

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

B. Tech. (Electronics Engineering) and B. Tech. (Electronics & Telecommunication Engineering) Syllabus (Semester I-IV)

2020 Iteration (w.e.f. 2020-21)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

2020 ITERATION: ELECTRONICS DOMAIN

Nomenclature of the Courses

BSC	Basic Science Course	PC	Program Core
BSE	Basic Science Elective	PE	Program Elective
ESC	Engineering Science Core	MLC	Mandatory Learning Course
			Skill Certification for Outcome based
ESE	Engineering Science Elective	SCOPE	Professional Education
SBC	Skilled Based Course	OE	Open Elective
	Self- Accomplishment Through		Humanities and Social Science
ABL-SATVA	Various Activities	HSSE	Elective
ABL-SEVA	Social Empowerment Through		
	Various Activities		

Abbreviations

	L	Le	ecture Hour	0	Oth	er W	ork (Self St	udy)		
	Т	Τι	utorial Hour	Е	Tot	al En	igagei	ment i	n Hou	urs	
	Р	La	aboratory Hour	С	Cre	dit A	ssign	ed			
			Seme	ster I							
No	Туре	Code	Course			L	Т	Р	0	E	С
1	BSC	MA10	1 Engineering Calculus			3	1	0	8	12	4
2	BSC	AS101	Engineering Physics			2	1	2	5	10	4
3	ESC	AS104	Engineering Graphics			1	0	4	2	07	3
4	ESC	ET101	Basic Electrical Engineeri	ng		3	0	2	6	11	4
5	ESC	CS101	Problem Solving using Im	perative		2	0	2	3	07	3
			Programming								
6	SBC	AS106	5 Skill Shop			0	0	2	0	02	1
7	ABL	SVXX	SEVA-I or SATVA-I			0	0	0	2	02	1
		STXX									
			TOTAL			11	2	12	26	51	20

			Semester II						
No	Туре	Code	Course	L	Т	Р	0	E	С
1	BSC	MA102	Differential Equations and Complex Analysis	3	1	0	8	12	4
2	BSC	AS102	Engineering Chemistry	2	0	2	3	07	3
3	BSC	AS103	Biology for Engineers	2	0	0	3	05	2
4	ESC	AS105	Engineering Mechanics	2	0	2	4	08	3
5	ESC	CS102	Problem Solving using OOPs	2	0	2	4	08	3
6	ESC	EC101	Digital Systems and Microprocessors	3	0	2	5	10	4
7	SBC	AS107	Writing Skills	1	0	2	2	05	2
			TOTAL	15	1	10	29	55	21
			FIRST SUMMER						
No	Туре	Code	Course	L	Т	Р	0	E	С
1	SBC	AS108	ENGINEERING EXPLORATION (Project to solve social problem)	0	0	0	0	12	2
11		1 /2020	3 1 /	1	1	1		L	1

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

			Semester III						
No	Туре	Code	Course	L	Т	Р	0	E	C
1	BSC	MA201	Linear Algebra	2	0	2	5	09	3
1	BSC*	MA202	Foundation of Mathematics-I*	3	0	0	6	09	3
2	PC	ET201	Computer Architecture &	3	0	2	4	09	4
			Organization						
3	PC	ET202	Electronic Devices	3	0	2	4	09	4
4	PC	ET203	Network Theory	3	0	2	4	09	4
5	SBC	ET204	Electronic Instruments and	0	1	2	2	05	2
			Measurement Lab						
6	SBC	AS201	Communication Skills	1	0	2	2	05	2
7	ABL	SVXX/STXX	SEVA II or III /SATVA II or III	0	0	0	0	03	1
8	HSSE	HSEXX	HSS-I	2	0	0	3	05	2
			TOTAL	14	1	12	24	54	22

*Only for Lateral Entry Students

			Semester IV						
No	Туре	Code	Course	L	Т	Р	0	Е	С
1	BSC	MA203	Probability and Stochastic	3	0	0	5	08	3
			Processes						
1	BSC*	MA204	Foundation of Mathematics-II	2	1	0	6	09	3
2	PC	ET205	Analog Circuits	3	0	2	6	11	4
3	PC	ET206	Microcontrollers	3	0	2	6	11	4
4	PC	ET207	Signals and Systems	3	0	2	6	11	4
5	SBC	ET208	Mini Project-I	0	0	0	4	04	2
6	ABL	SVXX/STXX	SEVA II or III /SATVA II or III	0	0	0	3	01	1
7	HSSE	HSEX2	HSS-II	2	0	0	3	05	2
8	S/M	SCX1/MNX1	SCOPE-I/Minor-I						3
			TOTAL	14	0	6	33	51	20

*Only for Lateral Entry Students

	Second Summer for HSC students										
No	Туре	Code	Course	L	Т	Р	0	Е	С		
1	MLC	AS202	Constitution of India				06	06	NC		

	Second Summer (For Lateral Entry Students)										
No	Туре	Code	Course	L	Т	Р	0	Е	С		
1	BSC	MA201	Linear Algebra	2	0	2	5	09	3		
1	BSC	MA203	Probability and Stochastic	3	0	0	5	08	3		
			Processes								
2	MLC	AS202	Constitution of India				06	06	NC		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Semester-I

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teaching Scheme (Hrs/week)					Credits Assigned			
(Category) Code	Course Name	L	Т	Р	0	Ε	L	Т	Р	Total
		3	1	0	8	12	3	1	0	4
(BSC)	En sino origo Colorbor	Exami	nation	Schen	ne		1			
MA101	Engineering Calculus	Comp	onent		ISE		MSE	F	SE	Total
		Theory	y		100		100 200		200	400

Pre-requisit	e Course Codes, if any.	HSC Mathematics
Course Obje	ective: To develop mathematica	al skills for solving engineering problems.
Course Outo	comes (CO): At the End of the	course students will be able to:-
MA101.1	Differentiate a function partie	ally.
MA101.2	Find extreme values of a give	en function.
MA101.3	Find the nth order derivative	of a given function.
MA101.4	Expand a given function as a	power series.
MA101.5	Calculate the value of integral integrals in various coordinate	ls in one variable using different techniques and solve multiple e systems.
MA101.6	Calculate Area using double i	ntegration.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12
MA101.1												
MA101.2												
MA101.3												
MA101.4												
MA101.5												
MA101.6												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
MA101.1							
MA101.2							
MA101.3							
MA101.4							
MA101.5							
MA101.6							

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understand	Apply	Analyze	Evaluate	Create
---------------------	-------	---------	----------	--------

Module	Unit	Topics	Ref	Hrs.
No.	No. Title	Partial Differentiation	1,2,3	10
1	1.1	Partial derivatives of first and higher order. Partial derivatives of	1,2,3	4
	1.1			4
	1.0	composite functions.		2
	1.2	Euler's theorem for homogeneous functions with two and three		3
		independent variables, deductions from Euler's theorem.		_
	1.3	Application of partial derivatives: i) Local Maxima and Minima of		3
		functions of two variables. ii) Lagrange's Method of undetermined		
		multipliers.		
2	Title	Successive Differentiation and Series	1,2,3	10
	2.1	Successive Differentiation: Proofs of nth derivatives of standard		3
		functions. Use of De Moivre's theorem and partial fractions to calculate		
		nth derivatives of given functions.		
	2.2	Leibnitz's Theorem on nth derivative of product of two functions		2
	2.3	Infinite series: 1) Maclaurian's series (without proof) and derivation of		5
		series of some standard functions using Maclaurin series. Expansion of		
		functions in powers of x by using i) Standard series method		
		ii) Method of differentiation and integration.		
		2) Taylor's series and applications.		
3	Title	Integral Calculus (one variable)	1,2,3	8
	3.1	Gamma functions: properties of gamma functions and integrals		2
		reducible to gamma functions.		
	3.2	Beta functions: properties, relation between Beta and Gamma		4
		functions, integrals reducible to Beta functions, Duplication formula.		
	3.3	Differentiation under Integral sign: differentiating integrals with		2
		constant limits of integration for one parameter.		
4	Title	Integral Calculus (multi variable)	1,2,3	14

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	4.1	Tracing of curves. Sketching standard solids (Spheres, Ellipsoids,		2			
		Cylinders, Cones, Tetrahedrons, planes)					
	4.2 Double Integration: definition and evaluation. Evaluate by changing the						
		order of integration and by changing to polar form.					
	4.3	Application of double integral to finding area of given regions.		2			
	4.4	Triple integration: definition and evaluation (Cartesian and cylindrical		3			
		coordinates).					
5	Self	1.1 Partial differentiation of implicit functions.	1,2,3	08			
	Study	2.3 Series by method of Substitution					
		3.2 Proof of Duplication Formula					
		3.3 Differentiation under Integral sign using two parameters and					
		variable limits					
		4.1 Finding lengths of curves in Cartesian and polar form					
Total	1		1	42*			

*Total of 42 hours does not include self study hours.

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1.	Higher Engineering	44th	Dr. B. S. Grewal	Khanna Publications	2020
	Mathematics				

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1.	Advanced Engineering	28th	H.K Das	S. Chand	2014
	Mathematics				
2.	Advanced Engineering	10th	Erwin Kreysizg	John Wiley & Sons	2011
	Mathematics				
3.	Advanced Engineering	4th	Jain and Iyengar	Narosa Publications	2014
	Mathematics				

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Е	L	Т	Р	Total
	Engineering Physics	2	1	2	6	11	2	1	1	4
(BSC)		Examination				Scheme				
		Comp	onent]	ISE	I	MSE	E	SE	Total
4 5101		The			75		75	1	50	300
AS101		Laboratory			50				50	100

Pre-requi	site Course Codes, if any. HSC level physics						
Course O	Course Objective: To provide the knowledge and methodology necessary for solving problems in the field of engineering						
Course O	utcomes (CO): At the End of the course students will be able to						
AS101.1	Illustrate the knowledge of basic concepts of semiconductor physics, lasers and quantum mechanics.						
AS101.2	Solve the problems by applying the basics concepts of physics.						
AS101.3	Use the Schrodinger equation to realize the concept of discreteness and quantum tunneling.						
AS101.4	Explain the working of various LASERs and its practical applications.						
AS101.5	To develop experimental skills and the practical abilities.						
AS101.6	To develop an ability of understanding of concepts and principles of physics.						
AS101.7	To comprehend importance of precision, accuracy of the experimental data.						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AS101.1												
AS101.2												
AS101.3												
AS101.4												
AS101.5												
AS101.6												
AS101.7												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
AS101.1							
AS101.2							
AS101.3							
AS101.4							
AS101.5							
AS101.6							
AS101.7							

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create

Module No.	Unit No.	Topics	Ref.	Hrs
1	Title	Quantum Mechanics		09
	1.1	de-Broglie hypothesis; experimental verification of de Broglie hypothesis; wave packet, group velocity and phase velocity; Wave function, Physical interpretation of wave function; Heisenberg's uncertainty principle; Electron diffraction experiment; Applications of uncertainty principle	1,2,3	
	1.2	Schrodinger's time dependent wave equation, time independent wave equation; Application of time-independent Schrodinger equation - Particle trapped in one dimensional box and Potential barrier (Tunnelling), Harmonic oscillator (qualitative)	1,2,3	
2	Title	Physics of Semiconductors and Semiconductor devices		13
	2.1	Conduction in metals and semiconductors; Fermi-Dirac distribution function and Fermi level in a conductor, insulator and semiconductor	5	
	2.2	Intrinsic and extrinsic semiconductors; intrinsic conductivity and extrinsic conductivity; Law of mass action, charge neutrality condition; intrinsic carrier concentration, electron and hole concentration; Extrinsic carrier concentration as a function of temperature; Effect of impurity concentration and temperature on the Fermi Level; Hall Effect and its applications. Drift and Diffusion current density	5	
	2.3	Formation of a P-N junction, depletion region and barrier potential; Energy band structure of P-N Junction (unbiased, forward-bias, reverse-bias); concept of carrier current densities in p-n junction in equilibrium, forward bias and reverse bias; Breakdown mechanism - Zener effect and avalanche	5,6	
	2.4	P-N junction devices: LED, Zener diode, photoconductors, photovoltaic solar cells and Bipolar Junction Transistors	5,6	
3	Title	LASERS		06
	3.1	Processes - Absorption of light, spontaneous emission, stimulated emission; Einstein's equations, Population inversion; metastable states; pumping and pumping schemes; optical resonance cavity	3,4	
	3.2	Ruby and Helium Neon laser, semiconductor laser; Applications of laser in industry, medicine and holography. (construction & reconstruction of holograms)	3,4	
4	Self Study	Interference of light in thin films having uniform thickness, Newton's rings, Applications of interference in anti-reflecting and highly		05*

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

reflecting thin films. Diffraction of light, Diffraction due to sin	gle slit, double slit and	
diffraction grating.		
	Total (*Not included)	28

Laboratory Component

Sr. No	Title of the Experiment*
1	Determination of energy band gap of a semiconductor
2	Study of I-V characteristics of a Zener diode
3	Determination of the type of semiconductor sample, concentration of charge carriers and its
	mobility using Hall Effect
4	Determination of Planck's constant using photo vacuum tube
5	Measurement of ultrasonic velocity in liquid medium using ultrasonic interferometer
6	Determination of radius of curvature using Newton's Rings
7	Determination of thickness of a thin foil or wire using the interference pattern of a wedge-
	shaped film
8	Determination of wavelengths of a mercury source and resolving power of a plane diffraction
	grating
9	Study of single slit diffraction
10	Determination of grating element of a diffraction grating using a laser source
11	Determination of the numerical aperture of an optical fibre
12	Uses of a Cathode-Ray Oscilloscope

*Students will perform any 10 of the above experiments

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1.	A Textbook of	11	Dr. M.N. Avadhanulu &	S. Chand	2018
	Engineering Physics		Dr. P. G. Kshirsagar		
2.	Engineering Physics	1	D. K. Bhttacharya &	Oxford University	2015
			Poonam Tandon	Press	

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1.	Concepts of Modern	6	Arthur Beiser	McGraw Hill	2009
	Physics			Education	
2.	Modern Physics	3	Serway, Moses and	Thomson Learning	2005
			Moyer		
3.	Fundamentals of Physics	10	Halliday and Resnick	Wiley	2013
4.	Solid State Physics	8	S. O. Pillai	New Age	2018
				International	
				Publishers	
5.	Solid State Electronic	7	Ben G. Streetman and	Pearson Education	2016
	Devices		Sanjay Kumar Banerjee		
6.	Lasers: Fundamentals and	2	Ghatak and Thyagarajan	Springer	2011
	Applications				

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	ŗ		ing Scl rs/weel			C	redit	s Assig	gned
Code		L	Т	P	0	Ε	L	Т	Р	Total
		1	0	2+2	4	08	1	0	2	3
(ESC)			E	Examination			1 Scheme			
	Engineering Graphics	Component		:]	ISE		MSE	E	SE	Total
4 6 1 0 4	Graphics	The	ory		25		25		50	100
AS104		Labor	Laboratory		100			1	100	200

Pre-requisit	e Course Codes, if any.						
Course Obj	Course Objective:						
Course Outcomes (CO): At the End of the course students will be able to							
AS104.1	Construct basic engineering curves.						
AS104.2	Read the 3 dimensional view and draw the orthographic projections.						
AS104.3	Draw projection of points and lines.						
AS104.4	Draw projection of regular solids inclined to both the reference planes.						
AS104.5	Read the orthographic projection and draw isometric views.						
AS104.6	Draw the development of lateral surfaces of solids.						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AS104.1												
AS104.2												
AS104.3												
AS104.4												
AS104.5												
AS104.6												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
AS104.1							
AS104.2							
AS104.3							
AS104.4							
AS104.5							
AS104.6							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
----------	------------	-------	---------	----------	--------

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Module No.	Unit No.	Topics	Ref.	Hrs.	
1	Unit1	Introduction to Engineering Drawing	1,2		
	1.1	Types of Lines, Dimensioning Systems as per IS conventions.		3	
		First angle method of projection only			
	1.2	Basic construction of Cycloid and Involutes.			
2	Unit2	Orthographic Projection	1,2 3 1 2 1,2 4 1,2 5 1,2 5 2 Lat		
	2.1	Orthographic views of a simple machine part as per the first			
		angle method of projection recommended by I.S.			
	2.2	Full Sectional views of the Simple Machine parts.			
3	Unit3	Projection of Points and Lines:-	12	4	
U	3.1	Projection of points in all four quadrants	1,2	-	
	3.2	Projection of lines parallel to one principal reference plane.			
	3.2	Lines inclined to both the Reference Planes (Excluding Traces			
	5.5	of lines).			
4	Ilm:+4	,	1.2	5	
4	Unit4	Projection of solid (Regular solids like Prism, Pyramid,	1,2	3	
	4.1	Cylinder, Tetrahedron, Hexahedron and Cone only)			
	4.1	Projection of solid resting on plane (Single step projection)			
	4.2	Projection of solid such that base inclined to one reference plane			
		(Two step projection)			
	4.3	Projection of solid such that base inclined to both reference planes			
		(Three step projection/problem)			
		(Exclude Spheres, Composite, Hollow solids and frustum of			
		solids)			
5	Unit5	Isometric visualization and DLS	2	Lab	
	5.1	Isometric view (Natural scale only)		sessio	
	5.2	Development of lateral surface.		(2)	
		(Exclude DLS of a solid with section or a hole in it and Reverse			
		Development)			
6	Self	1.2 Construction of Engineering curves like ellipse, parabola,	1,2,3	6*	
	Study	hyperbola, helix, other types of cycloid etc. by using different			
		method of construction.			
		2.1 Solve more practice examples of orthographic views. Draw different views of a machine part/any object using third angle			
		method of projection. (Axonometric view, oblique view,			
		perspective etc.)			
		2.2 Half sectional orthographic views.			
		3.1 Projection of lines with traces, application based problems			
		on Projection of lines			
		4.1 Projection of section of solid with cutting planes.			

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

part of the solid after cutting plane, reverse development of solid. Total (*Not include	1)	14	
5.1 Development of surfaces of frustum of solid, and retaining			

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No	Engineering AutoCAD Laboratory
1	Introduction to AutoCAD:-Basic Drawing and Editing Commands. Knowledge of setting up
	layers, Dimensioning, Hatching, plotting and Printing.
	Auto-Cad Practice sheets (Min. Two)
2	Orthographic views (Min Two Problems)
3	Sectional Orthographic views
4	Draw cycloid and involute
5	Draw Projection of lines
6	Projection of solid (Single step and two step)
7	Projection of solid (Three step)
8	Draw development of lateral surfaces with simple sections.
9	Isometric Views:- Isometric View/Drawing of blocks of plain and cylindrical surfaces using
	plain/natural scale only. (Exclude Spherical surfaces).
••	

Text Books:

Sr. No	Title	Edition	Authors	Publisher	Year
1	Engineering Drawing	53 rd	N D Bhatt	Charotar	2016
2	Engineering Drawing	3 rd	Dhananjay A Jolhe	Tata McGraw Hill	2011

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
3	AutoCAD 2017		Sham Tickoo	DreamTech	2017
				Press, Delhi	
4	Engineering Drawing and	5 th	K Venugopal	New Age	2011
	Graphics			International	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name		Teaching Scheme (Hrs/week)						Credits Assigned				
Code		L	Т	Р	0	Ε	L	Т	Р	Total			
	Basic Electrical Engineering	3	0	2	5	10	3	0	1	4			
(ESC)		Examination Scheme											
		Component			ISE		MSE	E	SE	Total			
FT1 01		Theory			75		75		50	300			
ET101		Laboratory			50				50	100			

Pre-requisit	e Course Codes, if any. Basic concepts of electric charge, current, voltage and								
	power								
Course Obj	ective: To impart a basic knowledge of electrical quantities, Circuits and								
components.									
Course Outcomes (CO): At the End of the course students will be able to									
ET101.1	Compute various electrical quantities of given dc circuit using circuit simplification								
	techniques and various network theorems.								
ET101.2	To expose the students to different terms and concepts in AC Circuits at fundamental								
	frequency and to expose them to basics of effects of harmonics in the waveforms								
ET101.3	To study the working principles of electrical machines and their applications								
ET101.4	To expose the students the fundamental concepts in Controllable Switch and								
	Modulation based Power Conversion								
ET101.5	To study Electrical Parameters of the Batteries and their selection and design criteria								
	for a specific application								

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
ET101.1												
ET101.2												
ET101.3												
ET101.4												
ET101.5												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
ET101.1							
ET101.2							
ET101.3							
ET101.4							
ET101.5							

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Reme		Understand	Apply	Analyze	Evaluate	Cre	eate					
Theor	y Comp	onent										
Mod ule No.	Unit No.			Topics			Ref.	Hrs				
1	Title	DC Circuits						10				
	1.1	Electrical circuit elements (R, L and C), Voltage and current sources, Equivalent resistance of circuits, Simplification using delta-star and star-delta transformation.										
	1.2	excitation. Mesh a Power Transfer T	analysis, Supe neorems	rposition, Thevenir	simple circuits with Norton and Maxim	um						
	1.3	Time-domain analysis of first-order DC Transients in RL and RC circuits.										
2	Title	AC Circuits						12				
	2.1	representation, 1 factor. Harmoni	real power, 1 cs, Total Ha ges and cur	reactive power, a rmonic Distortion	and rms values, pha pparent power, pow n, Power supplied ctor in case of m	wer by						
	2.2	of Bandwidth and	Q-factor,		vith Resonance, Conc	•						
	2.3	Three-phase balar connections.	ced circuits, v	oltage and current	relations in star and d	elta						
3	Title		and Electro-N	Mechanical Energ	y Converters			10				
	3.1	Magnetically Co Convention	upled Coils,	Self and Mutua	I Inductance and	Dot		-				
	3.2	Single Phase Tra Efficiency and Re		inciple of Operation	on, Equivalent Circu	iits,						
	3.3		-	nsformers and Appl								
	3.4	Fundamental Prin motor and DC mo		ting Machines, Cha	aracteristics of Induct	tion						
4	Title	Electric Power C	onverters					05				
	4.1		*	x, Boost and buck- s, Duty Ratio Contr	boost DC-DC conver	ters						
	4.2	Single-phase voltage source inverters and PWM										
5	Title	Batteries: Electri	cal Character	ristics and Applica	tions			05				
	5.1	-	-		tery parameters such -rating, etc. Compari			-				

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		of Batteries, Charging and Discharging Characteristic							
	5.2	Selection and Sizing of Battery Packs for Specific Applications							
6	Self	Components of LT Switchgear: Switch Fuse Unit (SFU), MCB,	3*						
	Study	ELCB, MCCB, Types of Wires and Cables, Earthing. Elementary							
		calculations for energy consumption and power factor improvement.							
	Total (*Not included)								

Laboratory Component (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
01	Introduction to Electrical Measuring instruments, Lamp Loads, Inductor Loads and Capacitor Bank
02	Verification of Star-Delta and Delta-star Transformation with Kirchoff's Laws
03	Verification of Thevenin's Norton's and Maximum Power Transfer Theorem
04	Verification of DC Transient equations in RL and RC Circuits
05	Experimental study of single-phase AC circuit with R-L and R-C Load with Measurement of
03	Power and Power factor
06	Experimental study of R-L-C series Resonance. To plot resonance curve, To compute Bandwidth
00	and Q-factor
07	Experiment on Magnetic Circuit Fundamentals
08	Loading of a transformer: measurement of primary and secondary voltages and currents,
00	and power. To compute efficiency and regulation.
	Three-phase transformers: Star and Delta connections. Voltage and Current relationships
09	(line-line voltage, phase-to-neutral voltage, line and phase currents). Phase-shifts between
09	the primary and secondary side. Cumulative three-phase power in balanced three-phase
	circuits.
	Synchronous speed of two and four-pole, three-phase induction motors. Direction reversal
10	by change of phase-sequence of connections. Torque-Slip Characteristic of an induction
	motor. Generator operation of an induction machine driven at super-synchronous speed.
11	Demonstration of (a) dc-dc converters (b) dc-ac converters – PWM waveform.
12	Demonstration of V/F control of Induction motor
13	Experimental study of charge and Discharge characteristics of a Lead-acid Battery
14	Introduction to L.T. Switch gear

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year	
1	Basic Electrical Engineering	3rd	D.P. Kothari and I.	Tata McGraw Hill	2010	
			J.			
2	Electrical Technology	23rd	B. L. Theraja	S. Chand	2003	
				Publications		

Reference Books

Sr. No	Title	Edition	Author	Publisher	Year
01	Basic Electrical Engineering	2 nd	D.C. Kulshreshtha	McGraw Hill	2019
02	Fundamentals of Electrical Engineering	2^{nd}	L.S. Bobrow	Oxford University Press	2011
03	Electrical and Electronics Technology	3rd	E. Hughes	Pearson	2010
04	Electrical Engineering Fundamentals	2^{nd}	V.D. Toro	Prentice Hall India	1989
05	Elements of Power Electronics	2 nd	P. T. Krein	New York and Oxford: Oxford University Press	2015
06	Power Electronics: Converters, Application and Design	2 nd	Ned Mohan, T.M Undelands and W P Robbins	John Wiley and Sons. Inc.	1995
07	Electric Machinery	6 th	A. E. Fitzgerald, C. Kingsley and S. D. Umans	McGraw-Hill	2003

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	r	heme k)	Credits Assigned						
Code		L	Т	Р	0	Е	L	Т	Р	Total
		2	0	2	4	8	2	0	1	3
(ESC)	Problem Solving using Imperative		Exam	inatio	n Scheme					
		Comp]	ISE	l	MSE		SE	Total	
CS101	Programming	The		-		-		-	-	
0.5101		Labor	atory		200			1	100	300

Pre-requisit	e Course Codes, if any.								
Course Obj	ective: To develop problem solving skills using imperative programming								
Course Outcomes (CO): At the End of the course students will be able to									
CS101.1	Explain the problem solving aspects using various programming paradigms.								
CS101.2	Solve real world problems using imperative programming approach.								
CS101.3	Solve problems using control structures for real world problems.								
CS101.4	Solve problems using Arrays and Text processing.								
CS101.5	Develop modular code for a given problem.								
CS101.6	Solve real world problems using Structures and Unions								

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12
CS101.1												
CS101.2												
CS101.3												
CS101.4												
CS101.5												
CS101.6												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
CS101.1							
CS101.2							
CS101.3							
CS101.4							
CS101.5							
CS101.6							

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

BLOOM'S Levels Targeted (Pl. Tick appropriate)

RememberUnderstandApply ✓	Analyze Evaluate	e Create
---------------------------	------------------	----------

Module No.	Unit No.	Topics	Ref.	Hrs
	Title	Introduction to Problem Solving and Programming Paradigms		
1	1.1	What is a Problem, Problem Solving Aspect, Top Down Design, Implementation of Algorithms, Characteristics of a good algorithm, what is a computer program, real life examples of programming, Computer based applications of programming, Steps followed in Program Development, Characteristics of good Program	3,4	2
	1.2	Overview of Programming Paradigms - Declarative and Imperative, Problem solving using Algorithm and Flowcharts,	3,4	2
	Title	Basic Elements of Computer Programming and Control flow		
2	2.1	Variables, keywords, Data types, Operators: Arithmetic, Relational and Logical, Assignment, Unary, Conditional, Bitwise, Expression, Statements.	1,2	1
2	2.2	Branching Structures: if statement, if-else statement, multi-way decision, switch statement, continue statement, break statement Iterative Structures: while, do-while, for, nested loops	1,2	3
	2.3	Problem solving using Control Structures for real world problems	1,2,4	2
	Title	Problem Solving using Array Techniques		
	3.1	Introduction to Arrays: Declaration, Definition, accessing array elements, one-dimensional array, two-dimensional array, array of characters, Strings	1,2	2
3 3.2		Classical Problem Solving using Arrays like Array Order Reversal, Array Counting or Histogramming, Finding the maximum number in a set.	1,2,4	2
	3.3	Text Processing problems like finding length, keyword search, finding anagrams	1,2,4	2
	Title	Problem Solving using Modular Approach		
4	4.1	Defining a Function, accessing a Function, Function Prototype, Passing Arguments to a Function, call by value, pointers and call by reference, Recursion	1,2	4
	4.2	Problem solving using Functions and Recursive applications	1,2,4	3
	Title	Structures and Unions		
5	5.1	Structures and Union: Declaration, Initialization, structure within structure, Array of Structure, Operation on structures, Concept of Union, Difference between structure and union,	1,2	3
	5.2	Real world problems using Structures and Unions	1,2,4	2
6	Self Study	File handling: Types of File, File operation- Opening, Closing, Creating, Reading, Processing File, Command line arguments, Dynamic Memory Allocation	1,2,4	4*
		Total (*Not incl	luded)	28

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Laboratory Component (Minimum 10 Laboratory experiments are expected) Note: All problems should be implemented using C language.

Sr. No	Title of the Experiment
1	Use the formatted input/output statements, operators and expressions of C language
2	Apply various control structures to solve given problems.
3	Apply the concept of functions to incorporate modularity.
4	Demonstrate the use of one-dimensional arrays to solve a given problem.
5	Demonstrate the use of two-dimensional arrays to solve a given problem.
6	Apply the concept of recursion to solve a given problem.
7	Implement various text processing problems.
8	Apply the concepts of structures/union to solve a given problem.
9	Demonstrate the use of pointers to solve a given problem.
10	Implement various operations on files to solve a given problem.

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Programming with C	Fourth	Byron Gottfried	McGraw Hill (Schaum's outline series)	2018
2	The C programming Language	Second	Kernighan , Ritchie	Pearson	2015
3	Foundations of Programming Languages	Second	Kent D. Lee	Springer	2017
4	How to Solve it by Computer	First	R.G. Dromey	Prentice Hall India	1998

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Let Us C	Sixteenth	Yashavant Kanetkar	BPB	2017
2	Programming	Third	Carlo Ghezi, Mehdi	John Wiley &	2008
	Language Concepts		Jazayeri	Sons	
3	Computer	Second	V. Rajaraman &	PHI Learning,	2014
	Programming in C		Neeharika Adabala	Eastern Economy	
				Edition,	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name		Teaching Scheme (Hrs/week)				Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total
	Skill Shop	0	0	2	0	02	0	0	1	1
(SBC)			Examination				n Scheme			
		Component			ISE]	MSE	F	SE	Total
45106		Theory								
AS106		Laboratory			50				50	100

Pre-requisite Course Codes, if any.

Course Objective: To equip the students with the fundamental skills involved in the creation of simulated and physical design.

Course Outcomes (CO): At the End of the course students will be able to

AS106.1	Operate basic electronic equipment and instruments.
---------	---

AS106.2 Make PCB designs in simulations.

AS106.3 Assemble, disassemble and troubleshoot computer hardware and network peripherals.

AS106.4 Fabricate basic jobs in traditional trades.

AS106.5 Design a 3D model and translate it to a 3D printed component.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AS106.1												
AS106.2												
AS106.3												
AS106.4												
AS106.5												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
AS106.1							
AS106.2							
AS106.3							
AS106.4							
AS106.5							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

RememberUnderstandApplyAnalyzeEvaluateCreate
--

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Lab Component

Trade No.	Unit No.	Topics	Ref.	Hrs
1	Unit 1	Electronic Components	5	
	1.1	Introduction to Electronic Components		4
		Exposure to usual electronic equipment/instruments such as Multi-		
		meter, Oscilloscope, Function generator, IC tester and Power		
		supply, Information about their front panels, Demonstrations on		
		their working, Hands-on for measurement of component values and		
		DC voltage using multi-meter, AC mains voltage/1 KHz Square		
		wave/any small signal from function generator on Oscilloscope,		
		Testing of sample digital ICs using IC tester.		
		OR		
		Repairing of gadgets and appliances:		
		Elementary skills of repairing juicer, mixer, grinder, etc.		
2	Unit 2	PCB Laboratory Exercises	6	
	2.1	Layout drawing, Positive and negative film making, PCB etching		4
		and drilling, Tinning and soldering technique.		
3	Unit 3	Hardware and Networking	7, 8	4
	3.1	Dismantling of a Personal Computer (PC), Identification of		
		Components of a PC such as power supply, motherboard, processor,		
		hard disk, memory (RAM, ROM), CMOS battery, CD drive,		
		monitor, keyboard, mouse, printer, scanner, pen drives, disk drives		
		etc.		
	3.2	Assembling of PC, Installation of Operating System and Device		
		drivers, Boot-up sequence. Installation of application software (at		
		least one).		_
	3.3	Basic troubleshooting and maintenance.		
	3.4	Identification of network components: LAN card, wireless card,		
		switch, hub, router, different types of network cables (straight		
		cables, crossover cables, rollover cables) Basic networking and		
		crimping.		
4	Unit 4	Traditional Trades*	1, 2	4
		Carpentry		
		Use and setting of hard tools like hacksaws, jack planes, chisels and		
		gauges for construction of various joints, wood turning and modern		
		wood turning methods. One carpentry job involving a joint and		
		report on demonstration of a job involving wood turning required		
		for successful completion of module.		
		OR		
		Electrical board wiring		
		House wiring, staircase wiring, and wiring diagram for fluorescent		
		tube light, Godown wiring and three phase wiring for electrical		
		motors.		
		OR Sheet Matel Prosting		
		Sheet Metal Practice		
		Introduction to primary technology processes involving bending,		
		punching and drawing various sheet metal joints, development of		<u> </u>

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		joints. Utility job in sheet metal required for successful completion		
		of module.		
5	Unit 5	3D Modeling and Printing	3, 4	4
	5.1	Modeling approaches for ideation and creation. Developing a CAD		
		file (.iges/.step/.dwg) of a 3D model and export it as an .stl file for		
		the purpose of 3D printing. Importing the 3D .stl file to generate a		
		.gcode file for 3D printing through slicing, using open source		
		software.		
	5.2	Introduction to 3D printing: methodologies, best practices, material		
		and model variation. Live printing sessions of generated .gcode files		
		in real time with optimal parameters and troubleshooting.		
			Total	20

* Students can opt for any one of the three trades from Unit 4.

Text Books:

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Workshop Manual	6 th	Venkat Reddy	BS Publication	2008
2	Wiring Simplified: Based on 2017 National Electrical Code	45 th	Frederic P Hartwell, Herbert P. Richter, W.C. Schwan	Park Publishing	2017

Reference Books:

Sr.	Title	Edition	Authors	Publisher	Year
No.					
3	Autocad 2017	1^{st}	Shyam Tikoo	Dreamtech Press	2016
4	Ultimaker 2+ reference	-	-	Ultimaker	2017
	manual				
5	Encyclopedia of Electronic	1^{st}	Charles Platt	O Reilly	2012
	Components				
6	Printed Circuit Boards	1^{st}	Khandpur R.S.	Tata McGraw Hill	2005
7	Troubleshooting Your PC For	2^{nd}	Gookin Dan	For Dummies	2005
	Dummies				
8	Networking For Dummies	8 th	Lowe Doug	For Dummies	2007

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Semester-II

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total
(BSC)		3	1	0	8	12	3	1	0	4
(BSC)	Differential Equations and Complex Analysis	Examination Scheme								
MA102		Comp	onent		ISE		MSE	F	ESE	Total
		The	ory		75		75	1	150	400

Pre-requisite	e Course Codes, if any. Sen	nester-I Mathematics					
Course Obje	Course Objective: To develop mathematical skills for solving engineering problems.						
Course Outcomes (CO): At the End of the course students will be able to:-							
MA102.1	Solve differential equations of first order.						
MA102.2	Solve differential equations of hig	her order using operators.					
MA102.3	Solve differential equations in elec	ctrical engineering problems.					
	Find powers, roots & logarithm of	a complex number and to separate the function of a					
MA102.4	complex number into real and image	ginary.					
MA102.5	Check whether a given function is	Check whether a given function is analytic and construct analytic functions.					
MA102.6	Compute integrals of complex value	ed functions.					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MA102.1												
MA102.2												
MA102.3												
MA102.4												
MA102.5												
MA102.6												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
MA102.1							
MA102.2							
MA102.3							
MA102.4							
MA102.5							
MA102.6							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Module No.	Unit No.	Topics	Ref	Hrs.
1	Title	Linear Differential Equations of first order	1,2, 3	11
	1.1	Exact Differential Equations, Integrating Factors, equations reducible to exact form.		3
	1.2	Linear differential equations (Definition), equations reducible to linear form, Bernoulli's equation		2
	1.3	Simple application of differential equation of first and second order to electrical engineering problems.		2
	1.4	Numerical solution of ordinary differential equations of first order and first degree using (a)Taylor's series method (b)Euler's method (c) Modified Euler method (d) Runge-Kutta fourth order formula.		4
2	Title	Linear Differential Equations of higher order	1,2, 3	11
	2.1	Linear Differential Equation with constant coefficient- complementary function, particular integrals of differential equation of the type $f(D)y = V$		7
		X where X is e^{-ax} , sin(ax+b), cos(ax+b), x^m , e^{ax} V, xV, where V is a function of x.		
	2.2	Cauchy's homogeneous linear differential equation and Method of variation of parameters for second order.		2
	2.3	System of Differential Equations.		2
3	Title	Complex Numbers	1,2, 3	12
	3.1	Revision: Complex Numbers as ordered pairs, Argand's diagram, Cartesian, Polar and Exponential form of Complex Numbers.		1
	3.2	De Moivre's Theorem and its application to determine powers of complex numbers. Roots of complex numbers by De Moivre's Theorem.		3
	3.3	Expansion of $\sin n\theta$ and $\cos n\theta$ in terms of powers of $\sin \theta$ and $\cos \theta$. Expansion of $\sin^n \theta$ and $\cos^n \theta$ in terms of sines and cosines of multiples of θ .		2
	3.4	Hyperbolic Functions: relation between circular and hyperbolic functions, Inverse hyperbolic functions. Separation into real and imaginary parts of complex functions.		4
	3.5	Logarithm of a complex number.		2
4	Title	Analytic functions and Complex Integrals	1,2, 3	8
	4.1	Analytic functions, Cauchy Reimann equations in cartesian and polar form, construction of analytic functions using Milne-Thompson's method, Harmonic functions, poles of f(z).		4
	4.2	Line Integral, Cauchy's Integral theorem for simply connected regions,		4

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		Cauchy's Integral formula (for poles lying inside or outside the curve).		
5	Self	1.3 To form D.E. for given L-C-E-R circuit		08
	Study	1.4 Picard's method		
		2.1 Method of undetermined coefficients to solve differential equations.		
		2.2 Legendre's differential equation, Method of variation of parameters		
		for third order differential equations.		
		3.2 Complex examples using De Moivre's Theorem.		
		4.1 Construction of analytic function $f(z) = u + iv$ when $u + v$ or $u - v$ is		
		given. Orthogonal trajectories		
			Total	42 [:]

*Total of 42 hours does not include self study hours.

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1.	Higher Engineering Mathematics	44th	Dr.B.S.	Khanna	2020
			Grewal	Publications	

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1.	Advanced Engineering	28th	H.K Das	S.Chand	2014
	Mathematics				
2.	Advanced Engineering	10th	Erwin	John Wiley &	2011
	Mathematics		Kreysizg	Sons	
3.	Advanced Engineering	4th	Jain and	Narosa	2014
	Mathematic		Iyengar	Publications	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name]	Teaching Scheme (Hrs/week)				Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total
		2	0	2	4	8	2	0	1	3
(BSC)	.		Examination				n Scheme			
4 6102	Engineering Chemistry	Comp	onent]	ISE	l	MSE	E	SE	Total
AS102	Chemistry	Theory			50		50		.00	200
			atory		50				50	100

Pre-requis	ite Course Codes, if any. HSC level Chemistry						
Course Ob	jective: To provide necessary background of Chemistry suited for relevant areas of engineering						
Course Ou	Course Outcomes (CO): At the End of the course students will be able to						
	Relate thermodynamic principles and laws to crucial applications like heat engines						
AS102.1	(Understanding)						
	Summarize properties and applications of different materials like polymers, ceramics, alloys,						
AS102.2	nanomaterials, conductors and insulators (Understanding)						
	Identify methods for corrosion control based on knowledge of different types of corrosion and						
AS102.3	02.3 factors affecting rate of corrosion (Application)						
	Compare different sources of energy like conventional fossil fuels, alternative fuels, batteries and						
	fuel cells with respect to availability, working principles, constitution, efficiency of performance						
AS102.4	and environmental impact (Understanding)						
	Apply knowledge of electrochemistry and green chemistry in the interest of public health and						
AS102.5	environment (Application)						
	Make use of analytical techniques (complexometric and iodometric titrations) and instruments						
	(pH-meter, conductometer and Orsats's Apparatus) for various purposes like hardness						
AS102.6	parameters of water, composition of alloys etc.						
AS102.7	Estimate key properties of lubricants like flash point, viscosity and acid value						
AS102.8	Estimate molecular weight of polymer						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AS102.1												
AS102.2												
AS102.3												
AS102.4												
AS102.5												
AS102.6												
AS102.7												
AS102.8												

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
AS102.1							
AS102.2							
AS102.3							
AS102.4							
AS102.5							
AS102.6							
AS102.7							
AS102.8							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understand App	y Analyze	Evaluate	Create
-------------------------	-----------	----------	--------

Module No.	Unit No.	Topics	Ref.	Hrs.
	Title	Thermodynamics		
	1.1	Introduction, Terminology, Concepts of Internal Energy and Thermodynamic equilibrium, Zeroth and First Law of Thermodynamics, Implications and Limitations of First law	1,3	
1	1.2	Concept of Enthalpy, Joule Thomson Effect, Carnot's Cycle, Carnot's theorem and related numerical, Second Law of Thermodynamics	1,3	4
	1.3	Applications of thermodynamic principles to the working of refrigerator and air conditioner	1,3	
	Title	Polymers		
2	2.1	Introduction, Effect of heat on polymers : Glass transition temperature and melting with significance;	1, 2, 3	3
	2.2	Conducting polymers, Liquid crystal polymers, Engineering Polymers	1, 2,3	
	Title	Corrosion		
	3.1	Introduction, Dry corrosion (i) Due to oxygen (ii) Due to other gases	1,2	
	3.2	Electrochemical corrosion and mechanism, Galvanic, differential aeration corrosion, Significance of galvanic series for corrosion phenomenon	1,2	
3	3.3	Factors affecting rate of corrosion (i)Position in galvanic series, (ii) relative areas of anode and cathode, (iii) conductance of medium	1,2	5
	3.4	Methods to decrease the rate of corrosion : Material selection, Proper designing, Cathodic protection- i) Sacrificial anodic protection ii) Impressed current method, Metallic coatings, Cathodic and anodic coatings (Galvanisation and Tinning : principle and application only)	1,2	
4	Title	Energy Sciences		5

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		Definition and classification of fuels, Calorific value : Definition,	Г	
	4.1	Gross or Higher calorific value & Net or lower calorific value, Dulong's formula & numericals for calculations of Gross and Net	1,2	
		calorific values. Knocking, Octane number, Cetane number, Antiknock agents,	1,2	
	4.2	unleaded petrol	1,2	
	4.3 Combustion- Calculations for requirement of only oxygen and air (by weight and by volume only) for given solid & gaseous fuels.			
	4.4	Disadvantages of fossil fuels, Alternative (Green) Fuels : Power alcohol, Biomass, Biogas, Biodiesel, Natural Gas and CNG (Description, Utility, advantages and disadvantages)	1,2	
	Title	Batteries and Battery Technology		
	5.1	Introduction, Important terms, Nickel-Hydrogen(metal hydride), Rechargeable Lithium ion batteries	1,2	
5	5.2	Reserve Batteries, Fuel cells, characteristics, description, construction and working of Hydrogen-oxygen fuel cells, Types of fuel cells (in brief)	1,2	4
	5.3	Electrochemical sensors : Working principle, construction and applications	1,2	
-	Title	Green Chemistry		
6	6.1	12 principles of green chemistry with examples, numericals on Atom Economy, Green Solvents (Water, Supercritical Fluids),	1,2	3
	Title	Engineering Materials		
-	7.1	Eutectic mixtures and soft solders, Advanced Ceramic materials and cermets : magnetic, electronic and electrical applications Carbon nanomaterials : Fullerenes and Carbon nanotubes, Structure, Properties and applications	1,2,3	
7	7.2	Insulators, Semiconductors and Superconductors : Thermal and electrical insulating materials and important engineering applications, Stoichiometric, defect and controlled valency semi-conductors.	1,2,3	4
	7.3	Superconductors, perovskite structure and 1:2:3 compound YBa2Cu3O7-y, properties and applications	1,2,3	
8	Self Study	 Supramolecular polymers and their applications Anodic Protection as a corrosion control strategy Current research and advances in fuel cells Commercial applications of superconducting materials Tops down vs bottoms up approach to nanotechnology and applications of nanoparticles other than carbon 		4*
		Total (*Not i	·	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Laboratory Component

Sr. No	Title of the Experiment
1	Determination of total, temporary and permanent hardness of water sample
2	Removal of hardness using ion exchange column
3	Molecular weight determination of polymers by Oswald's Viscometer
4	To determine flash point of a lubricating oil
5	Determination of Viscosity of oil by Redwood Viscometer
6	Estimation of acid value of lubricant
7	Determination of amount of strong acid present in a solution using a conductometer
8	Determination of strength of acid using a pH meter
9	Estimation of Copper in brass by Iodometric Titration
10	Analysis of Flue gas for its composition (by Orsat's Apparatus)
11	Estimation of Iron in plain Carbon steel
12	Determination of COD of wastewater sample

Text Books

Sr No	Title	Edition	Authors	Publisher	Year
1	Engineering Chemistry	XI	P.C.Jain & M.Jain	Dhanpat Rai & Co. (Pvt) Ltd.	2014
2	A Textbook of Engineering Chemistry	XII	S.S.Dara & S.S.Umare	S. Chand & Co.	2014
3	A Textbook of Engineering Chemistry	III	S Chawla	Dhanpat Rai & Co. (Pvt) Ltd.	2015

Reference Books

Sr No	Title	Edition	Authors	Publisher	Year
1	Physical Chemistry	Eleventh	Peter Atkins	Oxford University Press	2017

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	Course NameTeaching Scheme(Hrs/week)					C	Credits Assigned		
Code		L	Т	Р	0	Ε	L	Т	Р	Total
		2	0	0	3	5	2	0	0	2
(BSC)	Diologra for		Examination				n Schei	n Scheme		
	Biology for Engineers	Comp	onent		ISE		MSE	E	SE	Total
AS103	Eligineers		eory		50		50	1	00	200
		Labor	ratory		-				-	-

Pre-requisite	Course Codes, if any. HSC level Biology						
Course Object	Course Objective: To provide engineering perspective towards the biological principles and systems						
	omes (CO): At the End of the course students will be able to						
AS103.1	understand basic biological principles and organizational structure of living systems at molecular level.						
AS103.2	comprehend basic biological principles and organizational structure of living systems at cellular level						
AS103.3	know Energy transformation and information processing in biological systems						
AS103.4	appreciate biological process with engineering perspective						
AS103.5	identify significance of Gene, Blood and Skin in human health system.						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AS103.1												
AS103.2												
AS103.3												
AS103.4												
AS103.5												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
AS103.1							
AS103.2							
AS103.3							
AS103.4							
AS103.5							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understand Apply	Analyze	Evaluate	Create
---------------------------	---------	----------	--------

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Module No.	Unit No.	Topics	Ref.	Hrs.
	Title	Bio-molecules and bio-polymers: Structure and Function	1,3	
1	1.1	Organic and inorganic molecules, Unique Properties of water		
1	1.2	Carbohydrates, Lipids, Amino Acids and proteins, Nucleic Acids (DNA and RNA)		4
	Title	Levels of organization of life	1,3	
2	2.1	Cell as a basic unit of life, prokaryotic and eukaryotic cells, microbes, plant and animal cells; Cell organelles – structure and function; Cell membrane.		4
	2.2	Levels of organization: cells, tissues, organs, systems & organism		
	Title	Energy transformations	1,3	
3	3.1	Energy transformations in Chloroplast: Photosynthesis (photochemical & biochemical phase) and ATP generation, Aerobic and anaerobic systems		5
	3.2	Energy transformations in Mitochondria: Cellular respiration (glycolysis and Kreb cycle) and ATP generation		
	Title	Transport and Defense mechanisms	1,3	
4	5.1	Transport Phenomena in Biological Systems: Membrane channels and ion channels; Fluid flow and mass transfer (nutrients & ions); In plants: Xylem and Phloem; In animals: Blood and Lymph Transport of gases: Oxygen and Carbon dioxide Heat Transport - Body temperature regulation.		5
	5.2	Defense mechanisms: In plants: Herbivory, secondary metabolites In animals: Innate and Adaptive immune systems		
	Title	Engineering perspectives of biological sciences:	1,3	
5	6.1	Biology and engineering crosstalk – At cell level: Hybridoma technology At tissue level: Plant Tissue Culture, Animal Tissue Culture;		6
	6.2	Tissue Engineering: Principles, methods and applications Introduction to Biomimetics and Bio-mimicry, nano-biotechnology		
	Title	Role of Gene, Blood and Skin in human health system.	2,4	
6	7.1	Introduction to Genetic Engineering. Blood Type, Complete Blood Count Test and Abnormalities.		4
	7.2	Structure of Skin, Functions of Skin. Engineering methods for identification of Skin diseases.		
7	Self Study	Introduction to Biosensors, transducers, amplifiers; Introduction to medical imaging and different medical Imaging modalities; Review of Signals and system; Electro Physiological Signal Analysis.		4*
		Total (* Not in	ncluded)	28

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Molecular Cell Biology	IV	Lodish H, Berk A, Zipursky SL	W. H. Freeman	2000
2	Textbook of Anatomy and Physiology for Nurses and allied Health Sciences	Ι	Indu Khurana & Arushi	CBS Publsihers & Distributors Pvt Ltd	2019

Reference Books

Sr. No.	Title	Edition	Authors	Publisher	Year
3	Lehninger Principles of Biochemistry	IV	Nelson, D. L., & Cox, M. M.	Freeman	2004
4	Introduction to Biomedical Engineering.	III	Joseph D. Bronzino, John Enderle	Academic Press	2012

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name]	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Τ	Р	0	Е	L	Т	Р	Total	
		2	0	2	5	09	2	0	1	3	
(ESC)	.	Examination Scheme									
× ,	Engineering Mechanics	Comp	onent		ISE	I	MSE	E	ESE Total		
A \$105	wiechamics	The	eory		50		50	100 200			
AS105		Laboratory			50				50	100	

Pre-requisite	Course Codes, if any.							
Course Object	ctive:							
Course Outcomes (CO): At the End of the course students will be able to								
AS105.1	Draw free body diagram and determine reactive forces using conditions of equilibrium							
	and Lami's theorem							
AS105.2	Determine coefficient of friction for various contact surfaces							
AS105.3	Analyze the three-dimensional system of space forces.							
AS105.4	Analyze the kinematics of particle and obtain the various parameters of motion.							
AS105.5	Determine Instantaneous centre of rotation (ICR).							
AS105.6	Design and conduct an experiment to demonstrate principles of statics and dynamics							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AS105.1												
AS105.2												
AS105.3												
AS105.4												
AS105.5												
AS105.6												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
AS105.1							
AS105.2							
AS105.3							
AS105.4							
AS105.5							
AS105.6							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understand	Apply	Analyze	Evaluate	Create
----------------------------	-------	---------	----------	--------

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Equilibrium of forces		
	1.1	Equilibrant force, conditions of equilibrium for concurrent forces, parallel forces and general force system, equilibrium of connected bodies, Lami's theorem.	1,3	8
	1.2	Types of supports, types of loads, Beams, Determination of reactions at supports for various types of loads on beams	3	
2	Title	Friction		
	2.1	Introduction to Laws of friction, Cone of friction, Equilibrium of bodies on inclined plane, Application to problems involving wedges, ladders.	1,2	4
3	Title	Forces in space		5
	3.1	Rectangular Components of Forces in Space, Resultant of Space forces, Moment of a Force about a point, axis and line. Equilibrium of a particle in space.	1	
4	Title	Kinematics of Particle		8
	4.1	Motion along straight and curved path, Rectangular component of velocity and acceleration, Tangential & Normal component of acceleration, Motion curves(a-t, v-t, s-t curves), Projectile motion,	2,3	
5	Title	Kinematics of Rigid Bodies		3
	5.1	Instantaneous center of rotation for the velocity of bodies in plane motion, (up to 2 linkage mechanism)	3	
6	Self Study	 Applications of resultant of forces, concept of couple and moments, Centroid and center of gravity, analysis of trusses. Kinetics of rigid body, work energy principle. Principle of Law of Conservation of momentum, Impact and collision. 	1,2,3	6*
		Total (*Not Incl	uded)	28

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Laboratory Component, if any

Sr. No	Title of the Experiment
1	Draw the force polygon and determine the equilibrant force for concurrent coplanar force system.
2	Use the conditions of equilibrium for parallel force system and determine the support reactions.
3	Apply the principle of moment for equilibrium of levers.
4	Determine the coefficient of friction for glass slab and a metal plate on an inclined plane.
5	Determine the axial forces using Lami's theorem for Jib crane apparatus.
6	Use the conditions of equilibrium for non-concurrent non-parallel force system and draw the force polygon.
7	Measure the acceleration due to gravity with the help of simple pendulum apparatus.
8	Determine the range of projectile and the time of flight for the projectile motion.
9	Verify the law of conservation of momentum and determine the coefficient of restitution for collision
10	(Plot the motion of projectile using air-cushion table apparatus.) A small project based on Engineering Mechanics concept.

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Vector Mechanics for	9 th	Beer and	McGraw Hill	2010
	Engineers statics and		Johnston		
	dynamics				
2	Engineering Mechanics	5 th	Bhavikatti S S	New Age	2009
			and	International	
			Rajsekharappa		
3	Engineering Mechanics	14^{th}	A K Tayal	Umesh	2012
	Statics and Dynamics			Publication, Delhi	

Sr. No	Title	Edition	Authors	Publisher	Year
3	Engineering Mechanic:	5 th	E.W. Nelson,	McGraw Hill	1998
	Statics and Dynamics,		C.L. Best, W.G.		
			McLean,		
4	Singer's Engineering	3 rd	Vijaya Kumar	BS Publication	2012
	Mechanics Statics and		Reddy. K. and		
	Dynamics		Suresh Kumar. J		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	8						Credits Assigned			
Code		L	Τ	Р	0	Ε	L	Т	Р	Total
		2	0	2	3	7	2	0	1	3
(ESC)			Examination Scheme							
	Problem Solving using OOP	Comp	onent]	ISE]	MSE	E	SE	Total
CS102	001	The	eory							
CS102		Laboratory			200			1	.00	300

Pre-requisite	Course Codes, if any.	Problem Solving using Imperative Programming					
Course Obje	Course Objective: To learn problem solving using Object-Oriented programming paradigm						
Course Outc	Course Outcomes (CO): At the End of the course students will be able to						
CS102.1	Apply concepts of object ori	ented programming using classes and objects					
CS102.2	Apply Inheritance for a give	n scenario					
CS102.3	02.3 Apply polymorphism for solving a given problem						
CS102.4	Apply abstraction and excep	tion handling to create efficient program.					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CS102.1												
CS102.2												
CS102.3												
CS102.4												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
CS102.1							
CS102.2							
CS102.3							
CS102.4							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
	/2020 21/ mg 20				

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Theory (This course content delivery will be in C++/Java. Course Contents to be taken care accordingly)

Module No.	Unit No.	Topics	Ref.	Hrs.
		Introduction and Encapsulation		8
	1.1	Introduction to Object Oriented Programming, Procedural verses Object	1,2	
		Oriented Programming, Principles, Benefits and applications of Object		
1		Oriented Programming.		
	1.2	Encapsulation: Problem solving with Objects and Classes		
	1.3	Static data member and methods, constructors and their types. Types of		
		functions and keywords, Strings, Arrays		
		Inheritance		6
	2.1	Concept of Inheritance, parent class, derived class, base class and derived	1,2	
2		class constructor		
	2.2	Types of inheritance: single, multiple, multilevel, hierarchical, hybrid		
	2.3	Aggregation and Composition		
		Polymorphism		6
3	3.1	Static Polymorphism: Method overloading and Constructor overloading	1,2	
3	3.2	Dynamic Polymorphism: Method overriding		
	3.3	Data conversion		
4		Abstraction		2
4	4.1	Abstraction: abstract class	1,2	
		Exception Handling		6
5	5.1	try, throw, and catch exceptions	1,2	
	5.2	Function exception declaration		
	Self	File Handling,	1,2	5*
6	Study	\$STL, \$pointers, \$virtual functions		
		@Multithreading, @Packages, @interface		
		Total (*Not incl	uded)	28+

\$ only for C++

@ only for Java

** Language used: C++ for Etrx and Extc Branch

** Language used: C++ / Java for IT and CE Branch

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Laboratory Component

Sr. No	Title of the Experiment
1	Program on Encapsulation: Write a program to demonstrate classes and objects
2	Program on Encapsulation: Write a program to demonstrate constructor
3	Program on Polymorphism: Implement a Program to demonstrate method overloading,
4	Program on Polymorphism: Implement a Program to demonstrate constructor overloading
5	Program on Polymorphism: Implement a Program to demonstrate method overriding
6	Program on Inheritance: Implement a Program to demonstrate single, multilevel Inheritance
7	Program on Inheritance: Implement a Program to demonstrate multiple Inheritance
8	Program on Abstraction: Implement a Program to demonstrate Abstraction using abstract class
9	Program on Abstraction: Implement a Program to demonstrate multithreading/ STL
10	Program to demonstrate File Handling

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Object Oriented Programming with C++	Sixth	E Balagurusamy	Tata McGraw Hill	2017
2	Oriented Programming in Turbo C++	Fourth	Robert Lafore	Galgotia	2001
3	Java -The Complete Reference	Tenth	Herbert Schildt	Tata McGraw- Hill	2017
4	Java Programming From the Ground Up	First	Ralph Bravaco,Shai Simoson	Tata McGraw- Hill	2009

Sr. No	Title	Edition	Authors	Publisher	Year
1	The Compete Reference C++	Fourth	Herbert Schlitz	Tata McGraw Hill	2017
2	An introduction to Programming and Object Oriented Design using Java	Third	Jaime Nino, Frederick A. Hosch	Wiley Student Edition	2010

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course(Category) Code	Course Name	Teaching Scheme (Hrs/week)					C	Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	P	Total	
		3	0	2	5	10	3	0	1	4	
(PC)		Examination Scheme									
	Digital Systems and Microprocessor	Compo	nent	IS	SE	M	SE	ES		Total	
EC101	Microprocessor	Theory		7	75		75 13		0	300	
		Laboratory		50				50		100	

Pre-requisite Course Codes, if any.

Course Objective: To prepare students to perform the analysis and design of various digital electronic

circuits and introduce them to the concept of microprocessors

Course Outcomes (CO): At the End of the course students will be able to

EC101.1	Explain various logic gates, SOP, POS forms and their minimization with k- map for given combinational circuits.
EC101.2	Construct combinational circuits using given MSI devices.
EC101.3	Apply the knowledge of flip-flops and MSI to design sequential circuits
EC101.4	Compare the logic families based on their characteristics
EC101.5	Comprehend the architectural features of 8085 with basic assembly language programming

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC101.1												
EC101.2												
EC101.3												
EC101.4												
EC101.5												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC101.1							
EC101.2							
EC101.3							
EC101.4							
EC101.5							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

RememberUnderstandApplyAnalyzeEv	Evaluate Create
----------------------------------	-----------------

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Theory Component

1TitleCombinational Circuits111.1Logic Gates: Basic gates, Universal gates, Sum of products and products of sum, minimization with Karnaugh Map (up to four variables), Quine Mc'Clusky method and realization.1,41.2Combinational Circuits using basic gates as well as MSI devices: Half adder, Full adder, Half Subtractor, Full Subtractor, Multiplexer, Demultiplexer, Decoder, Comparator1,42TitleSequential Circuits12.1Sequential Logic: Latches and Flip-Flops. Conversions of Flip- Flops.1,42.2Counters: Asynchronous Counters, Synchronous Counters, Up Down Counters, Mod Counters, Ring and Twisted Ring Counters , Shift Registers, Universal Shift Register1,43TitleClocked Synchronous Machines2,53.1Mealy and Moore Machines, Clocked synchronous state machine analysis, State reduction techniques.2,5	Module No.	Unit No.	Topics	Ref.	Hrs
1.1 Logic Gates: Basic gates, Universal gates, Sum of products and products of sum, minimization with Karnaugh Map (up to four variables), Quine Mc'Clusky method and realization. 1.4 1.2 Combinational Circuits using basic gates as well as MSI devices: Half adder, Full adder, Half Subtractor, Full Subtractor, Multiplexer, Decoder, Comparator 1,4 2 Title Sequential Circuits 1.4 2.1 Sequential Logic: Latches and Flip-Flops. Conversions of Flip-Flops. 1,4 1.2 Counters: Asynchronous Counters, Synchronous Counters, Up Down Counters, Mod Counters, Ring and Twisted Ring Counters, Shift Registers, Universal Shift Register 1,4 2.3 MSI counters (IC 74190, IC 74160, IC 74163, IC 74169), MSI 2,5 2,5 3.1 Mealy and Moore Machines 2,5 3.1 Mealy and Moore Machines, Clocked synchronous state machine analysis, State reduction techniques. 05 4 Title Logic Families 05 5.1 Evolution of Computers and Microprocessors 3 3 5.2 Essential components of a conventional Central Processing Unit (CPU) 3 3 5.3 Architecture of 8-bit microprocessors 8085 3 3 5.4 Basic instruction set with its addressing modes and concepts of Instruction cycle, Machine cycle and T states. Ele			Combinational Circuits		11
products of sum, minimization with Karnaugh Map (up to four variables), Quine Mc 'Clusky method and realization. 1.2 Combinational Circuits using basic gates as well as MSI devices: Half adder, Full adder, Half Subtractor, Full Subtractor, Multiplexer, Decoder, Comparator 1,4 2 Title Sequential Circuits 1.4 2.1 Sequential Logic: Latches and Flip-Flops. Conversions of Flip-I.4, Flops. 1.4 2.2 Counters: Asynchronous Counters, Sing and Twisted Ring Counters, Shift Registers, Universal Shift Register 1.4 2.3 MSI counters (IC 7490, IC 74160, IC 74163, IC 74169), MSI 2,5 2,5 3 Title Clocked Synchronous Machines 2,5 3.1 Mealy and Moore Machines, Clocked synchronous state machine analysis, State reduction techniques. 05 4 Title Logic Families 05 4.1 Types of logic families (TTL and CMOS), characteristic parameters (propagation delays, power dissipation, Noise Margin, Fan-out and Fan-in), transfer characteristics of TTL NAND. 10 5 Title Introduction to Microprocessors 3 3 5.2 Essential components of a conventional Central Processing Unit (CPU) 3 5.3 Architecture of 8-bit microprocessors 8085 3 5.4 Basic instruction set with its addressing modes and concepts of Instruction c	-			1.4	
variables), Quine Mc'Clusky method and realization. Image: Combinational Circuits using basic gates as well as MSI devices: Half adder, Full adder, Half Subtractor, Full Subtractor, Multiplexer, Demultiplexer, Decoder, Comparator 1.4 2 Title Sequential Logic: Latches and Flip-Flops. Conversions of Flip-Flops. 1.4 2.1 Sequential Logic: Latches and Flip-Flops. Conversions of Flip-Flops. 1.4 2.2 Counters: Asynchronous Counters, Synchronous Counters, I,4 11 2.3 MSI counters (IC 7490, IC 74160, IC 74163, IC 74169), MSI 2,5 2.5 3.1 Mealy and Moore Machines 2.5 3.1 Mealy and Moore Machines, Clocked synchronous state machine analysis, State reduction techniques. 05 4 Title Logic Families 05 4.1 Types of logic families (TTL and CMOS), characteristic parameters (propagation delays, power dissipation, Noise Margin, Fan-out and Fan-in), transfer characteristics of TTL NAND. 10 5 Title Introduction to Microprocessors 3 3 5.1 Evolution of computers and Microprocessors 3 3 5.3 Architecture of 8-bit microprocessors 8085 3 3 5.4 Basic instruction set with its addressing modes and concepts of Instruction cycle, Machine cycle and T states. Elementary programming in assembly language. <td></td> <td></td> <td></td> <td>-,.</td> <td></td>				-,.	
1.2 Combinational Circuits using basic gates as well as MSI devices: Half adder, Full adder, Half Subtractor, Full Subtractor, Multiplexer, Demultiplexer, Decoder, Comparator 1.4 2 Title Sequential Circuits Sequential Logic: Latches and Flip-Flops. Conversions of Flip-Flops. 1.4 2.1 Sequential Logic: Latches and Flip-Flops. Conversions of Flip-Flops. 1.4 11 2.2 Counters: Asynchronous Counters, Synchronous Counters, Up Down Counters, Mod Counters, Ring and Twisted Ring Counters (IC 7490, IC 74160, IC 74163, IC 74169), MSI 2,5 2.5 3.1 Mealy counters (IC 74194) and their applications 2.5 3.1 Mealy and Moore Machines, Clocked synchronous state machine analysis, State reduction techniques. 05 4 Title Logic Families 05 4.1 Types of logic families (TTL and CMOS), characteristic parameters (propagation delays, power dissipation, Noise Margin, Fan-out and Fan-in), transfer characteristics of TTL NAND. 10 5 Title Introduction to Microprocessors 3 3 5.1 Evolution of computers and Microprocessors 3 3 5.3 Architecture of 8-bit microprocessors 8085 3 3 5.4 Basic instruction set with its addressing modes and concepts of Instruction cycle, Machine cycle and T states. Elementary programming in assembly language.					
devices: Half adder, Full adder, Half Subtractor, Full Subtractor, Multiplexer, Demultiplexer, Decoder, Comparator 2 Title Sequential Circuits 14 2.1 Sequential Logic: Latches and Flip-Flops. Conversions of Flip- Flops. 1,4 2.2 Counters: Asynchronous Counters, Synchronous Counters, Up Down Counters, Mod Counters, Ring and Twisted Ring Counters , Shift Registers, Universal Shift Register 1,4 2.3 MSI counters (IC 7490, IC 74160, IC 74163, IC 74169), MSI Shift registers (IC 74194) and their applications 2,5 3 Title Clocked Synchronous Machines 05 3.1 Mealy and Moore Machines, Clocked synchronous state machine analysis, State reduction techniques. 05 4 Title Logic Families (TTL and CMOS), characteristic parameters (propagation delays, power dissipation, Noise Margin, Fan-out and Fan-in), transfer characteristics of TTL NAND. 05 5.1 Evolution of computers and Microprocessors 3 3 5.2 Essential components of a conventional Central Processing Unit (CPU) 3 5.3 Architecture of 8-bit microprocessor 8085 3 5.4 Basic instruction set with its addressing modes and concepts of Instruction cycle, Machine cycle and T states. Elementary programming in assembly language. 5 5.5 Elements of I/O data trans		1.0		1 4	
Subtractor, Multiplexer, Demultiplexer, Decoder, Comparator 2 Title Sequential Circuits 2.1 Sequential Logic: Latches and Flip-Flops. Conversions of Flip-Flops. 2.2 Counters: Asynchronous Counters, Synchronous Counters, Up Down Counters, Mod Counters, Ring and Twisted Ring Counters , Shift Registers, Universal Shift Register 1.4 2.3 MSI counters (IC 7490, IC 74160, IC 74163, IC 74169), MSI 2,5 Shift registers (IC 74194) and their applications 2.5 3 Title Clocked Synchronous Machines 05 3.1 Mealy and Moore Machines, Clocked synchronous state machine analysis, State reduction techniques. 05 4 Title Logic Families 05 4.1 Types of logic families (TTL and CMOS), characteristic parameters (propagation delays, power dissipation, Noise Margin, Fan-out and Fan-in), transfer characteristics of TTL NAND. 10 5 Title Introduction to Microprocessors 3 5.2 Essential components of a conventional Central Processing Unit (CPU) 3 5.3 Architecture of 8-bit microprocessor 8085 3 5.4 Basic instruction set with its addressing modes and concepts of Instruction cycle, Machine cycle and T states. Elementary programming in assembly language. 5* 5.5 Elements of I/O data transfe		1.4		1,4	
2 Title Sequential Circuits 14 2.1 Sequential Logic: Latches and Flip-Flops. Conversions of Flip-Flops. 1,4 2.2 Counters: Asynchronous Counters, Synchronous Counters, Up Down Counters, Mod Counters, Ring and Twisted Ring Counters, Shift Register 1,4 2.3 MSI counters (IC 7490, IC 74160, IC 74163, IC 74169), MSI 2,5 Shift registers (IC 74194) and their applications 2,5 3 Title Clocked Synchronous Machines 05 3.1 Mealy and Moore Machines, Clocked synchronous state machine analysis, State reduction techniques. 05 4 Title Logic Families 05 4.1 Types of logic families (TTL and CMOS), characteristic parameters (propagation delays, power dissipation, Noise Margin, Fan-out and Fan-in), transfer characteristics of TTL NAND. 10 5 Title Introduction to Microprocessors 3 5.1 Evolution of computers and Microprocessors 3 5.3 Architecture of 8-bit microprocessor 8085 3 5.4 Basic instruction set with its addressing modes and concepts of Instruction cycle, Machine cycle and T states. Elementary programming in assembly language. 5 5.5 Elements of I/O data transfer with the concept of interrupts 3 6					
2.1 Sequential Logic: Latches and Flip-Flops. Conversions of Flip-Flops. 1,4 Flops. 1.2 Counters: Asynchronous Counters, Synchronous Counters, Up Down Counters, Mod Counters, Ring and Twisted Ring Counters, Shift Registers. 1,4 2.3 MSI counters (IC 7490, IC 74160, IC 74163, IC 74169), MSI 2,5 2,5 3 Title Clocked Synchronous Machines 2,5 3.1 Mealy and Moore Machines, Clocked synchronous state machine analysis, State reduction techniques. 05 4 Title Logic Families 05 4.1 Types of logic families (TTL and CMOS), characteristic parameters (propagation delays, power dissipation, Noise Margin, Fan-out and Fan-in), transfer characteristics of TTL NAND. 10 5 Title Introduction to Microprocessors 3 5.1 Evolution of computers and Microprocessors 3 3 5.2 Essential components of a conventional Central Processing Unit (CPU) 3 5.3 Architecture of 8-bit microprocessor 8085 3 5.4 Basic instruction set with its addressing modes and concepts of Instruction cycle, Machine cycle and T states. Elementary programming in assembly language. 5 5.5 Elements of I/O data transfer with the concept of interrupts 3 6					
Image: Flops. Flops. Image: Flops. Image: Flops. 2.2 Counters: Asynchronous Counters, Synchronous Counters, Up Down Counters, Mod Counters, Ring and Twisted Ring Counters, Shift Registers, Universal Shift Register 1,4 2.3 MSI counters (IC 7490, IC 74160, IC 74163, IC 74169), MSI Shift registers (IC 74194) and their applications 2,5 3 Title Clocked Synchronous Machines Image: Clocked Synchronous Machines 3.1 Mealy and Moore Machines, Clocked synchronous state machine analysis, State reduction techniques. 05 4 Title Logic Families 05 4.1 Types of logic families (TTL and CMOS), characteristic parameters (propagation delays, power dissipation, Noise Margin, Fan-out and Fan-in), transfer characteristics of TTL NAND. 10 5 Title Introduction to Microprocessors 10 5.1 Evolution of computers and Microprocessors 3 3 5.2 Essential components of a conventional Central Processing Unit (CPU) 3 3 5.3 Architecture of 8-bit microprocessor 8085 3 3 5.4 Basic instruction set with its addressing modes and concepts of Instruction cycle, Machine cycle and T states. Elementary programming in assembly language. 5 5.5 Elements of I/O	2				
Up Down Counters, Mod Counters, Ring and Twisted Ring Counters, Shift Registers, Universal Shift Register2.3MSI counters (IC 7490, IC 74160, IC 74163, IC 74169), MSI Shift registers (IC 74194) and their applications3TitleClocked Synchronous Machines3.1Mealy and Moore Machines, Clocked synchronous state machine analysis, State reduction techniques.2,54TitleLogic Families054.1Types of logic families (TTL and CMOS), characteristic parameters (propagation delays, power dissipation, Noise Margin, Fan-out and Fan-in), transfer characteristics of TTL NAND.105TitleIntroduction to Microprocessors35.2Essential components of a conventional Central Processing Unit (CPU)35.3Architecture of 8-bit microprocessor 808535.4Basic instruction set with its addressing modes and concepts of Instruction cycle, Machine cycle and T states. Elementary programming in assembly language.36SelfConcepts of PROM, PAL and PLA. Timing Considerations and Meta-stability in Flip-Flops. Clocked synchronous state machine design. Interfacing CMOS to TTL and TTL to CMOS. Concepts of peripherals and memory with its interfacing with5*		2.1		1,4	11
Counters , Shift Registers, Universal Shift Register2.3MSI counters (IC 7490, IC 74160, IC 74163, IC 74169), MSI Shift registers (IC 74194) and their applications2,53TitleClocked Synchronous Machines053.1Mealy and Moore Machines, Clocked synchronous state machine analysis, State reduction techniques.054TitleLogic Families054.1Types of logic families (TTL and CMOS), characteristic parameters (propagation delays, power dissipation, Noise 		2.2	Counters: Asynchronous Counters, Synchronous Counters,	1,4	
2.3MSI counters (IC 7490, IC 74160, IC 74163, IC 74169), MSI Shift registers (IC 74194) and their applications2,53TitleClocked Synchronous Machines053.1Mealy and Moore Machines, Clocked synchronous state machine analysis, State reduction techniques.054TitleLogic Families054.1Types of logic families (TTL and CMOS), characteristic parameters (propagation delays, power dissipation, Noise Margin, Fan-out and Fan-in), transfer characteristics of TTL NAND.105TitleIntroduction to Microprocessors35.2Essential components of a conventional Central Processing Unit (CPU)35.3Architecture of 8-bit microprocessor 808535.4Basic instruction set with its addressing modes and concepts of Instruction cycle, Machine cycle and T states. Elementary programming in assembly language.36Self StudyConcepts of PROM, PAL and PLA. Timing Considerations and Meta-stability in Flip-Flops. Clocked synchronous state machine design. Interfacing CMOS to TTL and TTL to CMOS. Concepts of peripherals and memory with its interfacing with5*					
Shift registers (IC 74194) and their applications3TitleClocked Synchronous Machines3.1Mealy and Moore Machines, Clocked synchronous state machine analysis, State reduction techniques.2,54TitleLogic Families054.1Types of logic families (TTL and CMOS), characteristic parameters (propagation delays, power dissipation, Noise Margin, Fan-out and Fan-in), transfer characteristics of TTL NAND.1,45TitleIntroduction to Microprocessors35.1Evolution of computers and Microprocessors35.2Essential components of a conventional Central Processing Unit (CPU)35.3Architecture of 8-bit microprocessor 808535.4Basic instruction set with its addressing modes and concepts of Instruction cycle, Machine cycle and T states. Elementary programming in assembly language.36Self StudyConcepts of PROM, PAL and PLA. Timing Considerations and Meta-stability in Flip-Flops. Clocked synchronous state machine design. Interfacing CMOS to TTL and TTL to CMOS. Concepts of peripherals and memory with its interfacing with5*					_
3TitleClocked Synchronous MachinesImage: Synchronous state machine2,5053.1Mealy and Moore Machines, Clocked synchronous state machine2,505analysis, State reduction techniques.05054TitleLogic Families054.1Types of logic families (TTL and CMOS), characteristic parameters (propagation delays, power dissipation, Noise Margin, Fan-out and Fan-in), transfer characteristics of TTL NAND.1,45TitleIntroduction to Microprocessors35.1Evolution of computers and Microprocessors35.2Essential components of a conventional Central Processing Unit (CPU)35.3Architecture of 8-bit microprocessor 808535.4Basic instruction set with its addressing modes and concepts of Instruction cycle, Machine cycle and T states. Elementary programming in assembly language.36Self StudyConcepts of PROM, PAL and PLA.5*7Timing Considerations and Meta-stability in Flip-Flops. Clocked synchronous state machine design. Interfacing CMOS to TTL and TTL to CMOS. Concepts of peripherals and memory with its interfacing with5*		2.3		2,5	
3.1 Mealy and Moore Machines, Clocked synchronous state machine analysis, State reduction techniques. 2,5 05 4 Title Logic Families 05 4.1 Types of logic families (TTL and CMOS), characteristic parameters (propagation delays, power dissipation, Noise Margin, Fan-out and Fan-in), transfer characteristics of TTL NAND. 05 5 Title Introduction to Microprocessors 1 5.1 Evolution of computers and Microprocessors 3 5.2 Essential components of a conventional Central Processing Unit (CPU) 3 5.3 Architecture of 8-bit microprocessors 8085 3 5.4 Basic instruction set with its addressing modes and concepts of 3 Instruction cycle, Machine cycle and T states. Elementary programming in assembly language. 5 6 Self Concepts of PROM, PAL and PLA. 5* 6 Self Concepts of PROM, PAL and TL to CMOS. Concepts of peripherals and memory with its interfacing with 5*					
4TitleLogic Families054.1Types of logic families (TTL and CMOS), characteristic parameters (propagation delays, power dissipation, Noise Margin, Fan-out and Fan-in), transfer characteristics of TTL NAND.1,45TitleIntroduction to Microprocessors15TitleIntroduction to Microprocessors35.1Evolution of computers and Microprocessors35.2Essential components of a conventional Central Processing Unit (CPU)35.3Architecture of 8-bit microprocessor 808535.4Basic instruction set with its addressing modes and concepts of Instruction cycle, Machine cycle and T states. Elementary programming in assembly language.36SelfConcepts of PROM, PAL and PLA. Timing Considerations and Meta-stability in Flip-Flops. Clocked synchronous state machine design. Interfacing CMOS to TTL and TTL to CMOS. Concepts of peripherals and memory with its interfacing with5*	3				
4 Title Logic Families 05 4.1 Types of logic families (TTL and CMOS), characteristic parameters (propagation delays, power dissipation, Noise Margin, Fan-out and Fan-in), transfer characteristics of TTL NAND. 1,4 5 Title Introduction to Microprocessors 3 5.1 Evolution of computers and Microprocessors 3 5.2 Essential components of a conventional Central Processing Unit (CPU) 3 5.3 Architecture of 8-bit microprocessor 8085 3 5.4 Basic instruction set with its addressing modes and concepts of Instruction cycle, Machine cycle and T states. Elementary programming in assembly language. 3 6 Self Concepts of PROM, PAL and PLA. 5* Study Timing Considerations and Meta-stability in Flip-Flops. 5* Clocked synchronous state machine design. Interfacing CMOS to TTL and TTL to CMOS. 5*		3.1	•	2,5	05
4.1Types of logic families (TTL and CMOS), characteristic parameters (propagation delays, power dissipation, Noise Margin, Fan-out and Fan-in), transfer characteristics of TTL NAND.1,45TitleIntroduction to Microprocessors35.1Evolution of computers and Microprocessors35.2Essential components of a conventional Central Processing Unit (CPU)35.3Architecture of 8-bit microprocessor 808535.4Basic instruction set with its addressing modes and concepts of Instruction cycle, Machine cycle and T states. Elementary programming in assembly language.36SelfConcepts of PROM, PAL and PLA. Timing Considerations and Meta-stability in Flip-Flops. Clocked synchronous state machine design. Interfacing CMOS to TTL and TTL to CMOS. Concepts of peripherals and memory with its interfacing with5*			analysis, State reduction techniques.		
parameters (propagation delays, power dissipation, Noise Margin, Fan-out and Fan-in), transfer characteristics of TTL NAND.105TitleIntroduction to Microprocessors35.1Evolution of computers and Microprocessors35.2Essential components of a conventional Central Processing Unit (CPU)35.3Architecture of 8-bit microprocessor 808535.4Basic instruction set with its addressing modes and concepts of Instruction cycle, Machine cycle and T states. Elementary programming in assembly language.36Self StudyConcepts of PROM, PAL and PLA. Timing Considerations and Meta-stability in Flip-Flops. Clocked synchronous state machine design. Interfacing CMOS to TTL and TTL to CMOS. Concepts of peripherals and memory with its interfacing with5*	4	Title	Logic Families		05
Margin, Fan-out and Fan-in), transfer characteristics of TTL NAND.Margin, Fan-out and Fan-in), transfer characteristics of TTL NAND.105TitleIntroduction to Microprocessors35.1Evolution of computers and Microprocessors35.2Essential components of a conventional Central Processing Unit (CPU)35.3Architecture of 8-bit microprocessor 808535.4Basic instruction set with its addressing modes and concepts of Instruction cycle, Machine cycle and T states. Elementary programming in assembly language.36SelfConcepts of PROM, PAL and PLA. Timing Considerations and Meta-stability in Flip-Flops. Clocked synchronous state machine design. Interfacing CMOS to TTL and TTL to CMOS. Concepts of peripherals and memory with its interfacing with5*		4.1	Types of logic families (TTL and CMOS), characteristic	1,4	
NAND.105TitleIntroduction to Microprocessors35.1Evolution of computers and Microprocessors35.2Essential components of a conventional Central Processing Unit (CPU)35.3Architecture of 8-bit microprocessor 808535.4Basic instruction set with its addressing modes and concepts of Instruction cycle, Machine cycle and T states. Elementary programming in assembly language.36SelfConcepts of PROM, PAL and PLA.5*StudyTiming Considerations and Meta-stability in Flip-Flops. Clocked synchronous state machine design. Interfacing CMOS to TTL and TTL to CMOS. Concepts of peripherals and memory with its interfacing with5*			parameters (propagation delays, power dissipation, Noise		
5TitleIntroduction to Microprocessors105.1Evolution of computers and Microprocessors35.2Essential components of a conventional Central Processing Unit (CPU)35.3Architecture of 8-bit microprocessor 808535.4Basic instruction set with its addressing modes and concepts of Instruction cycle, Machine cycle and T states. Elementary programming in assembly language.36SelfConcepts of PROM, PAL and PLA.5*StudyTiming Considerations and Meta-stability in Flip-Flops. Clocked synchronous state machine design. Interfacing CMOS to TTL and TTL to CMOS. Concepts of peripherals and memory with its interfacing with5*					
5.1Evolution of computers and Microprocessors35.2Essential components of a conventional Central Processing Unit (CPU)35.3Architecture of 8-bit microprocessor 808535.4Basic instruction set with its addressing modes and concepts of Instruction cycle, Machine cycle and T states. Elementary programming in assembly language.36SelfConcepts of PROM, PAL and PLA.5*StudyTiming Considerations and Meta-stability in Flip-Flops. Clocked synchronous state machine design. Interfacing CMOS to TTL and TTL to CMOS. Concepts of peripherals and memory with its interfacing with5*	5	Title			10
5.2Essential components of a conventional Central Processing Unit (CPU)35.3Architecture of 8-bit microprocessor 808535.4Basic instruction set with its addressing modes and concepts of Instruction cycle, Machine cycle and T states. Elementary programming in assembly language.35.5Elements of I/O data transfer with the concept of interrupts36Self StudyConcepts of PROM, PAL and PLA. Timing Considerations and Meta-stability in Flip-Flops. Clocked synchronous state machine design. Interfacing CMOS to TTL and TTL to CMOS. Concepts of peripherals and memory with its interfacing with5*	C			3	
5.3Architecture of 8-bit microprocessor 808535.4Basic instruction set with its addressing modes and concepts of Instruction cycle, Machine cycle and T states. Elementary programming in assembly language.35.5Elements of I/O data transfer with the concept of interrupts36Self StudyConcepts of PROM, PAL and PLA. Timing Considerations and Meta-stability in Flip-Flops. Clocked synchronous state machine design. Interfacing CMOS to TTL and TTL to CMOS. Concepts of peripherals and memory with its interfacing with5*			Essential components of a conventional Central Processing Unit		
5.4Basic instruction set with its addressing modes and concepts of Instruction cycle, Machine cycle and T states. Elementary programming in assembly language.35.5Elements of I/O data transfer with the concept of interrupts36SelfConcepts of PROM, PAL and PLA. Timing Considerations and Meta-stability in Flip-Flops. Clocked synchronous state machine design. Interfacing CMOS to TTL and TTL to CMOS. Concepts of peripherals and memory with its interfacing with5*		53		3	
Instruction cycle, Machine cycle and T states. Elementary programming in assembly language.5.5Elements of I/O data transfer with the concept of interrupts6SelfStudyConcepts of PROM, PAL and PLA.Timing Considerations and Meta-stability in Flip-Flops. Clocked synchronous state machine design. Interfacing CMOS to TTL and TTL to CMOS. Concepts of peripherals and memory with its interfacing with					_
programming in assembly language.5.5Elements of I/O data transfer with the concept of interrupts6SelfStudyConcepts of PROM, PAL and PLA.StudyTiming Considerations and Meta-stability in Flip-Flops. Clocked synchronous state machine design. Interfacing CMOS to TTL and TTL to CMOS. Concepts of peripherals and memory with its interfacing with		2.4	0 1	5	
5.5Elements of I/O data transfer with the concept of interrupts36SelfConcepts of PROM, PAL and PLA.5*StudyTiming Considerations and Meta-stability in Flip-Flops. Clocked synchronous state machine design. Interfacing CMOS to TTL and TTL to CMOS. Concepts of peripherals and memory with its interfacing with5*					
6 Self Concepts of PROM, PAL and PLA. 5* Study Timing Considerations and Meta-stability in Flip-Flops. Clocked synchronous state machine design. Interfacing CMOS to TTL and TTL to CMOS. Concepts of peripherals and memory with its interfacing with 5*		5.5		3	
StudyTiming Considerations and Meta-stability in Flip-Flops. Clocked synchronous state machine design. Interfacing CMOS to TTL and TTL to CMOS. Concepts of peripherals and memory with its interfacing with	6			~	5*
Clocked synchronous state machine design. Interfacing CMOS to TTL and TTL to CMOS. Concepts of peripherals and memory with its interfacing with	v		▲ · ·		-
Interfacing CMOS to TTL and TTL to CMOS. Concepts of peripherals and memory with its interfacing with		j			
Concepts of peripherals and memory with its interfacing with					

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	To implement the combinational logic for given function using basic gates/MSI ICs.
	a. To study and verify the truth table of logic gates
	b. To study the universal NAND and NOR gate
	c. To study the working of half adder, full adder, half subtractor, Full subtractor
	along with truth table
2	To implement TTL and CMOS logic family
	a. To study TTL NAND gate (BJT implementation).
	b. To study CMOS NAND gate
	c. To study interfacing of the TTL /CMOS
3	To implement 4-bit, 5-bit and 8 bit comparator using given MSI
4	To design implement gate level multiplexers and MSI multiplexers
5	To design and implement gate level and MSI circuits of flip-flops
6	To design counters
	a. To design a MOD4 synchronous up/down counter
	b. To study IC 7490 – Asynchronous Decade Counter
7	To synchronous counters, synchronous counters and shift register using
	given MSI.
	a. To study IC 74160 as Synchronous Decade Counter and Mod 6 counter
	b. To study IC 74163 as Synchronous MOD 16 Counter and Mod 10 counter
	c. To verify the truth table of IC 74194 as Universal Shift Register and implement Ring
	and Twisted Ring Counter.
8	To perform basic arithmetic operations through assembly language program in 8085
9	To simulate COPY and PASTE operation through 8085 assembly program
10	To write a program to add N elements stored in an array of 8 bit numbers (8085)

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Modern Digital Electronics	Forth	R. P. Jain	Tata McGraw Hill	2009
2	Digital Design Principles And Practices	Third	John F. Wakerly	Pearson Education	2001
3	Microprocessor Architecture, Programming, and Applications with the 8085	Sixth	Ramesh S. Gaonkar	Penram International	2013

Sr. No	Title	Edition	Authors	Publisher	Year
4	Digital Design	Forth	Morris Mano	Pearson	2008
				Education	
5	Fundamentals of digital logic design with VHDL	Second	Stephen Brown and Zvonko Vranesic	McGraw Hill	2006

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	r	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total	
		1	0	2	3	3	1	0	1	2	
SBC	Communication	Examination Scheme									
	Skills	Comp		ISE]	MSE	E	SE	Total		
AS107		Theory					50**			50	
		Laboratory		1	150*					150	

** MSE will be evaluated on the basis of written test based on module 1 and 2.

** ISE will be evaluated on the basis of marks scored in practicals, out of 150.

Pre-requisite Course Codes, if any.									
Course Objective:									
Course Outcomes (CO): At the end of the course students will be able to									
AS107.1	Apply the principles of business writing for professional documents.								
AS107.2	Develop advance vocabulary and grammar for spoken and written communication.								
AS107.3	Design the draft a formal speech.								
AS107.4	Analyze received information by using active listening and reading skills.								

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AS107.1												
AS107.2												
AS107.3												
AS107.4												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
AS107.1							
AS107.2							
AS107.3							
AS107.4							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understand App	Analyze	Evaluate	Create
-------------------------	---------	----------	--------

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Theory Component

Module No.	Unit No.	Topics	Ref.	L Hrs.	P Hrs
1	Title	Vocabulary Building & Grammar			
	1.1	Concept of word formation, the root words from foreign languages and their use in English	7,1	2	4
	1.2	Common errors in writing, confused pair of words, redundancies, clichés	6, 2		
2	Title	Writing Skills		7	14
	2.1	Principles of Business Writing: 7Cs of communication, sentence structures, Organizing paragraph in direct and indirect style; Summarization	4		
	2.2	Practices in Writing: E-mail Etiquettes, e-mail for business purposes	3		
	2.3	Critical Reading: understanding the concept of critical reading and applying to analyze a given text.	5		
3	Title	Oral Skills		5	10
	3.1	Listening Comprehension(audio): Pronunciation, intonation, Stress and Rhythm	5		
	3.2	 Speaking Practices: 1. Common everyday situation: Conversation and dialogues (group activity, ice-breaking session) 2. Public Speaking: Extempore, formal speech 	3		
4	Self Study	 Basic Rules Of Grammar GRE Vocabulary Reading a book(fiction/non-fiction) and preparing a review on it 			6*
	-	Total (*Not	included)	42 hrs	5

List of activities (Graded, Non-graded)

Sr.	Title of the assignments	Marks
No		
1	Skit based on a given situation	-
2	ISE 1 – Summary Writing	10
3	ISE 2 – Extempore	10
4	ISE 3 – Grammar	20
5	ISE 4 – Vocabulary	20
6	Reviewing a book (fiction/ non-fiction)	10
7	ISE 5 – Email Writing (Inquiry)	20
8	ISE 6 – Email Writing (Complaint)	20
9	ISE 6 – Speech	20
10	ISE 7 – Critical Reading	20
	Total	150

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Text Books:

Sr. No	Title	Edition	Authors	Publisher	Year
1	Communication Skills	2013	Shirley Mathews	Technical Publication, Pune	2013
2	English Vocabulary in Use	1999	Michael McCarthy , Felicity O'Dell	Cambridge University Press, India	1999

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	Oxford Practice Grammar	1999	John Eastwood	Oxford, India	1999
2	Communication Skills	2011	Meenakshi Raman, Sangeeta Sharma	Oxford, India	2011
3	Communication Skills	2010	Dr. Meera Bharwani	Synergy Knowledgeware, India	2010
4	English Grammar for Today	2005	Geoffrey Leech	Palgrave, UK	2005
5	Word Power Made Easy	1978	Norman Lewis	Anchor Books, New York	1978

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Semester-III

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	egory) Course Name (Hrs/week)					Credits Assigned				
Code		L	Т	Р	0	Ε	L	Т	Р	Total
		2	0	2	5	9	2	0	1	3
(BSC)	Linear Algebra	Examinatio				inatio	n Schen	ne		
		Comp	onent]	ISE]	MSE	E	SE	Total
MA 201		The	eory		50		50	1	.00	200
MA201		Laboratory			50				50	100

Pre-requi	site Course Codes, if any.	MA101, MA102			
Course O	bjective: To develop mathematical skills for solv	ing engineering problems.			
Course O	utcomes (CO): At the End of the course stud	ents will be able to:			
MA201.1	AA201.1 Solve a homogeneous and non-homogeneous system of linear equations using rank of a matrix.				
MA201.2	Solve system of linear equations by Numerical Methods.				
MA201.3	Solve equations in real life problems and to encode and decode messages using the concept of matrices.				
MA201.4	Identify whether given structures are vector spaces and subspaces and construct a basis				
	for them.				
MA201.5	Show if a given matrix is diagonalizable or n	ot.			
MA201.6	Apply concepts of Eigen-values and eigenve	ctors to calculate functions of a square			
	matrix, Google page rank vector and solve sy	stems of differential equations using			
	diagonalisation of matrices.				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MA201.1												
MA201.2												
MA201.3												
MA201.4												
MA201.5												
MA201.6												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
MA201.1							
MA201.2							
MA201.3							
MA201.4							
MA201.5							
MA201.6							

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

BLOOM'S Levels Targeted (Pl. Tick appropriate)

RememberUnderstandApplyAnalyzeEvaluateCreate					
	Remember	Understand	Analyze	Evaluate	

Theory Component

Module No.	Unit No.	Topics	Ref	Hrs.
1	Title	Basics of matrices	3,5	03
	1.1	Revision of basic matrices and types of matrices.		01
	1.2	Row echelon form, Reduced Row Echelon form, Rank of a matrix.		02
2	Title	Linear equations & its solutions	1,2,3,5	07
	2.1	Consistency and solution of simultaneous linear homogeneous and non-homogeneous equations.		02
	2.2	Application of solving systems of equations in traffic control.		01
	2.3	Solution of system of linear algebraic equations, by (1) Gauss Elimination Method (2) Gauss Jordan method		04
		 (3) Gauss Jacobi Iteration method (4) Gauss Seidel Method. (5) LU Decomposition -Crout's method 		
3	Title	Vector spaces (over field of real numbers)	1,2,5	08
	3.1	Vector space, subspace, span, linear dependence and independence of vectors, basis, dimension, orthogonal projection & gram-schmidt process. Null space, row space, column space, Rank-Nullity theorem (only statement). Least square method.		08
4	Title	Encoding & decoding using Matrices.	4	02
-	4.1	Application of matrices to Coding and Decoding	_	02
5	Title	Eigenvalues and Eigenvectors	1,2,3,5	08
	5.1	Eigenvalues, Eigenvectors and its properties. Cayley Hamilton theorem and its applications. Diagonalisation of matrices. Derogatory and Non-derogatory matrices.	/ 1- 1-	04
	5.2	Application to find google page rank. Functions of a square matrix. Solving system of differential equations using diagonalisation.		04
6	Self Study	 1.2 Normal form. 2.2 Forming equations using KVL for circuits and solving them using matrices. 3.1 Singular Value Decomposition. 5.1 Additional properties with proofs of eigenvalues and eigenvectors. 	1,2,3,5	05*
		Total (*Not in	cluded)	28

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Introduction to Scilab(getting started) and its benefits to use as a mathematics tool.
2	Basic commands of scilab and vectors & matrix operations.
3	Conditional branching and iterations using scilab.
4	Solution of linear equations using row-echelon and inverse of a matrix.
5	Solutions of linear equations using Gauss Elimination method.
6	Solutions of linear equations using Gauss Jordan method.
7	Solutions of linear equations using Gauss-Jacobi method.
8	Solutions of linear equations using Gauss-Seidel method.
9	Solutions of linear equations using Crout's method.
10	To find Eigenvalues and Eigenvectors using Scilab

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Linear Algebra and its	4th	Gilbert	Cengage	2014
	applications		Strang		
2.	Higher Engineering	44th	Dr.B.S.	Khanna	2020
	Mathematics		Grewal	Publications	

Sr. No	Title	Edition	Authors	Publisher	Year
1.	Linear Algebra and its	3rd	David.C.Lay	Pearson	2006
	applications			Education	
2.	Elementary Linear Algebra	6th	H Anton	John Wiley &	2010
	Application Version		and Crorres	Sons	
3.	Advanced Engineering	28th	H.K Das	S.Chand	2014
	Mathematics				
4.	Hill Ciphers	1st	Jonaki B	At Right Angles	2015
			Ghosh		
5.	Advanced Engineering	10th	Erwin	John Wiley &	2011
	Mathematics		Kreysizg	Sons	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	,	Гeachi (Hr	ng Sc s/wee		Credits Assigned				
Code		L	Т	Р	0	Ε	L	Т	Р	Total
		2	1	0	0	3	2	1	0	3
(BSC)	Foundations of]	Exam	inatio	n Scher	ne		
MA202	Mathematics-I	Comp	onent]	ISE		MSE	MSE ESE		Total
		Theory			75		75	1	150	300

Pre-requisite	Course Codes, if any							
Course Objec	ctive: To develop basic foundation of mathematical skills.							
Course Outco	Course Outcomes (CO): At the End of the course students will be able to:-							
MA201.1	Differentiate a function of one variable and partially differentiate a function of more than one							
	variable.							
MA201.2	Apply the concept of partial differentiation to find extreme values of a given function.							
MA201.3	Find nth order derivative of a given function.							
MA201.4	Expand a given function as a power series.							
MA201.5	Perform operations on matrices and find inverses and determinants of them.							
MA201.6	Perform vector operations and compute dot products and cross products between them.							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MA201.1												
MA201.2												
MA201.3												
MA201.4												
MA201.5												
MA201.6												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
MA201.1							
MA201.2							
MA201.3							
MA201.4							
MA201.5							
MA201.6							

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
		11 0	v		

Theory Component

Module No.	Unit No.	Topics	Ref	Hrs.
1	Title	Differential Calculus	1,2	18
	1.1	Partial fractions. Derivatives of standard functions, product and quotient rule for differentiation.		04
	1.2	Partial derivatives of first and higher order, composite differentiation		03
	1.3 Application of partial derivatives: Local Maxima and Minima of functions of two variables.			
	1.4	Successive Differentiation: Proofs of nth derivatives of standard functions. Use of partial fractions to calculate nth derivatives of		05
		given functions. Leibnitz theorem for nth derivative of product of two functions.		
	1.5	Infinite series: expansion of functions in powers of x using maclaurin series. Taylor's series.		04
2	Title	Matrices	1,2	07
	2.1	Addition and scalar multiplication of matrices. Matrix multiplication, types of matrices.		03
	2.2	Elementary row transformations, finding inverses using matrices, determinants and its properties		04
3	Title	Vectors	1,2	03
	3.1	Vector definition, addition, scalar multiplication, dot product of two vectors, angle between two vectors, cross product.		03
			Total	28

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Higher Engineering	44th	Dr.B.S.	Khanna	2020
	Mathematics		Grewal	Publications	

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Advanced Engineering	10th	Erwin Kreysizg	John Wiley &	2011
	Mathematics			Sons	
2	Advanced Engineering	28th	H.K.Dass	S.Chand	2014
	Mathematics			Publications	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course(Category) Code	Course Name	Teaching Scheme (Hrs/week) Credits Assi						gned		
Code		L	Т	P	0	E	L	Т	Р	Total
		3	0	2	4	9	3	0	1	4
(PC)	Computer	Examination Scheme								
	Architecture &	Comp		ISE	1	MSE	E	SE	Total	
ET201/EC201	Organization	Theory			75		75	1	50	300
		Labor	atory		50			4	50	100

Pre-requisite	Course Codes, if any. EC101, Any Programming Language							
U	Course Objective: Imparting concepts of each component of computer architecture thoroughly with							
practical aspec	practical aspects including memory systems and I/O communications with interfacing							
Course Outco	omes (CO): At the End of the course students will be able to							
XX201.1	Describe basic computer structure and compare computer architecture models							
XX201.2	Design algorithms to solve ALU operations and memory mapping techniques							
XX201.3	Comprehend processor architecture with various design methods of CPU with comparative analysis							
XX201.4	Describe memory systems with design and analysis of mapping techniques for cache and virtual memory							
XX201.5	Analyze different parallel processing and pipelining concepts with pipelining hazards							
XX201.6	Comprehend different types of I/O buses, compare and contrast different types of data transfer methods and arbitration techniques							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
XX201.1												
XX201.2												
XX201.3												
XX201.4												
XX201.5												
XX201.6												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
XX201.1							
XX201.2							
XX201.3							
XX201.4							
XX201.5							
XX201.6							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understand	Apply	Analyze 🗸	Evaluate	Create
---------------------	-------	-----------	----------	--------

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Overview of Computer Architecture and Organization		
	1.1	Introduction of Computer Organization and Architecture, Basic organization of computer and block level description of the functional units, Evolution of x86 Computers, Von Neumann model, Harvard Model, Embedded system	1	5
	1.2	Performance Issues: Designing for performance, Amdahl's Law, Multi- core, GPGPU	1	
2	Title	Data Representation and Arithmetic Algorithms		6
	2.1	Number representation: Floating-point representation, Floating point arithmetic, IEEE 754 floating point number representation	2,3	
	2.2	Integer Data computation: Addition, Subtraction. Multiplication: Signed multiplication, Booth's algorithm.	2,3	
	2.3	Division of integers: Restoring and non-restoring division	2,3	
3	Title	Processor Organization and Control Unit		9
	3.1	CPU Architecture, Register Organization Instruction formats, basic instruction cycle. Instruction interpretation and sequencing, Case Study of 8086 Architecture and Register Organization.	1,2,4	
	3.2	Control Unit: Soft wired (Micro-programmed) and hardwired control unit design methods. Microinstruction sequencing and execution. Micro operations	2,4	
	3.3	RISC and CISC: Introduction to RISC and CISC architectures and design issues.	2,4	
4	Title	Memory Organization		11
	4.1	Introduction to Memory and Memory parameters. Classifications of primary and secondary memories. Types of RAM and ROM, Allocation policies, Memory hierarchy and characteristics.	1,2	
	4.2	Cache memory: Concept, architecture (L1, L2, L3), mapping techniques. Cache Coherency, Interleaved and Associative memory.	1,2	
	4.3	Virtual Memory: Concept, Segmentation and Paging, Page replacement policies	1,2,4	
5	Title	I/O Organization and Introduction to Parallel Processing		11
	5.1	Buses: Types of Buses ,Bus Arbitration, BUS standards	2	
	5.2	I/O Interface, I/O channels, I/O modules and IO processor, Types of data transfer techniques: Programmed I/O, Interrupt driven I/O and DMA.	1,2	
	5,3	Introduction to parallel processing concepts, Flynn's classifications, pipeline processing, Pipeline stages, Pipeline Hazards	1,2,4	
6	Self Study	Comparative Study of microprocessors and micro architectures with respect to their important features. 8086 instructions and assembler directives with addressing modes with memory interfacing techniques. Cache memory protocol and virtual memory concepts in Pentium processors. Vector and Array Processors with VLIW architecture		4*
		Total (*Not incl	uded)	42

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Laboratory Component, if any: (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Implementation of various Arithmetic Operations through Assembly Language Programming for
	microprocessor 8086 (MASM)
2	Simulate the operation of COPY and PASTE in 8086 (MASM)
3	Implement various String Operations in 8086 through the utilities provided by DOS interrupts
	(MASM)
4	Generation of alphabetic arrangement of a given string in 8086 (MASM)
5	Design password application (generation and detection)in 8086 (MASM)
6	Design of Carry Look Ahead Adder
7	Implementation and programming of Booth's Multiplication Algorithm
8	Implementation and programming of Division Algorithm (Non-Restoring and Restoring)
9	Implementation of Mapping techniques of Cache memory
10	Implementation of Page Replacement Policies

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Computer Organization	Fifth	Carl Hamacher, Zvonko Vranesic and Safwat Zaky	Tata McGraw-Hill	2002
2	Computer Organization and Architecture: Designing for Performance	Eighth	William Stallings	Pearson	2010
3	Computer System Architecture	Third	M, Morris Mano	Pearson	1993 Reprint ed 2007
4	Computer Architecture & Organization	Third	John P. Hayes	McGraw- Hill	1998

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	Structured Computer	Sixth	Andrew S. Tanenbaum	Pearson	2013
	Organization				
2	Microprocessor and	Third	Douglas V Hall	Tata-	2012
	Interfacing: Programming		_	McGraw	
	& Hardware			Hill	
3	Computer Architecture and	Second	B. Govindarajulu	McGraw	Paperba
	Organization: Design			Hill	ck-2017
	Principles and Applications				

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course(Category) Code	Course Name	T	heme k)	Credits Assigned						
Code		L	Т	Р	0	Ε	L	Τ	Р	Total
		3	0	2	4	9	3	0	1	4
(PC)	Electronic Devices	Examination Scheme								
		Comp		ISE		MSE		SE	Total	
ET202/EC202		The		75		75		50	300	
		Laboratory			50				50	100

Pre-requisit	e Course Codes, if any. ES13 (Basic Electrical Technology)						
Course Obj	ective: To teach fundamentals of electronic devices						
Course Outcomes (CO): At the End of the course students will be able to							
XX202.1	Discuss device physics and characteristics of semiconductor devices.						
XX202.2	Discuss working principle and characteristics of BJT						
XX202.3	Discuss working principle and characteristics of FET						
XX202.4	Analyze single stage BJT and FET amplifier circuits						
XX202.5	Discuss semiconductor device fabrication process						
XX202.6	Discuss construction, working principle and characteristics of advance semiconductor devices						
	HEMT, MESFET and HBT						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
XX202.1												
XX202.2												
XX202.3												
XX202.4												
XX202.5												
XX202.6												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
XX202.1							
XX202.2							
XX202.3							
XX202.4							
XX202.5							
XX202.6							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember $1000000000000000000000000000000000000$	Analyze√	Evaluate	Create
---	----------	----------	--------

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Theory Component

Module	Unit	Topics	Ref.	Hrs.
<u>No.</u>	No.		1	
1	Title	Diode	1	
	1.1	Review of PN Junction Analysis		6
	1.2	Applications of Diode:Simple diode model, Limiter circuits, Rectifiers,		
		Clamper Circuits, Peak Detector and Voltage Doubler		
-	1.3	Zener diode and Schottky diode		
2	Title	Bipolar Devices	1,2	11
	2.1	BJT: The bipolar transistor action, minority carrier distribution, low-frequency common-base current gain, non-ideal effects, Ebers-Moll		
		Model and Hybrid-Pi Model		
	2.2	Voltage amplifier, current amplifier, trans-conductance amplifier and		
		trans-resistance amplifier.		
		Biasing schemes for BJT amplifiers, bias stability, various		
		configurations (such as CE, CB, CC) and their features, small signal		
		analysis, low frequency models, estimation of voltage gain, input		
		resistance, output resistance etc., design procedure for particular		
		specifications, frequency analysis of multistage amplifiers.		
3	Title	Field Effect Devices: JFET	1,2	11
	3.1	Construction, operation and device characteristics		
	3.2	Biasing schemes for FET amplifiers, bias stability, various		
		configurations (such as CS, CG, CD) and their features, small signal		
		analysis, low frequency models, estimation of voltage gain, input		
		resistance, output resistance etc., design procedure for particular		
		specifications, frequency analysis of multistage amplifiers.		
4	Title	Field Effect Devices: MOSFET	2	10
	4.1	Two terminal MOS structure, MOSFET construction,		
		Band diagrams under equilibrium and external bias, Threshold		
		Voltage		-
	4.2	V-I and CV characteristics, Channel length modulation,		
		Short Channel effects, MOSFET Model		
5	Title	Integrated circuit fabrication process	R-3	4
	5.1	Oxidation, diffusion, ion implantation, photolithography		
	5.2	Etching, chemical vapor deposition, sputtering, twin-tub CMOS		
		process.		
6	Self	Device structure, principle of operation and V-I characteristics of		4*
	Study	MODFET (i.e. HEMT), MESFET and HBT		
		Total (*Not incl	uded)	42

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	To plot forward and reverse characteristics of semiconductor diode
2	Implement clipper and clamper circuits using diode
3	Implement half-wave and full-wave rectifier circuits
4	To plot characteristics of Zener diode and observe Zener as voltage regulator
5	Finding characteristics of BJT configurations (CE/CB/CC) using simulation and hardware
	implementation.
6	Obtain the operating point for different biasing circuits
7	Design and implement single stage BJT based amplifier for the required specifications.
8	Obtain frequency response of single stage BJT based amplifier
9	Finding characteristics of FET (CG/CS/CD) using Simulation and Hardware Implementation
10	Design and implement single stage FET based amplifier for the required specifications.
11	Obtain frequency response of single stage FET based amplifier
12	Obtain Input-Output Characteristics of MOSFET using circuit simulator

Text Books:

S. N.	Title	Edition	Authors	Publisher	Year
1	Electronic Devices and	Eleventh	R L Boylestad and	Prentice Hall	2013
	Circuits		Lous Nashelsky		
2	Electronic Circuit Analysis	Third	Donald A. Neamen	Tata McGraw	2006
	and Design			Hill	

S. N.	Title	Edition	Authors	Publisher	Year
1	Semiconductor Physics and	Fourth	Donald A. Neamen and	Tata McGraw	2017
	Devices		Dhrubes Biswas	Hill	
2	CMOS Digital Integrated	Fourth	Sung-Mo	Tata McGraw	2019
	Circuits		Kang, YusufLeblebici	Hill	
			and Chulwoo Kim		
R-3	Semiconductor Devices:	Third	S. M. Sze and Ming-	Wiley	2015
	Physics and Technology		Kwei Lee		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teach	Teaching Scheme (Hrs/week)				Credits Assigned			
(Category)	Course Name	L	Т	Р	0	E	L	Т	Р	Total
Code										
		3	0	2	4	09	3	0	1	4
(PC)										
		Examination Scheme								
	Network Theory	Component]	ISE	Μ	ISE	ES	E	Total
ET203/EC203		Theory			75	75		150		300
		Laboratory			50			50		100

Pre-requisit	e Course Codes, if any. ET101						
Course Obje	Course Objective: To teach fundamental theorems for circuit analysis.						
Course Out	comes (CO): At the End of the course students will be able to						
XX203.1	Analyze the given circuits using theorems and transformation techniques						
XX203.2	Analyze the given circuit using Graph Theory						
XX203.3	Analyze the given RL, RC and RLC circuits in time domain						
XX203.4	Analyze the given RL, RC and RLC circuits in frequency domain						
XX203.5	Predict the circuits using Foster and Cauer realization methods						
XX203.6	Explain the concept of two port network, relation between the parameters						
	and their interconnection						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
XX203.1												
XX203.2												
XX203.3												
XX203.4												
XX203.5												
XX203.6												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
XX203.1							
XX203.2							
XX203.3							
XX203.4							
XX203.5							
XX203.6							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

RememberUnderstandApplyAnalyzeEvaluateCreate	
--	--

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Theory Component

	No.	Topics	Ref.	Hrs
1	Title	Analysis of DC circuits and coupled circuits:		12
	1.1	Analysis of circuits with and without controlled sources using generalized loop, node matrix, Superposition, Thevenin, Norton, Maximum Power transfer.	3	
	1.2	Self and mutual inductances, coefficient of coupling, Dot convention, equivalent circuit, solution using loop analysis	1	
2	Title	Graph Theory:		4
	2.1	Concept of loop, tree, co-tree, incidence matrix, cut set matrix and tie set matrix	4	
	2.2	Duality principle and its application	4	
3	Title	Transient Analysis:		12
	3.1	Time domain analysis of R-L and R-C circuits: Forced and natural response, time constant, initial and final values	1,3	
	3.2	Time domain analysis of R-L-C circuits: Forced and natural response, effect of damping Solution using second order equation for standard input signals: Transient and steady state time response	1,3	
	3.3	Frequency domain analysis of RLC circuits: S-domain representation, applications of Laplace Transform in solving electrical networks	1,3	
4	Title	Network Synthesis :		6
	4.1	Network Function: driving point and transfer function, Poles and Zeros, calculation of residues by analytical and graphical method, frequency response	2	
	4.2	Positive real functions: Concept of positive real function, testing for Hurwitz polynomials, testing for necessary and sufficient conditions for positive real functions	2	
	4.3	Synthesis of RC, RL, LC circuits: Concepts of synthesis of RC, RL, LC driving point functions.	2	
	Title	Two Port Network :		8
	5.1	Parameters: Open Circuit, Short Circuit, Transmission and Hybrid parameters, relationships among parameters, reciprocity and symmetry conditions	1	
	5.2	Series/parallel connection: T and Pi representations, interconnection of Two-Port networks	1	
6	Self Study	Millman's theorem, Tellegen's theorem, Non planar graphs, Solution using first order equation for standard input signals, Transient and steady state time response, solution using universal formula, Terminated Two-Port networks		4:

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Laboratory Component

Sr. No	Title of the Experiment
1	To measure and calculate currents and voltages for a given resistive circuit and verify
	KCL and KVL.
2	To verify superposition theorem experimentally for a given resistive circuit consisting two
	Independent sources.
3	To verify Thevenin's theorem experimentally for a given circuit.
4	To verify maximum power transfer theorem experimentally for a given circuit.
5	To verify reciprocity theorem experimentally for a given circuit.
6	To measure and calculate RC time constant for a given RC circuit.
7	To measure and calculate RC time constant for a given RL circuit.
8	To measure and analyze (settling time, overshoot, undershoot, etc.) step response of for a
	given series RLC circuit for following cases: (1) $\zeta = 1$ (critically damped system), (2) ζ
	>1(over damped system), (3) ζ <1 (under damped system). Choose appropriate values of
	R, L, and C to obtain each of above cases one at a time.
9	To measure and calculate Z-parameters for a given two-port system.
10	To measure and calculate Y-parameters for a given two-port system.
11	To measure and calculate h-parameters for a given two-port system.
12	To measure and calculate ABCD-parameters for a given two-port system.

Design based Problems (DP)/Open Ended Problem:

- 1. Write a 'c' program to obtain RC time constant from a given step response of RC circuit.
- 2. Write a 'c' program to plot frequency response of RC circuit for different values of R and C.
- 3. Write a 'c' program to obtain 3-dB bandwidth and RC time constant from a given frequency response of RC circuit.
- 4. Write a 'c' program to plot impedance of a given series RLC circuit as a function of frequency. Also obtain minimum value of impedance and series resonance frequency using 'c' program.
- 5. Write a 'c' program to obtain following parameters from step response of series RLC circuit for different values of R, L and C.
 - a. Propagation delay
 - b. Overshoot
 - c. Undershoot
 - d. Damping factor
 - e. Natural frequency
 - f. Settling time

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Circuit Theory	Seventh Revised	A. Chakrabarti	Dhanpat Rai and Co.,	2018
		Edition		New Delhi	
2	Network Analysis	Third Edition	M E Van	Prentice-Hall of India	2018
			Valkenburg	Pvt. Ltd.	

Sr. No	Title	Edition	Authors	Publisher	Year
3	Network Analysis	Second Edition	Franklin F	Wiley	2006
	and Synthesis		Kuo		
4	Networks and	Second Edition	D. Roy	New Age	2009
	Systems		Choudhury	International Pvt. Ltd,	
				Wiley	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course(Category)	Course Name	Teach	Teaching Scheme (Hrs/week)					Credits Assigned			
Code	Course Maine	L	Т	Р	0	Ε	L	Т	Р	Total	
		0	1	2	2	5	0	1	1	2	
(SBC)		Electronics Examination Scheme									
	Instruments and Measurement	Component		IS	ISE		SE	ESE		Total	
ET204/EC204	Lab	The	Theory				-				
	Lab	Laboratory		1	150				50	200	

Pre-requisit	e Course Codes, if any. ET101							
	ective: To teach principle of working and application of various measuring							
instruments used in Electronics Laboratories								
Course Outcomes (CO): At the End of the course students will be able to								
XX204.1	1 Describe the working of measuring instruments available in the lab							
XX204.2	Find out and verify the manufacturers, make, models, market cost and specifications of							
	the given instrument							
XX204.3	Select the suitable test and measuring instrument for the given circuit							
XX204.4	Operate the instrument for observing and recording the given signal in time domain							
	and frequency domain							
XX204.5	Recognize the importance of calibration of instruments							
XX204.6	Design signal conditioning circuit for measurement of various parameters							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
XX204.1												
XX204.2												
XX204.3												
XX204.4												
XX204.5												
XX204.6												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
XX204.1							
XX204.2							
XX204.3							
XX204.4							
XX204.5							
XX204.6							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember√	Understand $$	Apply√	Analyze	Evaluate	Create			
SPIT/UG Syllabus/2020-21/ pg. 63								

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Sr. No	Title of the Experiment
1	Measurement of static parameters using analog ammeter, voltmeter and galvanometer.
2	Exploring controls of CRO/DSO and measurement of various parameters in the given circuit using CRO/DSO
3	Study of working principle and exploring controls of function generator, signal generator and arbitrary function generator
4	Study of working principle of tachometer, lux meter, clamp meter and thermal camera and demonstrate its use.
5	Study of working principle of multimeter, wattmeter & energy meter and demonstrate its use.
6	Designing DC bridge for Resistance Measurement (Quarter, Half and Full bridge)
7	Designing signal Conditioning circuit for Strain Measurement
8	Designing AC bridge Circuit for capacitance measurement and verification using Q-meter
9	Designing signal Conditioning circuit for Temperature Measurement
10	Designing signal Conditioning circuit for Distance Measurement

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name]	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total	
		1	0	2	3	6	1	0	1	2	
SBC	Professional	Examination Scheme									
	Communication Skills	Comp	onent]	ISE]	MSE	E	SE	Total	
AS201	SKIIIS	Theory									
		Laboratory			200					200	

Pre-requisite Course Codes, if any.

Course Objective:

Course Outcomes (CO): At the End of the course students will be able to

AS201.1	Demonstrate the spoken and written skills for job placements.
AS201.2	Draft professional documents.
AS201.3	Design written communication for social media.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12
AS201.1												
AS201.2												
AS201.3												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
AS201.1							
AS201.2							
AS201.3							

BLOOM'S Levels Targeted (Pl. appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
		\checkmark			

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Theory Component

Module No.	Unit No.	Topics	Ref.	L Hrs.	P Hrs
1.	Title	Placement Skills		6	12
	1.1	Resume Writing & Cover Letter			
	1.2	Group Discussion			
	1.3	Case Studies/Pitching a startup			
	1.4	Team Building Skills/Work			
	1.5	Interview Skills			
2	Title	Corporate Communication		6	12
	2.1	Presentation Skills			
	2.2	Meeting: Notice, Agenda, Minutes			
	2.3	Proposal Writing			
	2.4	Report Writing: Informative, Analytical report			
3	Title	Research Writing		2	4
	3.1	Sourcing information through digital media			
	3.2	Written communication using social media: Blog			
4	Self	Research Paper, News Analysis			6*
	Study				
		Total(*Not incl	uded)	42	hrs

List of ISEs

Sr. No	Title of the Experiment	Marks
1	Resume	20
2	Cover Letter	20
3	GD	40
4	Mock Interview	20
5	Presentation	20
6	Blog Writing	20
7	Team Building Activity	
8	Minutes of the Meeting/Notice & Agenda	20
9	Proposal Writing	20
10	Report Writing	20
	Total	200

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Interpersonal Skills at Work	2002	John Hayes	McGraw Hill Education	2002
2	Campus Placement: A Comprehensive Guide	2016	Ankur Malhotra	McGraw Hill Education	2016

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	If I Understood You, Would I Have This	2017	Alan Alda	Random	2017
	Look on My Face? My Adventures in the Art			House	
	and Science of Relating and Communicating				
2	Handbook for Writing Proposals	2010	Robert J. Hamper,	McGraw Hill	2010
			Sue Baugh	Education	
3	Effective Communication Skills for	2000	Harry Chambers	Paperback	2000
	Scientific and Technical Professionals			Basic Books	
4	The Art Of Writing Together	2008	William Issac	Crown	2008
				Business	
5	Communication Skills	2011	Meenakshi	Oxford, India	2011
			Raman, Sangeeta		
			Sharma		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Semester-IV

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned					
Code		L	Τ	Р	0	Ε	L	Т	Р	Total	
	Probability and Stochastic Processes	3	0	0	6	9	3	0	0	3	
(BSC)			Examination				n Schen	eme			
``		Comp		ISE]	MSE	ISE ESE		Total		
MA203		The	ory		75		75	1	50	300	
		Labor	atory		-				-	-	

Pre-requisite Course Codes, if any. MA101, MA102

Course Objective: To provide the fundamentals and advanced concepts of probability theory and random process to support core courses in electronic and Electronic and communication engineering. The required mathematical foundations will be studied at a fairly rigorous level and the applications of the probability theory and random processes to engineering problems will be emphasized.

theory and I	theory and random processes to engineering problems will be emphasized.						
Course Out	Course Outcomes (CO): At the End of the course students will be able to						
MA203.1	Apply concepts of mathematics to set operations and probability theory						
MA203.2	Apply concepts of probability theory to single random variables						
MA203.3	Apply theorems to multiple random variables and investigate significance of Central Limit Theorem.						
MA203.4	Determine solutions to various characteristics of random variables/distributions/processes						
MA203.5	Investigate characteristics of random processes						
MA203.6	To interpret use of probability distributions in real world and illustrate Markov Theory application to Queuing theory.						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MA203.1												
MA203.2												
MA203.3												
MA203.4												
MA203.5												
MA203.6												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
MA203.1							
MA203.2							
MA203.3							
MA203.4							
MA203.5							
MA203.6							

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
----------	------------	-------	---------	----------	--------

Theory Component

Mod ule No.	Unit No.	Topics	Ref.	Hrs.			
1	Title	Probability	1,2	08			
	1.1	Sets and set operations; Probability space; Conditional probability and Bayes theorem					
2	Title	Single Random Variable	1,2	08			
	2.1	Discrete random variables, probability mass function, probability distribution function, example random variables and distributions					
	2.2	Continuous random variables, probability density function, probability distribution function, example distributions					
3	Title	Multiple Random Variables	1,2	10			
	 3.1 Joint distributions, functions of one and two random variables, moments of random variables; Conditional distribution 						
	3.2 3.3	densities and moments; Characteristic functions of a random variable Markov, Chebyshev and Chernoff bounds					
4	<u> </u>	Sequence of Random Variables	1,2	06			
4	4.1	Random sequences and modes of convergence (everywhere, almost everywhere, probability, distribution and mean square)	1,2	UU			
	4.2	Limit theorems; Strong and weak laws of large numbers, central limit theorem.					
5	Title	Random Process	1,2	10			
	5.1	Random process. Stationary processes. Mean and covariance functions. Ergodicity.					
	5.2	Transmission of random process through LTI. Power spectral density.					
6	Self Study	Application of different probability distributions(to any one field of interest but not limited to) 1.Wireless Communication 2.Queuing theory 3. Networking 4. Digital Signal Processing. 5.VLSI	1,2	06*			
		·	Total	42			

*Not included in the total

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Probability, Random	4^{th}	A.Papoulis and S.	McGraw Hill	2002
	Variables and Stochastic		Unnikrishnan Pillai		
	Processes				
2	Probability and Random	3 rd	H. Stark and J.	Pearson	2002
	Processes with Applications		Woods	education	
	to Signal Processing				

Sr. No	Title	Edition	Authors	Publisher	Year
1	Probability And Random	3 rd	Alberto Leon	Pearson	2008
	Processes For Electrical		Garcia	education	
	Engineering				
2	Probability, Statistics and	3 rd	T Veerarajan	McGraw Hill	2008
	Random Processes				

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	,	heme k)	Credits Assigned						
Code		L	Т	Р	0	Ε	L	Т	Р	Total
	Foundations of	2	1	0	0	3	2	1	0	3
(BSC)		Examination					n Scheme			
MA204	Mathematics-II	Component			ISE		MSE		ESE	Total
		Theory			75		75		150	300

Pre-requi	site Course Codes, if any.	Foundations of Mathematics-I					
Course Objective: To develop basic foundation of mathematical skills.							
Course O	utcomes (CO): At the End of	the course students will be able to:-					
MA204.1	Integrate a function of one	variable using various techniques					
MA204.2	Sketch basic curves and solve double and triple integrals.						
MA204.3	Solve basic problems using properties of complex numbers.						
MA204.4	Solve differential equations	of first order.					
MA204.5	Apply the techniques of solv	ving first order differential equations to electrical					
	engineering problems.						
MA204.6	Solve differential equations	of higher order					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MA204.1												
MA204.2												
MA204.3												
MA204.4												
MA204.5												
MA204.6												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
MA204.1							
MA204.2							
MA204.3							
MA204.4							
MA204.5							
MA204.6							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

RememberUnderstandApplyAnalyzeEvaluate	Create
--	--------

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Theory Component

Module No.	Unit No.	Topics	Ref	Hrs.		
1	Title	Integral Calculus	1,2	13		
	1.1	Formulae for integral of standard functions, integration by parts,		04		
		integration by method of substitution.				
	1.2	Gamma functions, Beta functions .Differentiation under Integral sign		04		
		with constant limits and one parameter.				
	1.3	Standard curves (lines, circles, parabolas, ellipses). Concept of double		05		
		integration. Evaluation of double and triple integrals.				
2	Title	Title Complex Numbers		03		
	2.1	Operations on complex numbers, polar form of a complex number,		03		
		properties of a complex number.				
3	Title	Differential Equations	1,2	12		
	3.1	Exact differential equations. Linear differential equations of the first		04		
		order and equations reducible to linear.				
	3.2	Solving differential equations of first order in electrical networks.		01		
	3.3	Linear differential equations with constant coefficients: complementary		07		
		function and particular integral.				
			Total	28		

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Higher Engineering	44th	Dr.B.S.	Khanna	2020
	Mathematics		Grewal	Publications	

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Advanced Engineering	10th	Erwin	John Wiley &	2011
	Mathematics		Kreysizg	Sons	
2	Advanced Engineering	28th	H.K.Dass	S.Chand	2014
	Mathematics				

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course(Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Ε	L	Τ	Р	Total
	Analog Circuits	3	0	2	6	11	3	0	1	4
(PC)		Examinat					n Scheme			
		Comp	onent		ISE	I	MSE	E	ESE Total	
ET205/EC205		The	ory		75		75	1	150	300
E1203/EC205		Labor		50				50	100	

Pre-requi	isite Course Codes, if any. E	T101, ET202					
Course O	Course Objective: To teach fundamentals of analog electronic circuits						
Course Outcomes (CO): At the End of the course students will be able to							
XX205.1	Apply the concept of negative and positive feedback						
XX205.2	Discuss differential amplifier an	Discuss differential amplifier and power amplifier circuits					
XX205.3	Discuss fundamentals of operat	ional amplifier IC					
XX205.4	Design linear and non-linear ap	plications using operational amplifier IC					
XX205.5	Discuss various data conversior	n techniques					
XX205.6	Design applications with specia	l purpose ICs					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
XX205.1												
XX205.2												
XX205.3												
XX205.4												
XX205.5												
XX205.6												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
XX205.1							
XX205.2							
XX205.3							
XX205.4							
XX205.5							
XX205.6							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Feedback topologies and Oscillators	1	
	1.1	Voltage series, current series, voltage shunt, current shunt, effect of feedback on gain, bandwidth etc., calculation with practical circuits, concept of stability, gain margin and phase margin.	1	8
	1.2	Oscillators: Review of the basic concept, Barkhausen criterion, RC oscillators (phase shift, Wien bridge etc.) and LC oscillators (Hartley, Colpitt, Clapp etc.)		
2	Title	Differential amplifier and Power Amplifier	1	8
	2.1	Current mirror: Basic topology and its variants, V-I characteristics, output resistance and minimum sustainable voltage (VON), maximum usable load.		
	2.2	Differential amplifier: Basic structure and principle of operation, calculation of differential gain, common mode gain, CMRR and ICMR.		
	2.3	Power amplifiers: Power BJTs, Power MOSFETs, Heat Sinks, Class A, Class B, Class C and Class AB operation, Power efficiency		
3	Title	Operational Amplifier	2	12
	3.1	Functional Block Diagram of op amp, DC and AC characteristics of an op-amp, Ideal op-amp		
	3.2	Linear Applications of Operational Amplifier Inverting and non-inverting amplifier, adder, subtractor, integrator, differentiator, difference amplifier, instrumentation amplifier Active Filters: First order filters, second order active finite and infinite gain low pass, high pass		
	3.3	Non-Linear Applications of Operational Amplifier Comparators: Inverting comparator, non-inverting comparator, zero crossing detector Schmitt Triggers: Inverting Schmitt trigger		
4	Title	Data Converters	2	6
	4.1	Digital-to-analog converters (DAC): Weighted resistor, R-2R ladder, resistor string etc.		
	4.2	Analog to-digital converters (ADC): Single slope, dual slope, successive approximation, flash etc.		
	4.3	Switched capacitor circuits: Basic concept, practical configurations, application in amplifier, integrator, ADC etc.		
5	Title	Special Purpose Integrated Circuits	2	8
	5.1 5.2	Timer 555 and its applications Three-terminal fixed (78XX series) and general purpose 723 voltage regulators.		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

6	Multiplier IC's, Power Amplifier IC's, PLL and VCO. Design of applications using these IC's.		6*
	Total (*Not inclue	ded)	42

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Design and implement any one negative feedback amplifier
2	Design and implement any one oscillator circuit
3	Design and implement differential amplifier with and without current mirror circuit
4	Design and implement any one power amplifier circuit
5	To measure (a) Input bias current, (b) Input offset current, (c)Input offset voltage & (d)
	Slew rate of the given Op-Amp IC 741.
6	Design and Implement linear application using Op-Amp IC 741.
7	Design and Implement non-linear application using Op-Amp IC 741
8	Design and Implement active filter circuit using Op-Amp IC 741.
9	Design and implement data converter circuit
10	Design and Implement Multivibrator Circuits using IC 555
11	Design, Implement and analyze Voltage Regulator Circuit using IC 723.

Text Books :

S. N.	Title	Edition	Authors	Publisher	Year
1	Electronic Circuit Analysis and	Third	Donald A.	Tata McGraw	2006
	Design		Neamen	Hill	
2	Linear Integrated Circuits	Fourth	D. Roy	New Age	2018
			Choudhury and S.	International	
			B. Jain	Publishers	

Reference Books :

S. N.	Title	Edition	Authors	Publisher	Year
1	Millman's Electronic Devices and Circuits	Third	Jacob Millman,Christos C Halkias, and Satyabratata JIT	McGrawHill	2014
2	Design with operational amplifiers and analog integrated circuits	Fourth	Sergio Franco	Tata McGraw Hill	2016
3	Op-Amps and Linear Integrated Circuits	Fourth	Ramakant A. Gayakwad	Pearson Prentice Hall	2015

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course(Category) Code			eachir (Hrs)	ng Sc s/wee		è	Credits Assigned						
Code		L	Т	P	0	Ε	L	Т					
		3	0	2	6	11	3	0	1	4			
(PC)		Examination Scheme											
	Microcontrollers	Comp	onent		ISE	I	MSE	E	SE	Total			
ET206/EC206		Theory			50		50		00	200			
E1200/EC200		Labor	Laboratory		50				50	100			

Pre-requis	ite Course Codes, if any.	EC101, ET201				
Course Ob	Course Objective: Imparting the detailed architectural features of various microcontrollers like 8051, PIC					
and ARM a	along with integrated peripherals	and programming				
Course Ou	Course Outcomes (CO): At the End of the course students will be able to					
XX206.1	Compare and contrast traditional microprocessor with traditional microcontroller 8051					
XX206.2	Understand and describe architectural features of microcontrollers like PIC and ARM					
XX206.3	Comprehend ARM core model	Comprehend ARM core model and classify different modes of operation with justification				
XX206.4	Classify various instructions with addressing modes of microcontrollers like PIC and ARM					
XX206.5	Analyze the given problem statement and apply the programming concepts to solve the problem through program in PIC and ARM					
XX206.6	Illustrate and utilize the integrat	ted peripherals of 16 and 32 bit microcontrollers				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
XX206.1												
XX206.2												
XX206.3												
XX206.4												
XX206.5												
XX206.6												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
XX206.1							
XX206.2							
XX206.3							
XX206.4							
XX206.5							
XX206.6							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

	Remember	Understand	Apply	Analyze 🗸	Evaluate	Create
--	----------	------------	-------	-----------	----------	--------

SPIT/UG Syllabus/2020-21/ pg. 77

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.	
1	Title	Introduction of 8-bit Microcontroller - 8051			
	1.1	Overview of 8051 Family of Controllers	1	4	
	1.2	Architecture of 8051 with block diagram schematic	1		
	1.3	Brief description of integrated components of 8051	1		
2	Title	PIC Microcontroller		10	
	2.1	Microcontroller architecture and Programming model	2		
2.2		Instruction set with addressing modes	2		
	2.3	Programming and Problem solving approaches	2		
3	Title	PIC Integrated Peripherals		9	
	3.1	I/O Ports with its interfacing	2		
	3.2 Interrupt Structure		2		
3.3 Timers with its configuration3.4 Data Converters (ADC and DAC)		Timers with its configuration	2		
		Data Converters (ADC and DAC)	2		
	3.5	Serial I/O (SPI and I ² C protocol)	2		
4	Title	ARM7TDMI(ARMv4T) Architecture		10	
	4.1	Features and advantages, ARM versions	3,4		
	4.2	Processor operating states, ARM core data flow model, operating modes, registers, program status registers, exceptions and pipelined architecture advantage	3,4		
	4.3	Instruction set with addressing modes	3,4		
5	Title	LPC2148 ARM7 Processor Programming and Interfacing		9	
	5.1	Processor state changing (ARM $\leftarrow \rightarrow$ THUMB), Exceptions, interrupts and its handling.	3,4		
	5.2 Timer Programming, Watchdog Timer		3,4	-	
	5.3	ADC and Sensor Interfacing	3,4		
	5.4 SPI and I2C Peripheral Interface		3,4		
6	Self Study	ARM-v7-M (Cortex-M3), Comparison of ARM-v&-A (Cortex A8), ARM-v7-R (Cortex R4), ARM-v7-M (Cortex M3). Application Case Study for PIC and ARM controllers		6*	
	•	Total (*Not inc	luded)	42	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment				
1	Programming the I/O Port of 8-bit 8051 Microcontroller and effectively interface the LED and				
	switch.				
2	Programming and Interfacing for utilization of on-chip resources like Timers and Serial				
	Communication of 8-bit 8051 Microcontroller.				
3	PIC assembly language programming and simulation				
4	PIC LED/LCD interfacing and programming				
5	PIC Timers and interrupts programming				
6	PIC ADC Programming				
7	ARM LEDs and Keyboard Interface				
8	ARM Programming and Interfacing of sensors using on chip ADC				
9	ARM Programming and Interfacing on chip Serial Port				
10	ARM Programming and Interfacing on chip timer				

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	The 8051 Microcontroller	Second	Muhammad Ali Mazidi,	Pearson	2006
	and Embedded Systems:		Janice G. Mazidi and R.		
	Using Assembly and C		D. McKinlay		
2	Fundamentals of	Fourth	Ramesh Gaonkar	Penram	2007
	Microcontrollers and			International	
	Applications in Embedded			Publishing	
	Systems (with PIC18			Pvt. Ltd	
	microcontroller family)			I vu Lu	
3	ARM System Developer's	First	Andrew N. Sloss,	Elsevier Inc	2004
	Guide Designing and		Dominic Sysmes and	Morgan	
	Optimizing System		Chris Wright	Kaufmann	
	Software				
4	ARM Architecture	Second	David Seal	Addison	2001
	,Reference Manual			Wesley	

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	PIC Microntroller: An Introduction to Software & Hardware Interfacing	Second	Han- Way Huang	Cengage Learning	2005
2	ARM System-on-Chip Architecture	Second	Steve Furber	Addison- Wesley	2000

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name]	Feachir (Hr:	ng Sc s/wee			C	redits	s Assi	gned
Code		L	Τ	Р	0	Ε	L	Т	Р	Total
		3	0	2	6	11	3	0	1	4
(PC)				Examination Scheme						
, , ,	Signals and Systems	Comp	onent		ISE]	MSE	E	SE	Total
ET207/EC207	Systems	The	eory		75		75	1	50	300
E120//EC20/	C207		Laboratory		50				50	100

Pre-requisi	te Course Codes, if any. N	MA101, MA102				
Course Ob	Course Objective: To develop strong foundation of continuous time signals and systems					
Course Outcomes (CO): At the End of the course students will be able to						
XX207.1	XX207.1 Classify and illustrate various operations on signals and systems.					
XX207.2	Analyze the properties of a continuous time signal in frequency domain and observe the					
	spectrum.					
XX207.3	Apply Laplace Transform on cor	ntinuous time signals				
XX207.4	Evaluate Linear Time Invariant system response using Laplace Transform					
XX207.5	Design analog Butterworth and Chebyshev filter					
XX207.6	Interpret system using state space	e model				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
XX207.1												
XX207.2												
XX207.3												
XX207.4												
XX207.5												
XX207.6												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
XX207.1							
XX207.2							
XX207.3							
XX207.4							
XX207.5							
XX207.6							

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

BLOOM'S Levels Targeted (Pl. Tick appropriate)

	I				
Remember	Understand	✓ Apply	✓ Analyze	Evaluate	Create
			e e		

Theory Component

Module	Unit	Topics		Hrs.
No.	No.	Topics	Ref.	111.5.
1	Title	Overview of Continuous Time Signals and Systems	1,2	08
	1.1	Introduction: Signals, systems, elementary signals, exponential, sine,		
		step, impulse, ramp, rectangular, triangular and operations on signals		
	1.2	Classification of signals: Continuous Signals, deterministic and non-		
		deterministic, periodic and aperiodic, symmetric (even) and		
		asymmetric (odd), energy and power, causal and anti-causal signals.		
	1.3	Operations of Signals: Shifting, Scaling, Time Reversal, Addition and		
		Multiplication, Convolution, Correlation		
2	Title	Fourier Series and Fourier Transform	1,2	10
	2.1	Fourier series: Orthogonal representation of signals, Continuous		
		Time Fourier Series (CTFS), magnitude and phase spectra, Gibbs		
		phenomenon, Parsevel's relation,		
	2.2	Fourier Transform: Fourier Transform and Inverse Fourier		
		Transform on periodic and non-periodic signals, Limitations of		
		Fourier Transform and need for Laplace Transform, Properties of		
		Fourier Transform, Parsevel's relation, Energy and Power Spectral		
		Density and Bandwidth.		
3	Title	Laplace Transform	1,2	04
	3.1	Laplace Transform, Properties of Laplace Transform, Relation		
		between Laplace Transform and Fourier Transform,		
	3.2	Inverse Laplace Transform using Partial Fraction method		
4	Title	Linear Time Invariant (LTI) Systems	1,2	08
	4.1	Classification of systems: Static and dynamic, time variant and time		
		invariant, linear and nonlinear, causal and non-causal, stable and		
		unstable systems.		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	4.2	Impulse Response, Transfer Function, Differential Equation, Stability of Systems, Frequency Response, Solution of Differential Equation using Laplace Transform		
5	Title	Analog Filter Design	1,2	12
	5.1	Design of Ideal Analog filter, Butterworth Low Pass Filter (LPF) design, Butterworth High Pass Filter (HPF) design, Butterworth Band Pass Filter (BPF) and Band Reject Filter design, Pole zero plot of Butterworth filters, Magnitude Spectrum Equiripple Filters, Chebyshev Type-I LPF, HPF Design, Polezero plot of Chebyshev filter, magnitude spectrum.		
	5.3	Realization diagram (Form I and II)		
6	Self Study	State Space Model: Procedure to determine state equations, State equations from transfer function, Laplace transform solution of state equations		6*
	1	Total (*Not incl	uded)	42

Laboratory Component

Sr. No	Title of the Experiment
1	Representation of Signals
2	Operations on Signals
3	Convolution on Continuous Time Signals
4	Synthesis of signals using Fourier Series
5	Synthesis of signals using Fourier Transform
6	Analysis of LTI system using Laplace Transform
7	Plotting of frequency spectrum
8	Butterworth filter design
9	Chebyshev filter design
10	Mini-project: Analysis of real world signals

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Signals and Systems	3 rd	Nagoor Kani	Tata McGraw Hill	2011
2	Digital Signal Processing	4^{th}	Ramesh Babu	Scitech	2014

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Signals and 2 nd		Alan V Oppenheim, Alan S,	Pearson	2002
	Systems		Willsky and A Hamid Nawab		
2	Signals and	3^{rd}	Simon Haykin and Barry Van	John Wiley & Sons	2002
	Systems		Veen		
3	Linear Systems and	4^{th}	B. P. Lathi	Oxford University	2005
	Signals			Press	
4	Signals and	2^{nd}	H. P Hsu, R. Ranjan	Schaum's outlines	2006
	Systems				

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned					
Code		L	Т	Р	0	Ε	L	Т	Р	0	Total
	Mini Project-I	0	0	0	4	4	0	0	0	2	2
(SBC)		Examination Scheme									
		Component			IS	ISE		MSE		SE	Total
		Theory									
ET208/EC208		Laboratory									
		Self Study		1	00			100		200	

Pre-requisite Course	All the Courses till third Semester
Codes	

Mini-project is an opportunity to make a difference in the experience of education in its own way. It is an attempt of scientific study of the problem in surrounding in order to guide, correct and evaluate the actions and decisions about it. It is based on a small project correlating scientific knowledge and day to day experience which encourages development of scientific attitude to solve real life problems among students.

The Objectives of Action Research are:

- \checkmark To make students sensitive towards societal issues
- ✓ To learn scientific principles from day-to-day experiences
- \checkmark To develop psycho-technological skills through observation, classification, statement of hypothesis etc.
- ✓ Development of communication, organizational skills and maturity through discussion, presentation etc.
- \checkmark To develop ability to correlate science, technology and society
- ✓ To apply engineering knowledge and propose innovative, sustainable solutions to the real life challenges

Steps for Implementation: (ISE: Through 2 Phases of Evaluation) and ESE

- \checkmark Keen observation of the surrounding/society
- \checkmark Identification of the problem
- ✓ Analysis of the problem
- \checkmark Collection of relevant information by formulating research questions
- ✓ Suggesting plan of action
- ✓ Conducting experiments
- ✓ To draw conclusion
- \checkmark To find the possible solution to rectify the problem
- \checkmark To execute experiments and remedial measures wherever possible

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Students can seek guidance from teachers, other experts and make effective use of other sources of information available around them. Students must ensure that problem to be solved in manageable in one semester.

Teachers must follow the below mentioned principles:

- ✓ Make student confront problem solving
- \checkmark Develop methods and techniques of handling problems.
- \checkmark Teach how to use the methods and not directly give solution to the problem.
- \checkmark Lead the students to the peak of their powers for improvement of better learning.

The H/W and S/W resources required to complete the Mini-Project-I may be beyond the scope of curriculum of courses taken or may be based on the courses but thrust should be on

- Learning additional skills
- Development of ability to define and design the problem and lead to its accomplishment with proper planning
- Learn the behavioral discipline by working in a team. The team may be maximum three (03) students.

Evaluation:

Project report should contain project title, student details, certificate and acknowledgements. Other sections of the report shall be decided by the department based on projects. But it must have introduction, necessity of project, objectives, hypothesis, plan, observations, analysis of results, conclusion and references along with other sections related to technology. The ISE and ESE evaluation will be carried out based on the rubrics framed by the Department. The ESE marks will be based on final demonstration of the project and viva based on it and report/poster/technical paper of the project in the standard format provided by the Department.