701.3	Develop a function to perform DFT, FFT and Fast DSP				
Outcomes		Algorithms of N point signal.				
	CPC701.4	Study Real Time Signal Processing				
	CPC701.5	To implement any signal processing operation on one				
		dimensional signal.				

Exp. No.	Experiment Details	Ref.	Marks
1	To study sampling and reconstruction of signal	1,8	5
2	To perform Discrete Correlation	1,2,3,8	5
3	To perform Discrete Convolution	2,3	5
4	To perform Discrete Fourier Transform	6,7,8	5
5	To perform Fast Fourier Transform	6,7,8	5
6	To perform filtering of Long Data Sequence	1,6,7,8	5
7	To perform real time signal processing.	5	5
8	Application of Digital Signal Processing.	1,3,8	5
	1	Total Marks	40

- [1] Ashok Ambardar, "Digital Signal Processing", Cengage Learning, 2007,
- [2] Emmanuel, Ifeachor, Barrie, Jervis, "Digital Signal Processing: A Practical Approach", Pearson Education

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

- [3] S. Salivahanan, A. Vallavaraj, C. Gnanapriya, "Digital *Signal Processing* "TataMcgraw Hill Publication First edition (2010).
- [4] AvtarSignh, S.Srinivasan, "Digital Signal Processing", Thomson Brooks/Cole
- [5] B. Venkatramani, M. Bhaskar, "Digital Signal Processor", TataMcGraw Hill, 2nd Edition,
- [6] SanjitMitra, "Digital Signal Processing : A Computer Based Approach", TataMcGraw Hill, Third Edition
- [7] Dr, ShailaApte, "Digital Signal Processing,", Wiley India, 2nd Edition,2013
- [8] ProakisManolakis, "Digital Signal Processing: Principles, Algorithms and Applications"

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	T	P	L	T	P	Total
	Cryptography and System Security Lab			2			1	1
CPCL702		Examination Scheme						
CPCL/02		IS	SE	M	SE	E	SE	Total
		40			-		20	60

Pre-requisite Course	Codes	CPC702(Cryptography and System Security)			
At end of successful completion		of this course, student will be able to			
	CO1	Understand working of Public key Cryptographic technique.			
Course Outcomes	CO2	To develop and Secure any application using different methods			
Course Outcomes	CO3	To implement different session hijacking techniques			
	CO4	To analyze different SQL injection attacks on application			

Exp.	Experiment Details	Ref.	Marks
No.			
1	Simulation of RSA algorithm.	1,3	5
2	Implement MD5 algorithm	1,3,4	5
3	Implement Blowfish attack.	1,3,4	5
4	Simulation of Deffie-Hellman key exchange algorithm.	1,4	5
5	Implement Pretty Good Privacy (PGP) security method.	1,3,4	5
6	Implement SSL web security method.	1,2,4	5
7	Simulation of session Hijacking attack.	1,3,4	5
8	Simulation of SQL injection	1,3,4	5
	Tota	Marks	40

- [1] [1] William Stallings, "Cryptography and Network Security: Principles and Practice", Pearson, 5th edition.
- [2] Bernard Menezes, "Network Security and Cryptography", Cengage Learning, 2nd edition.
- [3] Behrouz A Fourouzan, DebdeepMukhopadhyay, "Cryptography and Network", TMH, 2nd edition.
- [4] Behrouz A. Forouzan, "Cryptography and Network Security", TMH
- [5] Charles P. Pfleeger, "Security in Computing", Pearson Education.
- [6] Matt Bishop, "Computer Security Art and Science", Addison-Wesley.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	T	P	L	T	P	Total
CPCL703				2			1	1
	Artificial Intelligence Lab	Examina	Examination Scheme				е	
	Artificial Intelligence Lab	ISE		MSE		E	SE	Total
		40		-		2	20	60

Pre-requisite Course Codes	CPC703(Artificial Intelligence)				
At end of successful completion	s course, student will be able to				
	CO1	Ability to analyze and learn problem formulation method(such			
		as state space search)			
	CO2	Students will be able to learn different informed and uninformed			
G		searching techniques.			
Course Outcomes	CO3	Students will be able to describe logic programming and basic			
		constructs used in AI programming			
	CO4	Students will be able to develop/demonstrate/ build simple			
		intelligent systems using different AI techniques.			

Exp.	Experiment Details	Ref.	Marks	
No.				
1	Implementation of Water Jug problem. Problem: Given 3 jugs of capacities: 12, 8 and 5 liters. Our 12 L jug is completely filled. Using these 3 jugs split the water to obtain exactly 6 Liters.	1,3	5	
2	Implementation of Tic-Tac-Toe problem with MinMax Algorithm	1	5	
3	Implementing N-Queen problem using Backtracking	1	5	
4	Study Experiment on Predicate logic	1,3	5	
5	Prolog Program to find Sublists of the given list & Reverse of the list	2	5	
6	Implementation of Reasoning concept for family tree using Prolog	2	5	
7	Study Experiment on OpenNLP	1,4	5	
8	Mini Project		5	
Total Marks				

- [1] Stuart J. Russell and Peter Norvig, "Artificial Intelligence A Modern Approach "Second Edition", Pearson Education.
- [2] Ivan Bratko "PROLOG Programming for Artificial Intelligence", Pearson Education, ThirdEdition.
- [3] Elaine Rich and Kevin Knight "Artificial Intelligence "Third Edition
- [4] Davis E.Goldberg, "Genetic Algorithms: Search, Optimization and Machine Learning", Addison Wesley, N.Y., 1989.
- [5] Han Kamber, "Data Mining Concepts and Techniques", Morgann Kaufmann Publishers.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	T	P	L	T	P	Total	
	Elective-IIAdvanced Algorithm Laboratory			2			1	1	
CPEL7021		Examination Scheme							
CPEL/021		ISE		MSE		ESE		Total	
		40		-		20		60	

Pre-requisite Course Codes CF		PE7021(Advanced Algorithm)		
At end of successful completion of the		his course, student will be able to		
	CO1	Ability to apply and implement learned algorithm design		
		techniques and data structures to solve problems.		
	CO2	Ability to implement different operations of red-black trees		
Course Outcomes		and binomial heaps.		
	CO3	To demonstrate dynamic programming algorithms.		
	CO4	Ability to implement Graph algorithms in solving variety		
		of problems.		

Exp.	Experiment Details	Ref	Marks		
No.		•			
1	Usethe B-treeinsertion/search algorithms towrite a B-tree ADT anduseitinyourprogramtoconstructadictionaryrepresentingthebooktitlehel dinvariouslibraries. The program then should answer queries to the dictionary a boutbook titles.	1	5		
2	Implementation of Red-Black trees and its various operations.	1	5		
3	Implementation of Binomial Heaps and its various operations	1	5		
4	Implementation of Dynamic programing: matrix chain multiplication Cutting rod example	1	5		
5	Implementation of Bellman ford, Johnson's algorithm for sparse graphs	1	5		
6	Implementation of Ford Fulkerson algorithm , push -relabel to front methods	1,2	5		
7	Program to Find closest pair of points, Determining the convex hull				
8	Implementation of Simplex algorithm 1				
	Total M	Iarks	40		

- [1] T.H.Coremen , C.E. Leiserson, R.L. Rivest, and C. Stein, "Introduction to algorithms", 2nd edition , PHI publication 2005.
- [2] John Kleinberg, Eva Tardos, "Algorithm Design", Pearson
- [3] Ellis Horowitz ,SartajSahni , S. Rajsekaran. "Fundamentals of computer algorithms" University press.

Course	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
Code		L	T	P	L	T	P	Total	
	Elective-IIComputer Simulation and Modeling Lab			2			1	1	
		Examination Scheme							
CPEL7022		IS	SE	M	SE	E	SE	Total	
		40			-	20		60	

Pre-requisite Course Codes			CPE7022 (Computer Simulation and Modeling)					
At end of succe	ssful co	mpletion	of this course, student will be able to					
	CO1	Design a	and Perform Queue- single server, multi-server, classic case-					
		dump tr	ump truck					
	CO2	Design a	Design and Perform Inventory – Lead time=0, lead time fixed, lead					
Course		time pro	babilistic					
Outcomes	CO3	Design a	and Perform Reliability problem					
	CO4	O4 Design and Perform statistical models						
	CO5	Design and Perform Random number generate and test						
	CO6	Design a	and Perform Goodness of fit test and Output analysis					

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Exp. No.	Experiment Details	Ref.	Marks	
1	Design and Perform Queue- single server, multi-server, classic case- dump truck using spreadsheets and/or simulation language/package	1,2,3	5	
2	Design and Perform Inventory – Lead time=0, lead time fixed, lead time probabilistic using spreadsheets and/or simulation language/package	1,2,3	5	
3	Design and Perform Reliability problem using spreadsheets and/or simulation language/package	1,2,3	5	
4	Design and Perform statistical models using spreadsheets and/or simulation language/package	1,2,3	5	
5	Design and Perform Random number generate and test using spreadsheets and/or simulation language/package	1,2,3	5	
6	Design and Perform Goodness of fit test using spreadsheets and/or simulation language/package.	1,2,3	5	
7	Design and Perform Output analysis – Point estimate and Confidence Interval using spreadsheets and/or simulation language/package.	1,2,3	10	
Total Marks				

- [1]Jerry Banks, John Carson, Barry Nelson, and David M. Nicol,"Discrete Event System Simulation; Third Edition", Prentice-Hall
- [2] Jerry Banks, John Carson, Barry Nelson, and David M. Nicol, "Discrete Event System Simulation; Fifth Edition", Prentice-Hall
- [3] Averill M Law, "System Modeling & Analysis: 4th Edition" TMH.

Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
	L	T	P	L	T	P	Total
			2			1	1
	Examination Scheme	ie	•				
Elective-IIImage Processing	ISE		MSE		ESE		Total
	4	0		-	2	20	60
		Elective-IIImage Processing (H	Course Name	Course Name	Course Name	Course Name	Course Name

Pre-requisite Course Codes		des CPE702	CPE7023(Image Processing)				
At end of succes	sful con	oletion of this cou	rrse, student will be able to				
	CO1		Image Enhancement using Zero Memory Point listogram Processing Technique				
Course	CO2	Implement Image Segmentation UsingHorizontal and Vertical Line Detection Segmentation Split and Merge Technique					
Outcomes	for Image Compression and De-compression Using and Decoding and Huffman Coding and Decoding.						
	CO4		for Binary Image Processing Using Hit or Miss onnected Component Algorithm.				

Exp. No.	Experiment Details	Ref.	Marks
1	Write a Program for Image Enhancement using Zero Memory Point Operations.	1,2,3	5
2	Write a Program for Image Enhancement using Histogram Processing Technique	1,2,3	5
3	Implement Image Segmentation using Horizontal and Vertical Line Detection	1,2,3	5
4	Write a Program for Image Segmentation using Split and Merge Technique	1,2,3	5
5	Write a Program for Image Compression and De-compression Using Arithmetic Coding and Decoding	1,2,3	5
6	Write a Program for Image Compression and De-compression Using Huffman Coding and Decoding	1,2,3	5
7	Write a Program for Binary Image Processing Using Hit or Miss Transform.	1,2,3	5
8	Write a Program for Binary Image Processing Using Connected Component Algorithm	1,2,3	5
Total Marks			40

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

- [1] Rafel C. Gonzalez and Richard E. Woods, 'Digital Image Processing', Pearson Education Asia, Third Edition, 2009,
- [2] S. Jayaraman, E.Esakkirajan and T.Veerkumar, "Digital Image Processing" TataMcGraw Hill Education Private Ltd, 2009,
- [3] Anil K. Jain, "Fundamentals and Digital Image Processing", Prentice Hall of India Private Ltd, Third Edition.
- [4] .S. Sridhar, "Digital Image Processing", Oxford University Press, Second Edition, 2012.
- [5] Robert Haralick and Linda Shapiro, "Computer and Robot Vision", Vol I, II, Addison Wesley, 1993.

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	T	P	L	T	P	Total
CPEL7024				2			1	1
	Dis 42 II C - 64	Examination	ation	Scheme				
	Elective-II Software Architecture	ISE MSE ESE		SE	Total			
		4	0		-	2	20	60

Pre-requisite Course Codes	CPI	E7024 (Software Architecture)		
At end of successful completi	on of th	nis course, student will be able to		
Pre-requisite Course Learner will be able to				
Codes				
	CO1	Design and program Modeling and Visualization		
	CO2	Program Integrate Software Component		
	CO3	Implement Connectors using middleware		
Course Outcomes	CO4	Design and Program Wrapper to connect two applications with different architectures		
	CO5	Design and Program for Creating web service		
	CO6	Program and Design Architecture for any specific domain		

Exp. No.	Experiment Details	Ref.	Marks	
1	Write a Program for Modeling using xADL		5	
2	Write a Program for Visualization using xADL 2.0	1-6	5	
3	Write a Program to Integrate software components using a middleware	1-6	5	
4	Write a Program Using middleware to implement connectors	1-6	5	
5	Write a Program for Wrapper to connect two applications with different architectures	1-6	5	
6	Write a Program for Creating web service	1-6	5	
7	Write a Program to Design Architecture for any specific domain	1-6	5	
8	Perform Analysis-Case Study	1-6	5	
Total Marks				

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

- [1] "Information Technology Project Management", Jack T. Marchewka, 3rd edition, Wiley India, 2009.
- [2] S. J. Mantel, J. R. Meredith and etl.. "Project Management" 1st edition, Wiley India, 2009.
- [3] John M. Nicholas, "Project Management for Business and Technology", 2nd edition, Pearson Education.
- [4] Joel Henry, "Software Project Management, A realworld guide to success", Pearson Education, 2008.
- [5] Gido and Clements, "Successful Project Management", 2nd edition, Thomson Learning. [6] Hughes and Cornell, "Software Project Management", 3rd edition, Tata McGraw Hill

Course	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	T	P	L	T	P	Total
	Elective-II Soft Computing Lab			2			1	1
		Examination Scheme						
CPEL7025		ISE		M	MSE		SE	Total
		4	40		-		20	60

Pre-requisite Course Codes		CPE7025(Soft Computing)					
At end of successful completion of this course, student will be able to							
	CO1	Differentiate various Transfer Functions.					
Course Outcomes	CO2	Apply the supervised and unsupervised learning algorithm.					
Course Outcomes	CO3	Apply &design fuzzy controller system.					
	CO4	Apply Genetic algorithm for basic optimization problem.					

Exp. No.		Experime	ent Details	Ref.	Marks
1	To implement M	Ic-Culloch Pitts M	lodel.	1-5	5
2	To implement T	ransfer/Activation	Functions.	1-5	5
	i) A syn	nmetric hard limit tr	ansfer function.		
	ii) A Bin	ary step activation f	unction.		
	iii) A Bip	olar step activation	function.		
	iv) A sat	urating linear transf	er function.		
			noid (tansig) transfer function.		
	vi) A log	-sigmoid transfer fu	nction		
3	To implement B	Basic Neural Netwo	ork learning rules.	1-5	5
	PROBLEM TO DIS	TINGUISH BETWEEN	APPLES AND ORANGES		
	A produce dealer	has a warehouse th	nat store a variety of fruits		
	&vegetables.Whe				
	fruits may be mix				
		•	a conveyer belt on which the fruit is		
			a set of sensors, which measure		
	, ,	of fruits :shape , tex	ture and weight.		
	Bias= < Any Value	7			
	Type of sensor	Output of sensor	Condition		
	Shape sensor	1	if fruit is approx. round	-	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		0	if fruit is elliptical.		
	Texture	1	If surface is smooth		
	Sensor				
		0	If surface is rough		
	Fruit sensor	1	Apple		
		0	Orange		
	A) Design a	perceptronto recogi	nize these patterns using Joone		
	Editor.				
	B) Write a	C++/JAVA/Python p	rogram to design a perceptron to		
	recognize	e these patterns.			
4	To implement F	Heabbian Learning	algorithm.	1-5	5
5	To implement N	Aulti layer Percepti	ron Learning algorithm.	1-5	5
6	To implement F	To implement Fuzzy Sets and Fuzzy Relations			5
7	To implement F	ement Fuzzy Controllers			
8	To implement a simple application using Genetic Algorithm.			1-5	5
			Total N	Aarks	40

- [1] Samir Roy and Chakraborty, "Introduction to soft computing", Pearson Edition.
- [2] S.N.Sivanandam, S.N.Deepa "Principles of Soft Computing" Second Edition, Wiley Publication.
- [3] S.Rajasekaran and G.A.VijayalakshmiPai "Neural Networks, Fuzzy Logic and Genetic Algorithms" PHI Learning.
- [4] Satish Kumar "Neural Networks A Classroom Approach" Tata McGrawHill.
- [5] Hagan, Demuth, Beale, "Neural Network Design" CENGAGE Learning, India Edition.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	T	P	L	T	P	Total
	Elective-II Enterprise Resource Planning and Supply Chain Management Lab(ERP & SCM)			2			1	1
CPEL7026		Examination Scheme						
CPEL/020		IS	SE .	MSE		E	SE	Total
		40		-	2	20	60	

Pre-requisite Course Codes		Codes	CPE7026(Enterprise Resource Planning and Supply Chain
			Management)
At end of succ	essful c	ompletion of	of this course, student will be able to
	CO1	To unders	stand the technical aspects of ERP and SCM systems.
	CO2	Identify th	ne factors that lead to the development and implementation of
C		ERP syste	ems.
Course	CO3	Create pro	ocess model that assist with process improvement and ERP
Outcomes		implemen	tation.
	CO4	Discuss th	ne advantages and disadvantages of implementing
		ERP syste	em.

Exp. No.	Experiment Details	Ref.	Marks
1	Simulating business processes of an Enterprise.	1-6	5
2	Designing a web portal for an Enterprise using E-business	1-6	5
	Models.		
3	Implementing Business Intelligence.	1-6	5
4	Study of Open source ERP.	1-6	5
5	Study of Cloud ERP.	1-6	5
6	To study Business process agility.	1-6	5
7	To implement E-procurement model.	1-6	5
8	Design of SCM model.	1-6	5
	Total I	Marks	40

- [1] Sandeep Desai, Abhishek Srivastava, "ERP to E² ERP: A Case study approach", PHI.
- [2] David Olson, "Managerial Issues of ERP system", McGraw Hill.
- [3] V.K. Garg& N.K. Venkatakrishnan,"Enterprise Resource Planning: concepts &practices", PHI.
- [4] R. P. Mohanty, S. G. Deshmukh,, "Supply Chain Management Theories & Practices", Dreamtech Press.
- [5] Alexis Leon, "ERP Demystified: II Edition", McGraw Hill.
- [6] Rahul Altekar, "Enterprise wide resource planning: Theory &practice",PHI.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	T	P	L	T	P	Total
	Project (Stage I)			6			3	3
CP701		Examir			ation Scheme			
CP /UI		ISE		M	MSE		SE	Total
		Phase	e-I:40	-	-	2	20	100
		Phase	e-II:40					

Guidelines for Project

- > Students should do literature survey/visit industry/analyze current trends and identify the problem for Project and finalize in consultation with Guide/Supervisor. Students should use multiple literatures and understand the problem.
- > Students should attempt solution to the problem by experimental/simulation methods.
- > The solution to be validated with proper justification and report to be compiled in standard format.
- Guidelines for Assessment of Project I
- Project I should be assessed based on following points Quality of problem selected
- Clarity of Problem definition and Feasibility of problem solution Relevance to the specialization
- Clarity of objective and scope
- Breadth and depth of literature survey
- > Project I should be assessed through a presentation by the student project group to a panel ofInternal examiners appointed by the Head of the Department/Institute of respective Programme.

SEMESTER – VIII

Course Code	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total	
	Data Warehouse and Mining	4	-		4	-		4	
CDC901		Exami			ination Scheme				
CPC801		ISE		MSE	E	SE	'	Total	
		20		20	60			100	

Pre-requisite Course Codes		e Codes	CSC404 (Database Management System)					
			CPC603 (Distributed Database)					
At end of suc	cessful c	completion of	of this course, student will be able to					
	CO1	Discuss the	need of data warehouse and the concepts of data warehousing.					
Course	CO2	Describe th	e ETL process and illustrate the OLAP operations					
Outcomes	CO3	Express the	concepts of data mining, data exploration, preprocessing					
Outcomes	CO4	1100	rithms in data mining and data warehousing; assess the strengths and					
		weaknesse	s of the algorithms, identify the application area of algorithms					

Module	Topics	Ref.	Hrs.
No.			
1	Introduction to Data Warehousing The Need for Data Warehousing; Increasing Demand for StrategicInformation; Inability of Past Decision Support System; Operational V/sDecisional Support System; Data Warehouse Defined;Benefits of DataWarehousing;Features of a Data Warehouse;TheInformationFlowMechanism;Role of Metadata; Classification of Metadata; Data WarehouseArchitecture; Different Types of Architecture;Data Warehouse and DataMarts; Data Warehousing Design Strategies.	1,3	04
2	Dimensional Modeling Data Warehouse Modeling Vs Operational Database Modeling; DimensionalModelVs ER Model; Features of a Good Dimensional Model; The StarSchema; How Does a Query Execute? The Snowflake Schema; Fact Tablesand Dimension Tables; The Factless Fact Table; Updates To DimensionTables: Slowly Changing Dimensions, Type 1 Changes, Type 2 Changes, Type 3 Changes, Large Dimension Tables, Rapidly Changing or LargeSlowly Changing Dimensions, Junk Dimensions, Keys in the DataWarehouse Schema, Primary Keys, Surrogate Keys & Foreign Keys;Aggregate Tables; Fact Constellation Schema or Families of Star.	1,3	06
3	ETL Process	1,2,3	06
	Challenges in ETL Functions; Data Extraction; Identification of		

	DataSources; Extracting Data: Immediate Data Extraction, Deferred DataExtraction; Data Transformation: Tasks Involved in Data Transformation, Data Loading: Techniques of Data Loading, Loading the Fact Tables and Dimension Tables Data Quality; Issues in Data Cleansing.		
4	Online Analytical Processing (OLAP) Need for Online Analytical Processing; OLTP V/s OLAP; OLAP and Multidimensional Analysis; Hypercubes; OLAP Operations inMultidimensional Data Model; OLAP Models: MOLAP, ROLAP, HOLAP,DOLAP;	1,3,6,9	04
5	Introduction to data mining What is Data Mining; Knowledge Discovery in Database (KDD), What canbe Data to be Mined, Related Concept to Data Mining, Data MiningTechnique, Application and Issues in Data Mining	1,3,4,5	02
6	Data Exploration Types of Attributes; Statistical Description of Data; Data Visualization; Measuring similarity and dissimilarity.	1,7	02
7	Data Preprocessing Why Preprocessing? Data Cleaning; Data Integration; Data Reduction: Attribute subset selection, Histograms, Clustering and Sampling; Data Transformation & Data Discretization: Normalization, Binning, Histogram Analysis and Concept hierarchy generation.	1,8	04
8	Classification Basic Concepts; Classification methods:Decision Tree Induction: Attribute Selection Measures, Tree pruning, Bayesian Classification: Naïve Bayes' Classifier, Prediction: Structure of regression models; Simple linear regression, Multiple linear regression, Model Evaluation & Selection: Accuracy and Error measures, Holdout,Random Sampling, Cross Validation, Bootstrap; Comparing Classifierperformance using ROC Curves, Combining Classifiers: Bagging, Boosting, Random Forests.	1,4,8	06
9	Clustering What is clustering? Types of data, Partitioning Methods (K-Means, K-Medoids) Hierarchical Methods(Agglomerative, Divisive, BRICH), Density-Based Methods (DBSCAN, OPTICS)	1,4,8	06
10	Mining Frequent Pattern and Association Rule Market Basket Analysis, FrequentItemsets, Closed Itemsets, andAssociation Rules; Frequent Pattern Mining, Efficient and Scalable FrequentItemset Mining Methods, The Apriori Algorithm for finding FrequentItemsets Using Candidate Generation, Generating Association Rules fromFrequentItemsets, Improving the Efficiency of Apriori, A pattern growthapproach for mining Frequent Itemsets; Mining Frequent itemsetssusingvertical data formats; Mining	1,4	08

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

closed and	maximal patterns; Introduction toMiningMultilevel		
Association	Rules andMultidimensionalassociationRules; From		
Association	Mining to Correlation Analysis, Pattern		
EvaluationM	easures; Introduction to Constraint-Based Association		
Mining.			
		Total	48

- [1] Han, Kamber, "Data Mining Concepts and Techniques", Morgan Kaufmann 3nd Edition
- [2] PaulrajPonniah, "Data Warehousing: Fundamentals for IT Professionals", Wiley India
- [3] ReemaTheraja "Data warehousing", Oxford University Press.
- [4] M.H. Dunham, "Data Mining Introductory and Advanced Topics", Pearson Education
- [5] Randall Matignon, "Data Mining using SAS enterprise miner", Wiley Student edition.
- [6] Alex Berson, S. J. Smith, "Data Warehousing, Data Mining & OLAP", McGraw Hill.
- [7] VikramPudi&Radha Krishna, "Data Mining", Oxford Higher Education.
- [8] Daniel Larose, "Data Mining Methods and Models", Wiley India.
- [9] P.S.Deshpande, "SQL & PL/SQL for Oracle 11 g", dreamtech PRESS.

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	P	L	T	P	Total
	Human Machine Interaction	4	-		4	-		4
CPC802		Examination Scheme						
CPC802		ISE		MSE	ESE		,	Fotal
		20		20		60		100

Pre-requisite	Course	Codes CPL501(Web Technology)			
_		CPC602 (Software Engineering)			
At end of successful completion of this course, student will be able to					
	CO1	Identify the various design principles used for interacting between			
		human and machine.			
Course	CO2	Apply human psychology of everyday actions and UI design process for			
Outcomes		real world applications.			
Outcomes	CO3	Implement mobile, windows and web based application.			
	CO4	Evaluate and justify UI design			
	CO5	Create application for social and technical task.			

Module No.	Topics	Ref.	Hrs.
1	Introduction	1-8	10
	Introduction to Human Machine Interface, Hardware, software		
	andoperating environment to use HMI in various fields, The		
	psychopathology of everyday things - complexity of modern		
	devices; human-centered design; fundamental principles of interaction;		
	Psychologyof everyday actions- how people do things; the seven stages		
	of action andthree levels of processing; human error		
2	Understanding goal directed design	1-8	08
	Goal directed design; Implementation models and mental		
	models;Beginners, experts and intermediates – designing for different		
	experiencelevels; Understanding users; Modeling users – personas and		
	goals.		
3	GUI	1-8	08
	benefits of a good UI; popularity of graphics; concept of		
	directmanipulation; advantages and disadvantages; characteristics of		
	GUI; characteristics of Web UI; General design principles.		
4	Design guidelines	1-8	08
	perception, Gesalt principles, visual structure, reading is		
	unnatural, color, vision, memory, six behavioral patterns, recognition		
	and recall, learning, factors affecting learning, time.		

Sardar Patel Institute of Technology van's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-

THE STATE OF THE S

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

5	Interaction styles	1-8	06
	Menus; windows; device based controls, screen based controls.		
6	Communication		08
	Text messages; feedback and guidance; graphics, icons and images; colours.		
	·	Total	48

- [1] Alan Dix, J. E. Finlay, G. D. Abowd, R. Beale "Human Computer Interaction", Prentice Hall.
- [2] Wilbert O. Galitz, "The Essential Guide to User Interface Design", Wiley publication.
- [3] Alan Cooper, Robert Reimann, David Cronin, "About Face3: Essentials of Interaction design", Wiley publication.
- [4] Jeff Johnson, "Designing with the mind in mind", Morgan Kaufmann Publication.
- [5] Donald A. Normann, "Design of everyday things", Basic Books; Reprint edition 2002.
- [6] Donald A. Norman, "The design of everyday things", Basic books.
- [7] Rogers Sharp Preece, "Interaction Design:Beyond Human Computer Interaction", Wiley.
- [8] Guy A. Boy "The Handbook of Human Machine Interaction", Ashgate publishing Ltd.

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total
	Parallel and Distributed System	4	-		4	-		4
CPC803		Examination Scheme						
CFC803		ISE		MSE	E	SE	,	Fotal
		20		20		60		100

Pre-requisi	te Cou	rse Codes -						
At end of su	At end of successful completion of this course, student will be able to							
	CO1 Apply the principles and concept in analyzing and designing the parallel and							
		distributedsystem						
	CO2	Reason about ways to parallelize problems.						
Course	CO3	Gain an appreciation on the challenges and opportunities faced by parallel						
Course Outcomes		and distributedsystems.						
Outcomes	CO4	Understand the middleware technologies that support distributed						
applications such asRPC, RMI and object based middleware.								
	CO5	Improve the performance and reliability of distributed and parallel						
		programs.						

Module	Topics	Ref.	Hrs.
No.			
1	Introduction	1-4	06
	Parallel Computing, Parallel Architecture, Architectural		
	ClassificationScheme, Performance of Parallel Computers,		
	Performance Metrics forProcessors, Parallel Programming Models,		
	Parallel Algorithms.		
2	Pipeline Processing	1-4	06
	Introduction, Pipeline Performance, Arithmetic Pipelines,		
	PipelinedInstruction Processing, Pipeline Stage Design, Hazards,		
	DynamicInstruction Scheduling,		
3	Synchronous Parallel Processing	1-4	06
	Introduction, Example-SIMD Architecture and Programming		
	Principles, SIMD Parallel Algorithms, Data Mapping and memory		
	in arrayprocessors, Case studies of SIMD parallel Processors		
4	Introduction to Distributed Systems	1-4	06
	Definition, Issues, Goals, Types of distributed systems,		
	DistributedSystem Models, Hardware concepts, Software Concept,		
	Models of Middleware, Services offered by middleware, Client Server		
	model.		
5	Communication	1-4	04
	Layered Protocols, Remote Procedure Call, Remote Object		
	Invocation, Message Oriented Communication, Stream Oriented		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	Communication		
6	Resource and Process Management Desirable Features of global Scheduling algorithm, Task assignmentapproach, Load balancing approach, load sharing approach, Introductionto process management, process migration, Threads, Virtualization, Clients, Servers, Code Migration	1-4	06
7	Synchronization Clock Synchronization, Logical Clocks, Election Algorithms, MutualExclusion, Distributed Mutual Exclusion-Classification of mutualExclusion Algorithm, Requirements of Mutual Exclusion Algorithms,Performance measure, Non Token based Algorithms: LamportAlgorithm,Ricart-Agrawala's Algorithm, Maekawa's Algorithm Token Based Algorithms: Suzuki- Kasami'sBroardcastAlgorithms,Singhal'sHeurastic Algorithm, Raymond's Tree based Algorithm,Comparative Performance Analysis.	1-4	08
8	Consistency and Replication Introduction, Data-Centric and Client-Centric Consistency Models, Replica Management. Distributed File Systems Introduction, good features of DFS, File models, File Accessing models, File-Caching Schemes, File Replication, Network File System(NFS), Andrew File System(AFS), HadoopDistributed File System and MapReduce.	1-4	06
	System and mapreduce.	Total	48

- [1] M.R. Bhujade, "Parallel Computing", 2nd edition, New Age International Publishers 2009.
- [2] Andrew S. Tanenbaum and Maarten Van Steen, "Distributed Systems: Principles and
- [3] George Coulouris, Jean Dollimore, Tim Kindberg, "Distributed Systems: Concepts and Design" (4th Edition), Addison Wesley/Pearson Education.
- [4] Pradeep K Sinha, "Distributed Operating Systems : Concepts and design", IEEE computer society press

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total
		4		-	4		-	4
CPE8031	Elective-III Machine Learning	Examination Scheme						
CI E0031		ISE MSE		MSE	ESE			Total
		20		20	60			100

Pre-requisite C	ourse (Codes -				
At end of succes	ssful co	mpletion of this course, student will be able to				
CO1 Ability to analyze and appreciate the applications which can						
		use Machine Learning Techniques				
Course	CO2	Ability to understand regression, classification, clustering methods.				
Course Outcomes	CO3	Ability to understand the difference between supervised and				
Outcomes		unsupervised learning methods.				
	CO4	Ability to appreciate Dimensionality reduction techniques.				
	CO5	Students would understand the working of Reinforcement learning.				

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Introduction to Machine Learning:	1,2,3,4	6
		What is Machine Learning? , Key Terminology, Types of Machine		
		Learning, Issues in Machine Learning, Applications of Machine		
		Learning, How to choose Right Algorithm, Steps in Developing a		
		Machine Learning Application		
2	2.1	Learning with Regression:	1,2,4,5	4
		Linear Regression, Logistic Regression		
3	3.1	Learning with Trees:	1,2,7	8
		Using Decision Trees, Constructing Decision Trees, Classification		
		and Regression Trees (CART)		
4	4.1	Support Vector Machine:	1,2,4	6
		Maximum Margin Linear Separator, Quadratic Programming		
		Solution to finding maximum margin separators, Kernels for learning		
		non-linear functions		
5	5.1	Learning with Classification:	1,2,6	6
		Rule based Classification, Classification by Back propagation,		
		Bayesian Belief Networks, Hidden Markov Model		
6	6.1	Dimensionality Reduction:	1,2,5	6

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		Dimensionality Reduction Techniques, Principal Component Analysis, Independent Component Analysis		
7	7.1	Learning with Clustering:	1,2,6	6
		K-means Clustering, Hierarchical Clustering, Expectation		
		Maximization Algorithm, Supervised Learning after Clustering,		
		Radial Basis Functions		
8	8.1	Reinforcement Learning:	1,2,6	6
		Introduction, Elements of Reinforcement Learning, Model based		
		Learning, Temporal Difference Learning, Generalization, Partially		
		Observable States		
			Total	48

- [1] Peter Harrington "Machine Learning In Action", DreamTech Press.
- [2] EthemAlpaydın, "Introduction to Machine Learning", MIT Press.
- [3] Tom M.Mitchell "Machine Learning" McGraw Hill.
- [4] Stephen Marsland, "Machine Learning An Algorithmic Perspective" CRC Press.
- [5] William W.Hsieh, "Machine Learning Mehods in the Environmental Sciences", Cambridge.
- [6] Han Kamber, "Data Mining Concepts and Techniques", Morgann Kaufmann Publishers.
- [7] Margaret.H.Dunham, "Data Mining Introductory and Advanced Topics", Pearson Education.

Course Code	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned				
		L	T	P	L	T	P	Total		
	Elective-III Embedded Systems	4	-		4	-		4		
CPE8032		Examination Scheme								
CFE8032		ISE MSE		MSE	ESE		'	Total		
		20		20		60		100		

Pre-requisite Course Codes			-
At end of su	of this course, student will be able to		
	CO1	Describe the	special requirements that are imposed on embedded systems.
Course	CO2	Describe the	key properties of microprocessor and digital signal processor.
Outcomes	CO3	Sketch a desi	gn of an embedded system around a microprocessor or DSP.
	CO4		microprocessor, memory, peripheral components and buses embedded system.
	CO5		v architectural and implementation decisions influence and power dissipation

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Introduction to computational technologies	1,2	
	1.2	Review of computation technologies (ARM, RISC, CISC, PLD,	1,2	
		SOC), architecture, event managers hardware multipliers,		08
		pipelining.		
	1.3	Hardware/Software co-design. Embedded systems architecture and	1,2	
		design process.		
2	2.1	Program Design and Analysis	1,3	
	2.2	Integrated Development Environment (IDE), assembler, linking	1,3	
		and loading. Program-level performance analysis and		
		optimization, energy and power analysis and program size		08
		optimization, program validation and testing.		
	2.3	Embedded Linux, kernel architecture, GNU cross platform tool	1,3	
		chain. Programming with Linux environment		
3	3.1	Process Models and Product development life cycle management	3,5	
	3.2	State machine models: finite-state machines (FSM), finite-state	3,5	
		machines, with data-path model (FSMD), hierarchical/concurrent		
		state machine model (HCFSM),		08

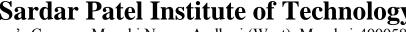
Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	3.3	program-state machine model (PSM), concurrent, process model.		
		Unified Modeling Language (UML), applications of UML in		
		embedded systems. IP-cores, design process model. Hardware software		
		co-design, embedded product development life cycle		
		management.	3,5	
4	4.1	High Performance 32-bit RISC Architecture	3,6	
	4.2	ARM processor family, ARM architecture, instruction set,	3,6	
		addressing modes, operating modes,		08
	4.3	interrupt structure, and internal peripherals. ARM coprocessors,	3,6	
		ARM Cortex-M3.		
5	5.1	Processes and Operating Systems	8,10	
	5.2	Introduction to Embedded Operating System, multiple tasks and	8,10	
		multiple processes. Multi rate systems, preemptive real-time operating		08
		systems,		
	5.3	Operating system performance and optimization strategies. Examples	8,10	
		of real-time operating systems.		
6	6.1	Real-time Digital Signal Processing (DSP)		
	6.2	Introduction to Real-time simulation, numerical solution of the		
		mathematical		08
	6.3	Convolution, DFT, FIR filter and IIR Filter implementation on		
		ARM. Open Multimedia Application s Platform (OMAP).		
			Total	48

- [1] Embedded Systems an Integrated Approach Lyla B Das, Pearson.
- [2] Computers as Components Marilyn Wolf, Third Edition Elsevier.
- [3] Embedded Systems Design: A Unified Hardware/Software Introduction Frank Vahid and Tony Givargis, John Wiley & Sons.
- [4] An Embedded Software Primer David E. Simon Pearson Education Sough Asia.
- [5] ARM System Developer's Guide Designing and Optimizing System Software Andrew N. Sloss, Dominic Sysmes and Chris Wright Elsevier Inc.
- [6] Embedded Systems, Architecture, Programming and Design Raj Kamal Tata McGraw Hill.
- [7] Embedded Linux Hollabaugh, Pearson Education.
- [8] Embedded Realtime Systems Programming Sriram V Iyer, Pankaj Gupta Tata McGRaw Hill.
- [9] Fundamentals of Microcontrollers and Applications in Embedded Systems Ramesh Gaonkar Penram International Publishing (India) Pvt. Ltd.
- [10] Embedded / Real-Time Systems: Concepts, Design & Programming Dr. K. V. K. K. Prasad Dreamtech Press, India.

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total
	Elective-III Adhoc Wireless Networks	4	-	-	4	-	-	4
CPE8033		Examination Scheme						
CPE8033		ISE		MSE	ESE		,	Total
		20		20	60			100

Pre-requisite Course Codes		Codes CPC504(Computer Networks)		
At end of successful completion of this course, student will be able to				
	CO1 Define characteristics and features of Adhoc Networks.			
Course	CO2	Appreciate the designing of MAC protocol for Adhoc networks.		
Outcomes	CO3	Implement few protocols.		
	CO4	Apply security principles for routing		


Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Introduction		
	1.2	Introduction to wireless Networks. Characteristics of Wireless	1,3	
		channel, Issues in Ad hoc wireless networks, Adhoc Mobility		
		Models:- Indoor and outdoor models		04
	1.3	Adhoc Networks: Introduction to adhoc networks –	1,3	
		definition, characteristics features, applications.		
2	2.1	MAC Layer		
	2.2	MAC Protocols for Ad hoc wireless Networks: Introduction,	2,3	
		Issues in designing a MAC protocol for Ad hoc wireless Networks,		
		Design goals, and Classification of a MAC protocol, Contention		10
		based protocols with reservation mechanisms.		
	2.3	Scheduling algorithms, protocols using directional antennas.	2,3	
		IEEE standards: 802.11a, 802.11b, 802.11g, 802.15, 802.16,		
		HIPERLAN.		
3	3.1	Network Layer		
	3.2	Routing protocols for Ad hoc wireless Networks: Introduction,	3,4	
		Issues in designing a routing protocol for Ad hoc wireless		
		Networks, Classification of routing protocols, Table driven routing		
		protocol, On- demand routing protocol.		10
	3.3	Proactive Vs reactive routing, Unicast routing algorithms,	3,4	
		Multicast routing algorithms, hybrid routing algorithm, Energy		
		aware routing algorithm, Hierarchical Routing, QoS aware		
		routing.		
4	4.1	Transport Layer		07

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	4.2	Transport layer protocols for Ad hoc wireless Networks:	2,5	
		Introduction, Issues in designing a transport layer protocol for Ad		
		hoc wireless Networks, Design goals of a transport layer protocol for		
		Ad hoc wireless Networks.		
	4.3	Classification of transport layer solutions, TCP over Ad hoc wireless	2,5	
		Networks, Other transport layer protocols for Ad hoc wireless		
		Networks.		
5	5.1	Security		
	5.2	Security: Security in wireless Ad hoc wireless Networks, Network	2,4	
		security requirements, Issues & challenges in security		
		provisioning,		07
	5.3	Network security attacks, Key management, Secure routing in Ad	2,4	
		hoc wireless Networks.		
6	6.1	QoS		
	6.2	Quality of service in Ad hoc wireless Networks: Introduction, Issues	1,3	
		and challenges in providing QoS in Ad hoc wireless Networks		
	6.3	Classification of QoS solutions, MAC layer solutions, network	2,4	07
		layer solutions		
	•		Total	45

- [1] Siva Ram Murthy and B.S.Manoj, "Ad hoc Wireless Networks Architectures and protocols", 2nd edition, Pearson Education, 2007.
- [2] Charles E. Perkins, "Adhoc Networking", Addison Wesley, 2000.
- [3] C. K. Toh,"Adhoc Mobile Wireless Networks", Pearson Education, 2002.
- [4] Matthew Gast, "802.11 Wireless Networks: The Definitive Guide", 2nd Edition, O'Reilly Media, April 2005.
- [5] Stefano Basagni, Marco Conti, Silvia Giordan and Ivan Stojmenovic, "Mobile Adhoc Networking", Wiley-IEEE Press, 2004.
- [6] Mohammad Ilyas, "The handbook of Adhoc Wireless Networks", CRC Press, 2002.

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total
	Elective-III Digital Forensics	4	-	-	4	-	-	4
CPE8034		Examination Scheme						
CPE8034		ISE		MSE	ESE		,	Fotal
		20		20	60			100

Pre-requisite	Cours	e Codes					
At end of succ	At end of successful completion of this course, student will be able to						
CO1 Understand the role of digital forensics.							
	CO2	An ability to analyze a problem, and identify and define the Computing					
Course		requirements appropriate to its solution.					
Outcomes	CO3	Better understand the research challenges of digital forensics					
	CO4	An understanding of professional, ethical, legal, security and social issues					
		and responsibilities.					

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Introduction:		
	1.2	Introduction of Cybercrime: Types, The Internet spawns crime,	1,2	
		Worms versus viruses, Computers' roles in crimes, Introduction to		
		digitalforensics.		09
	1.3	Introduction to Incident - Incident Response Methodology - Steps -	1,2	
		Activities in Initial Response, Phase after detection of an incident.		
2	2.1	Initial Response and forensic duplication		
	2.2	Initial Response & Volatile Data Collection from Windows	2,3	
		system - Initial Response & Volatile Data Collection from Unix		
		system – Forensic.		08
	2.3	Duplication: Forensic duplication: Forensic Duplicates as	2,3	
		Admissible Evidence, Forensic Duplication Tool Requirements,		
		Creating a Forensic, Duplicate/Qualified Forensic Duplicate of a		
		Hard Drive.		
3	3.1	Preserving and Recovering Digital Evidence		
	3.2	File Systems: FAT, NTFS - Forensic Analysis of File Systems –	1,2	
		Storage		
	3.3	Fundamentals: Storage Layer, Hard Drives Evidence Handling: Types	1,2	09
		of Evidence, Challenges in evidence handling, Overview of		
		evidencehandling procedure		
4	4.1	Network Forensics		
	4.2	Intrusion detection; Different Attacks in network, analysis	1,5	07

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		Collecting		
	4.3	Network Based Evidence - Investigating Routers - Network	1,5	
		Protocols - Email Tracing- Internet Fraud.		
5	5.1	System investigation		08
	5.2	Data Analysis Techniques - Investigating Live Systems	2,3	
		(Windows & Unix) Investigating		
	5.3	Hacker Tools - Ethical Issues - Cybercrime.	2,3	
6	6.1	Bodies of law		
	6.2	Levels of law: Local laws, State laws, Federal laws, International	2,4	
		laws, Levels of culpability: Intent, Knowledge, Recklessness,		07
		Negligence.		
	6.3	Level and burden of proof: Criminal versus civil cases	2,4	
		,Vicarious liability, Laws related to computers: CFAA, DMCA,		
		CAN Spam, etc.		
			Total	48

- [1] Kevin Mandia, Chris Prosise, "Incident Response and computer forensics", Tata McGrawHill, 2006
- [2] Peter Stephenson, "Investigating Computer Crime: A Handbook for Corporate Investigations", Sept 1999
- [3] Eoghan Casey, "Handbook Computer Crime Investigation's Forensic Tools and Technology", Academic Press, 1st Edition, 2001
- [4] Skoudis. E., Perlman. R. Counter Hack: A Step-by-Step Guide to Computer Attacks and Effective Defenses.Prentice Hall Professional Technical Reference. 2001.
- [5] Norbert Zaenglein, "Disk Detective: Secret You Must Know to Recover Information From a Computer", Paladin Press, 2000
- [6] Bill Nelson, Amelia Philips and Christopher Steuart, "Guide to computer forensics investigation "Course technology, 4th edition

Course Code	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total	
CPE8035	Elective-III Big Data Analytics	4	-		4	-		4	
		Examination Scheme							
		ISE		MSE	ESE		,	Total	
		20		20		60		100	

Pre-requisite	Course	Codes -
At end of succ	essful co	ompletion of this course, student will be able to
	CO1	Identify challenges in big data management and inadequacy of existing technology to analyze big data.
Course	CO2	Apply scalable algorithms based on Hadoop and Map Reduce to perform Big Data Analytics
Outcomes	CO3	Apply NoSQL tools to solve big data problems.
	CO4	Use stream data model to provide real time analysis of big data.
	CO5	Discover information from social network graphs.

Module	Topics	Ref.	Hrs.				
No.							
1	Introduction to Big Data 1-5						
	Introduction to Big Data, Big Data characteristics, types of Big						
	Data, Traditional vs. Big Data business approach, Case Study of Big						
	DataSolutions.						
2	Introduction to Hadoop	1-5	03				
	What is Hadoop? Core Hadoop Components;						
	HadoopEcosystem; Physical Architecture; Hadoop limitations.						
3	NoSQL	1-5	04				
	What is NoSQL? NoSQL business drivers; NoSQL case studies						
	NoSQL data architecture patterns: Key-value stores, Graph						
	stores, Column family (Bigtable) stores, Document stores, Variations of						
	NoSQLarchitectural patterns;						
	Using NoSQL to manage big data: What is a big data						
	NoSQLsolution?Understanding the types of big data problems;						
	Analyzing big data with ashared-nothing architecture; Choosing						
	distribution models: master-slaveversus peer-to-peer; Four ways						
	that NoSQL systems handle big dataproblems						
4	MapReduce and the New Software Stack	1-5	06				
	Distributed File Systems: Physical Organization of Compute Nodes,						

		1	_
	Large- Scale File-System Organization.		
	MapReduce: The Map Tasks, Grouping by Key, The Reduce Tasks		
	Combiners, Details of MapReduce Execution, Coping With Node		
	Failures, Algorithms Using MapReduce: Matrix-Vector Multiplication		
	by MapReduce, Relational-Algebra Operations, Computing Selections		
	by MapReduce, Computing Projections by MapReduce, Union,		
	Intersection, and Difference by MapReduce, Computing Natural Join by		
	MapReduce, Grouping and Aggregation by MapReduce,		
5	One MapReduce Step.	1-5	03
3	Finding Similar Items Applications of Near-Neighbor Search, Jaccard Similarity of	1-3	03
	Applications of Near-Neighbor Search, Jaccard Similarity of Sets, Similarity of Documents, Collaborative Filtering as a Similar-Sets		
	Problem, Distance Measures: Definition of a Distance Measure,		
	Euclidean, Distances, Jaccard Distance, Cosine Distance, Edit Distance,		
6	HammingDistance. Mining Data Streams	1-5	06
U		1-3	00
	The Stream Data Model: A Data-Stream-Management System, Examples of Stream Sources, Stream Querie, Issues in Stream		
	Processing, Sampling Data in a Stream: Obtaining a Representative		
	Sample, The General Sampling Problem, Varying the Sample Size.		
	Filtering Streams: The Bloom Filter, Analysis. 6.4 Counting Distinct Elements in a StreamThe Count-Distinct Problem, The		
	· ·		
	Flajolet-Martin Algorithm, CombiningEstimates, Space Requirements. Counting Ones in a Window: The Cost of Exact Counts, The Datar-		
	Gionis-Indyk-MotwaniAlgorithm, Query Answering in the DGIM		
7	Algorithm, Decaying Windows. Link Analysis	1-5	05
,	PageRank Definition, Structure of the web, dead ends, Using Page	1-3	05
	ranking a search engine, Efficient computation of Page Rank:		
	PageRankIteration Using MapReduce, Use of Combiners to		
	Consolidate the Result Vector, Topic sensitive Page Rank, link Spam,		
	Hubs and Authorities.		
8	Frequent Itemsets	1-5	05
O	Handling Larger Datasets in Main MemoryAlgorithm of Park, Chen,	1-3	05
	and Yu, The Multistage Algorithm, The Multihash Algorithm, The		
	SON Algorithm and MapReduce, Counting Frequent Items in a		
	StreamSampling Methods for Streams, Frequent Itemsets in Decaying		
	Windows		
9	Clustering	1-5	05
,	CURE Algorithm, Stream-Computing , A Stream-Clustering		
	Algorithm, Initializing & Merging Buckets, Answering Queries		
10	Recommendation Systems	1-5	04
10	A Model for Recommendation Systems, Content-Based		
	•		
	Recommendations, Collaborative Filtering.		

The state of the s

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

11	Mining Social-Network Graphs	1-5	04
	Social Networks as Graphs, Clustering of Social-Network Graphs,		
	DirectDiscovery of Communities, SimRank, Counting triangles using		
	Map-Reduce		
		Total	48

- [1] AnandRajaraman and Jeff Ullman "Mining of Massive Datasets", Cambridge University Press,
- [2] Alex Holmes "Hadoop in Practice", Manning Press, Dreamtech Press.
- [3] Dan McCreary and Ann Kelly "Making Sense of NoSQL" A guide for managers and the rest of us, Manning Press.
- [4] Bill Franks, "Taming The Big Data Tidal Wave: Finding Opportunities In Huge Data Streams With Advanced Analytics", Wiley
- [5] Chuck Lam, "Hadoop in Action", Dreamtech Press

Course	Course Name	Teaching Scheme (Hrs/week) Credits Assigned					ned	
Code		L	T	P	L	T	P	Total
	Cloud Computing Lab			2			1	1
CPL801		Examination Scheme						
CI Loui	Cloud Computing Lab	IS	E	M	SE	E	SE	Total
		40		-		20		60

Pre-requisite Co	ourse C	Codes -				
At end of success	At end of successful completion of this course, student will be able to					
CO1 Understand fundamentals of cloud computing and Summarize vario						
Commo		cloud delivery models.				
Course Outcomes	CO2	Create and run virtual machines on open source OS.				
Outcomes	CO3	Implement Infrastructure, Storage as a Service.				
	CO4	Install and appreciate security features for cloud.				

Exp. No.	Experiment Details	Ref.	Marks
1	Title: Study and implementation of Infrastructure as a Service.	1,4	5
	Concept: Infrastructure as a Service.		
	Objective: In this module student will learn Infrastructure as a		
	Service and implement it by using OpenStack.		
	Scope: Installing OpenStack and use it as Infrastructure as a		
	Service.		
	Technology: Quanta Plus /Aptana /Kompozer		
2	Title: Implementation of identity management.	1,4	5
	Concept: Identity Management in cloud		
	Objective: this lab gives an introduction about identity management		
	incloud and simulate it by using OpenStack		
	Scope: installing and using identity management feature of		
	OpenStack		
	Technology: OpenStack		
3	Title: Study and installation of Storage as Service.	3	5
	Concept: Storage as Service (SaaS)		
	Objective: is that, students must be able to understand the concept		
	ofSaaS, and how it is implemented using ownCloud which		
	givesuniversal access to files through a web interface.		
	Scope: is to installation and understanding features of		
	ownCloudasSaaS.		
	Technology: ownCloud		
4	Title: User Management in Cloud.	3	5
	Concept: Administrative features of Cloud Management		
	,UserManagement		
	Objective: is to understand how to create, manage user and group		
	ofusers accounts.		
	Scope: Installing and using Administrative features of ownCloud.		
	Technology: ownCloud		

O .

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

5	Title: Study and implementation of Single-Sign-On	2	5
	Concept: Single Sign On (SSO), openID		
	Objective: is to understand the concept of access control in cloud		
	and single sign on (SSO), Use SSO and advantages of it, and also		
	studentsshould able to implementation of it.		
	Scope: installing and using JOSSO		
	Technology: JOSSO		
6	Title: Write a program for web feed	5	5
	Concept: Web feed and RSS		
	Objective: this lab is to understand the concept of form and		
	controlvalidation		
	Scope: Write a program for web feed.		
	Technology: PHP, HTML		
7	Title: Mini project.		10
	Concept: using different features of cloud computing creating		
	owncloud for institute, organization etc.		
	Objective: is student must be able to create own cloud using		
	differentfeatures which are learned in previous practices.		
	Scope: creating a cloud like social site for institute.		
	Technology: any open system used for cloud		
	Total	Marks	40

- [1] GautamShroff,"Enterprise Cloud Computing" Cambridge,2010.
- [2] Ronald Krutz and Russell Dean Vines,"Cloud Security", Wiley India, 2010,ISBN:978-0-470-58987-8.
- [3] Aditya Patawar, "Getting Started with OwnCloud", Packt Publishing Ltd, 2013.
- [4] www.openstack.org
- [5] https://www.rss.com/

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	T	P	L	T	P	Total	
CPCL801	Data Warehousing and Mining Lab			2			1	1	
		Examination Scheme							
		IS	E	M	SE	E	SE	Total	
		4	0		-	2	20	60	

Pre-requisite	e Course Co	des CPC801(Data Warehousing and Mining)				
At end of successful completion of this course, student will be able to						
CPC801.1 Create dimensional modeling and implement dimension ta						
		table and OLAP operations.				
	CPC801.2	Develop Classification, Clustering and Association Mining				
Course		algorithms using languages any like Java, C#.				
Course Outcomes	CPC801.3	Use WEKA tool to implement Classification, Clustering and				
Outcomes		Association Mining.				
	CPC801.5	Use R tool to implement Clustering/Association Rule/Classification				
		Algorithms.				
	CPC801.4	Observe the features of any one BI tool.				

Exp.	Experiment Details	Ref.	Marks
No.	One case study given to a group of 3 /4 students, of a data mart/	1,2,3,4,7	5
1	data warehouse.	1,2,3,7,7	3
	a. Write Detail Statement Problem and creation of dimensional		
	modeling(creation star and snowflake schema)		
	b. Implementation of all dimension table and fact table		
	c. Implementation of OLAP operations.		
2	Implementation of classifier like Decision tree, Naïve Bayes,	1,5,8	5
	Random Forest using any languages like Java		
3	Use WEKA to implement like Decision tree, Naïve Bayes,	1,5	5
	Random Forest.		
4	Implementation of clustering algorithm like K-means, K-	1,5,8	5
	Medoids, Agglomerative, Divisive using languages any like Java,		
	C#, etc.		
5	Use WEKA to implement the following Clustering Algorithms –	1,5	5
	K-means, Agglomerative, and Divisive.		
6	Implementation Association Mining like Apriori, FPM using	1,5,9	5
	languages like Java, C#, etc. and using WEKA Tool		
7	Use R tool to implement Clustering/Association Rule/	1,5,9	5
	Classification Algorithms.		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	, <u> </u>	Total Marks	40
	Clementine, and XLMiner etc. (paper Assignment)		
8	Detailed study of any one BI tool like Oracle BI, SPSS,	1,6	5

- [1] Han, Kamber and Pei "Data Mining Concepts and Techniques", Morgan Kaufmann 3rd Edition
- [2] ReemaTheraja "Data warehousing", Oxford University Press.
- [3] PaulrajPonniah, "Data Warehousing: Fundamentals for IT Professionals", Wiley India
- [4] P.S.Deshpande, "SQL & PL/SQL for Oracle 11 g", dreamtech PRESS.
- [5] Margaret H. Dunham, "Data Mining Introductory and Advanced Topics", Pearson Education
- [6] Randall Matignon, "Data Mining using SAS enterprise miner", Wiley Student edition.
- [7] Alex Berson, S. J. Smith, "Data Warehousing, Data Mining & OLAP", McGraw Hill.
- [8] VikramPudi&Radha Krishna, "Data Mining", Oxford Higher Education
- [9] Daniel Larose, "Data Mining Methods and Models", Wiley India.
- [10] J. Millman and A. Grabel, "Microelectronics", Tata McGraw Hill, 2nd Edition.
- [11] Jan M. Rabaey, AnanthaChandrakasan and BorivojeNikolic, "*Digital Integrated Circuits: A Design Perspective*", Pearson Education, 2nd Edition.

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
Code		\mathbf{L}	T	P	L	T	P	Total	
				2			1	1	
	Human Machine Interaction Lab	Examination Scheme							
CPCL802		IS	SE .	M	SE	E	SE	Total	
		4	0	-		20		60	

Pre-requisite Course Codes	(CPC802(Human Machine Interaction)
At end of successful completion	on of t	his course, student will be able to
	CO1	To design user centric interfaces.
	CO2	To design innovative and user friendly interfaces.
Course Outcomes	CO3	To apply HMI in their day-to-day activities.
Course Outcomes	CO4	To criticize existing interface designs, and improve them.
	CO5	To Design application for social Task.
	CO6	To Design application for Technical Tasks.

Exp. No.	Experiment Details	Ref.	Marks
1	Know your client	1-8	5
	 Design an app that can teach mathematics to children of 4- 5 years age in schools in Rural Sector. 		
	 b. Design an app that can teach mathematics to children of 4- 5 years age in schools in Urban Sector. 		
	 Design a site that can help people to sell their handmade products in metro cities. 		
	 d. Design a site that can connect housewives and keep them engaged. 		
2	Goal oriented design - Design an experience for passengers whose flight	1-8	5
	/train is delayed.		
3	Design Principles - Understand principles of good UI design by heuristic	1-8	5
	evaluation.		
	Design UI that would connect all college students to the events happening on-campus during the college festival. User should be able to browse all events sorted on time, category and place. The user should also be able to subscribe to events and get notified about their start time and also be able to send invites to friends to attend an event with them		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

4	Menus & Navigation – Redesign of a user interface(Suggest and	1-8	5			
	implement changes in Existing User Interface					
5	Windows & Screen controls –	1-8	5			
	a. Design a navigator for a student new in your Institute.					
	b. Design a navigator for a person new in tourist city/ village.					
	c. Motor paralysis for differently able people.					
	d. ATM design with localization					
6	Icons - Design appropriate icons pertaining to a given domain (Eg.	1-8	5			
	Greeting cards)					
7	Colors – Design a personal website for an Artisan.	1-8	5			
	Use statistical graphics for better visualization.					
8	To calculate screen complexity of existing Graphical User	1-8	5			
	Interface and redesign the interface to minimize the screen complexity.					
	Total N	Aarks	40			

- [1] Wilbert O. Galitz, "The Essential Guide to User Interface Design", Wiley publication.
- [2] Alan Cooper, Robert Reimann, David Cronin, "About Face3: Essentials of Interaction design", Wiley publication.
- [3] Jeff Johnson, "Designing with the mind in mind", Morgan Kaufmann Publication.
- [4] Donald A. Normann, "Design of everyday things", Basic Books; Reprint edition 2002.
- [5] Brian Fling, "Mobile Design and Development", First Edition, O'Reilly Media Inc., 2009.
- [6] Rogers Sharp Preece, "Interaction Design: Beyond Human Computer Interaction", Wiley.
- [7] Guy A. Boy "The Handbook of Human Machine Interaction", Ashgate publishing Ltd.
- [8] Kalbande, Kanade, Iyer, "Galitz's Human Machine Interaction", Wiley Publications.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Code	Course Name		ning Scl Irs/weel	Credits Assigned				
Code		L	T	P	L	T	P	Total
	Parallel and Distributed Systems Lab	-		2			1	1
CPCL803			E	ation Scheme				
CFCL803		ISE		MSE		ESE		Total
		4	0		-	1	20	60

Pre-requisite Course Codes		CPC803(Parallel and Distributed Systems)
At end of successful	completion	on of this course, student will be able to
	CO1	The student gains clear understanding of fundamental principles of
		Parallel and Distributed Systems.
	CO2	The student understands the message communication, remote
		procedure call and Remote method invocation (RPC and RMI)
Course Outcomes		along with group communication.
Course Outcomes	CO3	Emphasis is on developing applications using current distributed
		computing technologies like EJB, CORBA.
	CO4	Analyze different token based and non-token based algorithms for
		the design and development of distributed systems subject to
		specific design and performance constraints.

Exp.	Experiment Details	Ref.	Marks
No.			
1	A program to implement simple calculator operations like addition,	2,3	5
	subtraction, multiplication and division using RPC.		
2	Write a program to show the object communication using RMI.	2,3	5
	a)RMI based application program to display current date and time.		
	b)RMI based application program that converts digits to words, e.g. 123		
	will be converted to one two three.		
3	To implement CORBA mechanism by java program.	3	5
4	Implement Load Balancing Program in Java.	1	5
5	Show the implementation of logical lamport clock synchronization	1	5
	algorithm.		
6	Implement Suzuki Kasami Token Based Algorithm.	1	5
7	Case Study on Distributed File System- AFS, NFS and HDFS.	2	5
8	Mini Project		5
	Total N	Iarks	40

- [1] M.R. Bhujade, "Parallel Computing", 2nd edition, New Age International Publishers2009.
- [2] Andrew S. Tanenbaum and Maarten Van Steen, "Distributed Systems: Principles and Paradigms, 2nd edition, Pearson Education, Inc., 2007, ISBN: 0-13-239227-5.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

- [3] George Coulouris, Jean Dollimore, Tim Kindberg, "Distributed Systems: Concepts and Design" (4th Edition), Addison Wesley/Pearson Education.
- [4] Pradeep K Sinha, "Distributed Operating Systems: Concepts and design", IEEE Computer society press

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	T	P	L	T	P	Total
				2			1	1
	Election III Mechine	Examination Scheme						
CPEL8031	Elective -III Machine Learning Lab	IS	SE .	M	SE	E	SE	Total
		4	0	-		20		60

Pre-requisite Course Codes		CPE8031(Machine Learning)
At end of succe	essful co	ompletion of this course, student will be able to
	CO1	Implement Regression Methods
Course	CO2	Implement Classification
Outcomes	CO3	Implement Clustering
	CO4	Apply the Dimensionality Reduction Techniques

Exp. No.	Experiment Details	Ref.	Marks	
1	To implement Linear /Logistic Regression	1-7	5	
2	To implement Single layer Perceptron Learning algorithm	1-7	5	
3	To implement ID3	1-7	5	
4	To implement Support Vector Machine	1-7	5	
5	To implement Bayesian Classification	1-7	5	
6	To implement K-nearest Neighbor	1-7	5	
7	To implement K-means Clustering	1-7	5	
8	To implement Agglomerative Clustering	1-7	5	
Total Marks				

- [1] Peter Harrington "Machine Learning In Action", DreamTech Press.
- [2] EthemAlpaydin, "Introduction to Machine Learning", MIT Press.
- [3] Tom M.Mitchell "Machine Learning" McGraw Hill.
- [4] Stephen Marsland, "Machine Learning An Algorithmic Perspective" CRC Press.
- [5] William W.Hsieh, "Machine Learning Mehods in the Environmental Sciences", Cambridge.
- [6] Han Kamber, "Data Mining Concepts and Techniques", Morgann Kaufmann Publishers.
- [7] Margaret.H.Dunham, "Data Mining Introductory and Advanced Topics", Pearson Education.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	T	P	L	T	P	Total
CPEL8032	Elective-III Embedded Systems Lab			2			1	1
		Examination Scheme						
		ISE		MSE		ESE		Total
		40		-		20		60

Pre-requisite Course Codes		Codes CPE8032(Embedded Systems)			
At end of succes	At end of successful completion of this course, student will be able to				
	CO1	Design microcontroller based embedded systems for various			
Course		applications.			
Outcomes	Course CO2 Produce efficient code	Produce efficient code for embedded systems			
Outcomes	CO3	Define the properties of a real-time operating system.			
	CO4	Develop drivers for external peripheral devices as per requirement.			

Exp. No.	Experiment Details	Ref.	Marks		
1	Tostudy the In-Circuit Emulator (ICE) and In-Circuit Debugger	1,2	5		
	(ICD) troubleshooting tools.				
2	Interfacing of LCD module with ARM Processors.	2,3	5		
3	Program to interface stepper motor.		5		
4	To develop Device Driver (Drivers for CAN, Drivers for USB,	2,4	5		
	Drivers for Ethernet).				
5	To study Real Time Operating System (RTOS).	2,3	5		
6	Converting existing Windows and Linux as RTOS by configuring	1,4	5		
	QNX Neutrino (using Virtual Machine).				
7	Implement a semaphore for any given task switching using RTOS	2,5	5		
	on microcontroller board.				
8	Program for exploration of (process creation, Thread creation)using	5,6	5		
	Embedded Real Time Linux.				
Total Marks					

- [1] Dr. K.V.K.K. Prasad, "Embedded /Real-Time System: Concepts, Design & Programming", Dreamtech, Edition 2010.
- [2]. Andrew. N. Sloss, DomnicSymes, Chris Wright, "ARM System Developer's Guide", Elsevier, edition 2004.
- [3]. KarimYaghmour , "Building Embedded Linux Systems", 2003 O'Reilly & Associates, 2. Rajkamal, "Embedded Sytems", TMH.
- [4]. David Simon, "Embedded systems software primer", Pearson.
- [5]. Steve Furber, "ARM System-on-Chip Architecture", Pearson.
- [6]. Iyer, Gupta, "Embedded real systems Programming", TMH.

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	T	P	L	T	P	Total
	Elective-III Adhoc Wireless Networks Lab			2			1	1
CPEL8033		Examination Scheme						
CPEL8033		ISE		MSE		ESE		Total
		40		•	20		60	

Pre-requisite Course Codes		Codes	CPE8033(Adhoc Wireless Networks)				
At end of succe	At end of successful completion of this course, student will be able to						
	CO1	Describe	the unique issues in ad-hoc/sensor networks.				
	CO2	Describ	e current technology trends for the implementation and				
Comman		deploym	ent of wireless ad-hoc networks.				
Course Outcomes	CO3	Discuss	the challenges in designing MAC, routing and transport				
Outcomes		protocol	s for wireless ad-hoc networks.				
	CO4	Discuss	the challenges in designing routing and transport protocols for				
		wireless	Ad-hoc networks.				

Exp. No.	Experiment Details	Ref.	Marks
1	Installation of NS2 in Ubuntu 12.04 Linux.	1,4	5
2	Build and exchange data in simple infrastructure and Adhoc network		5
	by using personal computer and Android based mobile.	1,3	
3	Develop sample wireless network in which		5
	a. Implement AODV and AOMDV protocol.		
	b. Calculate the time to receive reply from the receiver using NS2.	1,3	
	C .Generate graphs which show the transmission time for packet.		
4	Implement wireless network. Capture data frame and identify fields	2,4	5
	using NS2.		
5	Configure Wireless Access Point (WAP) and build different	3,4	5
	networks.		
6	Implement Mobile device as a wireless access point.	1,4	5
7	Communicate between two different networks		5
	which has following specifications:	2,3	
	a. One network has Class A network with "Tora protocol"		
	b. Second has Class B network "AODV protocol"		
8	Case study on Security in wireless Ad hoc wireless Networks.	1,3	5
	Total M	Iarks	40

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

- [1] Siva Ram Murthy and B.S.Manoj, "Ad hoc Wireless Networks Architectures and protocols", 2nd edition, Pearson Education, 2007.
- [2] Charles E. Perkins, "Adhoc Networking", Addison Wesley, 2000.
- [3] C. K. Toh, "Adhoc Mobile Wireless Networks", Pearson Education, 2002.
- [4] Matthew Gast, "802.11 Wireless Networks: The Definitive Guide", 2nd Edition, O'Reilly Media, April 2005.
- [5] Stefano Basagni, Marco Conti, Silvia Giordan and Ivan Stojmenovic, "Mobile Adhoc Networking", Wiley-IEEE Press, 2004.
- [6] Mohammad Ilyas, "The handbook of Adhoc Wireless Networks", CRC Press, 2002.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	T	P	L	T	P	Total
	Elective-III Digital Forensics Lab			2			1	1
CDEI 9024		Examination Scheme						
CPEL8034		ISE		MSE		ESE		Total
		40		-		20		60

Pre-requisite Course Codes		Codes CPE8034(Digital Forensics)				
At end of succe	At end of successful completion of this course, student will be able to					
	CO1	Identify issues and analysis of networking.				
	CO2	An ability to use current techniques, skills, and tools necessary for				
Course		computing practice.				
Outcomes	CO3	An ability to design, implement and evaluate a computer-based system,				
		process, component or program to meet desired needs.				
	CO4	Better appreciate the difficulty of the task of a digital forensics analyst.				

Exp.	Experiment Details Ref			
No.				
1	Study and Analysis of Network.	1,3	5	
2	Listing and Tracking Network Related Process.	1,4	5	
3	Collecting Information about given Domain.	2,4	5	
4	Windows/ Linux Log Analysis.	3,4	5	
5	Project/Case Work – Topic Approval for Synopsis	4,5	5	
6	Project/Case Work – Objective and Work Plan	3,5	5	
7	Project/Case Work – Review of Literature, Documentation,	2,5	5	
	Presentation.			
8	Digital and Cyber forensic case documentation.	6,7	5	
		Total Marks	40	

- [1] Kevin Mandia, Chris Prosise, "Incident Response and computer forensics", Tata McGrawHill, 2006
- [2] Peter Stephenson, "Investigating Computer Crime: A Handbook for Corporate Investigations", Sept 1999
- [3] Eoghan Casey, "Handbook Computer Crime Investigation's Forensic Tools and Technology", Academic Press, 1st Edition, 2001
- [4] Skoudis. E., Perlman. R. Counter Hack: A Step-by-Step Guide to Computer Attacks and Effective Defenses.Prentice Hall Professional Technical Reference. 2001.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

- [5] Norbert Zaenglein, "Disk Detective: Secret You Must Know to Recover Information From a Computer", Paladin Press, 2000
- [6] Bill Nelson, Amelia Philips and Christopher Steuart, "Guide to computer forensics investigation "Course technology, 4th edition

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	T	P	L	T	P	Total
				2			1	1
	Elective III Die Dete Analyties		E	xamin	ation S			
CPEL8035	Elective-III Big Data Analytics Lab	ISE	MSE		Е	SE	Total	
		40		-		20		60

Pre-requisite	Course	Codes CPE8035(Big Data Analytics)
A . 1 C	C 1	14' 64' 4 1 4 '111 11 4
At end of succe	esstul co	ompletion of this course, student will be able to
	CO1	Identify challenges in big data management and inadequacy of existing
		technology to analyze big data.
Course	CO2	Apply scalable algorithms based on Hadoop and Map Reduce to perform Big
Outcomes		Data Analytics
Outcomes	CO3	Apply NoSQL tools to solve big data problems.
	CO4	Use stream data model to provide real time analysis of big data.
	CO5	Discover information from social network graphs.

Exp. No.	Experiment Details	Ref.	Marks	
1	Study of Hadoop Ecosystem and execute word count program.	1,2	5	
2	Mapreduce program on Hadoop.	1,2	5	
3	Programming in NoSQL.	1,2,3	5	
4	Use Pig scripting to solve Big Data problem.	1,4,5	5	
5	Implement a Frequent Itemset algorithm using Map Reduce.	1,2,3	5	
6	Implement a Clustering algorithm using Map Reduce.	1,2,3	5	
7	Implement a Data streaming algorithm using Map Reduce.	1,2,3	5	
8	Mini Project. One real life large data application to be implemented (Use	1,2,3	5	
	standard Datasets available on the web)			
Total Marks				

- [1] AnandRajaraman and Jeff Ullman "Mining of Massive Datasets", Cambridge University Press,
- [2] Alex Holmes "Hadoop in Practice", Manning Press, Dreamtech Press.
- [3] Dan McCreary and Ann Kelly "Making Sense of NoSQL" A guide for managers

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

and the rest of us, Manning Press.

- [4] Bill Franks, "Taming The Big Data Tidal Wave: Finding Opportunities In Huge Data Streams With Advanced Analytics", Wiley
- [5] Chuck Lam, "Hadoop in Action", Dreamtech Press

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total
CP801	Project (Stage II)			12			6	6
		Examination Scheme						
		ISE		MSE		ESE		Total
		Phase-III:50				50		200
		Phase-IV:50						
		TPP:25						
		PE:25						

TPP: Technical Paper Presentation; PE: Project Exhibition

Guidelines for Assessment of Project II

- ➤ Project II should be assessed based on following points
- Quality of problem selected
- Clarity of Problem definition and Feasibility of problem solution
- Relevance to the specialization / Industrial trends
- Clarity of objective and scope
- Quality of work attempted
- Validation of results
- Quality of Written and Oral Presentation
- > Report should be prepared as per the guidelines issued by the University of Mumbai.
- > Project II should be assessed through a presentation by the student project group to a panel of Internal and External Examiners approved by the University of Mumbai
- > Students should be motivated to publish a paper based on the work in Conferences/students competitions