

Bhartiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) [Knowledge is Nectar]

<u>Liberal, Pi-Model of Engineering Education @ SPIT</u> (Department of Information Technology)

Salient Features

- 160-Credit Liberal Engineering Education Model.
- A strong **program core of 12 courses** and **6 baskets of program electives** to ensure the breadth and depth in a chosen domain of studies. Program electives are arranged either to grow in a specified vertical or have diversified exposure.
- Full semester industry internship to interested students.
- Aggressive model of "Learning-by-doing". (Engagement in classroom and laboratory sessions is 50:50)
- Special tracks for "Minor" Certification for interested learners, ensuring significant awareness of additional discipline leading to multiple specializations
- Unique, multi-track model of "Honors" Certification, for well performers for enhanced depth in the domain of study.
- Special sequel of optional **industry floated "SCOPE"** courses (Skilled Certification for Outcome-based Professional Education) for interested learners, ensuring high technical skills, in the diversified cutting-edge technologies.
- First-of-its-kind-in-education blend to Engineering Curriculum. "ABLL@LLC"[®] (Activity Based Liberal Learning about Life, Literature and Culture) in all EIGHT semesters, ensuring all dimensional holistic growth of the learner. These eight activity based mini courses are offered as two sequels namely "SEVA"[®] (Social Empowerment through Various Activities", and "SATVA"[®] (Self accomplishment through various Activities).

This curriculum aims at development of an **all-rounded** personality. It follows **holistic** approach of education, ensures strong science, mathematics foundation and program core, develops expertise in domain vertical though sequel of electives, ensures significant exposure of additional discipline through "Minor" program, collaborates outside world for the imparting relevant skills through "SCOPE" courses, challenges good learners through "Honors" evaluation, and systematically develops soft skills, and social, physical, mental, spiritual personality through carefully articulated **Liberal Learning** and **Humanities** sequels. Thus, offers a unique, liberal **"Pi-Model"** of Engineering Education.

Program Core

At SPIT, every undergraduate program consists of **Twelve Core Courses** referred as **Program Core**. Several academic models from reputed institutions in the country and outside the country are studied in articulating this Program Core, to make curriculum Globally Competitive. All courses in this Core have laboratory component to augment the learning. Each program core course has additional optional component of "Contents beyond the curriculum" which is carefully designed to ensure additional 15-20 hours engagement of the learners. The learner thus is nurtured towards the "Self-Learning" and "lifelong learning" which are essential attributes of 21st Century learner.

Program Electives

At SPIT, every program has **Six baskets** of Program Electives, each basket having minimum 3 courses. This enables learner to grow in a **domain-specialization** or **domain-vertical**. For example, learner can graduate with B.Tech Electronics with vertical in "Embedded Systems" or "VLSI" or "Signal Processing". Or a learner can graduate with B.Tech Computer Engineering with specialization in "Security" or "ML & AI" or "Computer Networking" or "Data Science". At the same time, learner can increase her bandwidth opting for elective courses which are general in nature, not pointing out towards a specific vertical.

Open Electives

Every undergraduate program has three baskets of open electives. This is planned to give exposure to interdisciplinary and cross disciplinary domains. The courses in these baskets are planned both at department and institute level. Students can choose any combination of these courses (not floated by the parent department) to get familiar with other domains of learning. One of these open electives must be chosen from Basic science courses or Engineering Science courses. This unique approach of offering additional basic science or engineering science elective at senior level aims at appreciating the importance of other domains of learning.

Humanities and Social Science Electives

National Education policy 2019 has aptly spelled out the necessity of Humanities in the Professional Education. It quotes, "A holistic and liberal education as described so beautifully in India's past is indeed what is needed for the education of India in the future to truly lead the country into the 21st century and the fourth industrial revolution. Even engineering schools such as the IITs must move towards a more liberal education integrating arts and humanities". Every program at SPIT has three baskets of humanities. Learners are encouraged to take diversified courses in the field of languages, law, history, economics, management, finance etc.

SCOPE Certification

This unique sequel is designed to systematically develop skills required for an industrial sector. SPIT is partnering with various industries to offer the high-end skills required for a specific industrial sector. Well performing students can stretch the envelop and add new dimension to their Professional Personality by earning this certification. There are multiple tracks for SCOPE certification. Each track is offered with partnership with reputed institution or industry. These tracks are jointly designed by SPIT and partnering industry. Each track has four courses (modules). Each module/course is of 2-3 credits including laboratory component for most of the tracks. These tracks are also open for outside learners, leading to Certificate Program in a chosen domain.

Minor Certification

This additional and optional certification provides an opportunity to learner to develop the leaners in the additional domain of interests. It broadens the education and ensures the multi-disciplinary development which is essential attribute of 21st century engineer. However, this is optional. Well performing students can stretch the envelop and add new dimension to their Professional Personality. Each track for this minor certification is offered either by SPIT or with partnership with other reputed institutions. Each track has four courses (modules). Each course is of 3 credits and laboratory component if any. These tracks are also open for outside learners, leading to Certificate Program of 12 credits in a chosen domain.

Honors Certification

While the Minor and SCOPE certifications aim at adding additional professional dimension to the professional personality of the learners, the Honors certification gives opportunity to well performing learners to drive deep in the chosen field of study. Multiple plans/ways are planned to encourage learners to earn this certification which essentially excite the learners to push an envelope and go extra/deep in the chosen area of the study. Students earn additional stars (*) as shown in Table 1 during their program. If at the time of graduation student earns total **TWELVE** stars, she is conferred with "Honors" certification.

Activity	Definition of "STAR"		Maximum Limit
Earning top grade in any of the 12 courses	Top Grade: Full STAR		8 STARs
which constitute the program core.	Next GRAI	DE: Half STAR	
Enrolling additional "Honors" Course at	Top Grae	de: 3 STARs	6 STARs
fourth year.	Next GRA	DE: 2 STARs	
	Next GRA	ADE: 1 STAR	
Success in the GALE examination			8 STARS
	Percentile	STARs	
	Score	Earned	
	Above 99	5	
	Above 95	<u> </u>	
	Above 90	4	
	Valid score	2	
Research Publication	Journal* :2- 6 STARs		8 STARs
	SPIT supp	orted Patent : 3	
	STARs		
Completion of PG level on line course			6 STARs
from IITs available on NPTEL	Percentile	STARs	
	Score	Earned	
	Above 95	3	
	Above 90	2	
	Above 80	1	
#Winning prestigious technical			
competitions at National level	Rank	STARs	6 STARTs
		Earned	
	1	4	
	2	3	
		2	
**Enrolling for optional "Special Honors	Above 70	0% : 3 STARs	8 STARs
Paper" in Semester 3, 4, and 5.	Above 60	0%: 2 STARs	
	Above 5	0% [.] 1 STAR	

Table 1: Additional "STAR" Earning leading to "Honors" certification

*In identified journals only. No of STARs to be decided by Institute Committee.

#In identified events by the institute

**This special paper will cover all core courses in the semester and its difficulty level will be higher than the normal end semester examination paper. The question paper will be of GATE standard.

Activity Based Liberal Learning about Life, Literature and Culture (ABLL@LLC)

"Education will fail ignominiously in its objective if it manufactures only a robot and called him an economic man stressing the adjective economic and forgetting the substantive man. A university cannot afford to ignore the cultural aspects of education whatever studies it specializes in. Science is a means, not an end. Whereas culture is an end in itself. Even though you may ultimately become a scientist, a doctor, or an engineer, you must, while in college, absorb fundamental values which will make you a man of culture.."

Kulpati Dr. K. M. Munshi

How aptly our visionary founder has given direction to the education. His wisdom towards education inspires, encourages us to experiment in the field of education, to make it as relevant and helpful to the society as possible. Mahatma Gandhi once quoted, "By education I mean an all-round drawing out of the best in man; body, mind and spirit."

Recently announced National Policy on Education-2019, reconfirms this and profoundly stresses the need of liberalizing the higher education including professional education. It quotes, "Higher education must develop good, well-rounded and creative individuals, with intellectual curiosity, spirit of service and a strong ethical compass". Moving towards a more liberal undergraduate education is one of the most important features of this policy. It narrates, "The needs of the 21st century require that liberal broad-based multidisciplinary education become the basis for all higher education. This will help develop well-rounded individuals that possess critical 21st century capacities in fields across arts, humanities, sciences, social sciences, and professional, technical, and vocational crafts, an ethic of social engagement, and rigorous specialization in a chosen field or fields. Such a liberal education would be, in the long run, the approach across all undergraduate programs, including those in professional, technical, and vocational disciplines. Imaginative and flexible curricular structures will enable creative combinations of disciplines for students to study, thus demolishing currently prevalent rigid boundaries and creating new possibilities for lifelong learning. The notion of 'knowledge of many arts'- i.e. what is called 'liberal arts' in modern times – must be brought back to Indian education, as it is exactly the kind of education that will be required for the 21st century."

We at Bhavan's SPIT, make sincere attempt to blend engineering education appropriately with arts, humanities, crafts, ethic of personal and social engagement to ensure holistic development of the learner. We have carefully designed liberal learning courses covering Life, Literature, and Culture (LLC @ LLC) for all the semesters of the program. Learner concurrently studies these courses. These courses broadly fall under two groups, namely "SEVA (Social Empowerment through Various Activities)" and "SATVA (Self Accomplishment through Various Activities)". Each of these groups, has four modules as indicated in Table 2 and Table 3. Further each module has multiple courses of 1 or 2 credits (An engagement of 35-40 hours is expected to earn one credit). Every learner at SPIT is expected to take 1 such course on LLC every semester. We strongly believe that these EIGHT liberal learning modules will help us to appropriately blend the professional education as envisaged by the National Policy Makers.

SUGGESTED LIST OF COURSES (INDICATIVE ONLY)

Open Electives I and II

OEXX X	IoT and I ² Ot
OEXX X	Cloud Computing
OEXX X	Augmented and Virtual Reality
OEXX X	3D Printing
OEXX X	Industrial Automation
OEXX X	Artificial Intelligence and Machine learning
OEXX X	Cyber Security & Digital Forensics
OEXX X	Block Chain Technology
OEXX X	E-Mobility
OEXX X	Smart Grid
	courses floated as Open elective by the Departments
OEXX X	courses floated as Open elective by the Departments Consumer Electronics
OEXX X OEXX X	courses floated as Open elective by the Departments Consumer Electronics Robotic & Machine Vision
OEXX X OEXX X OEXX X	courses floated as Open elective by the Departments Consumer Electronics Robotic & Machine Vision Data Structures and Algorithms
OEXX X OEXX X OEXX X OEXX X	courses floated as Open elective by the Departments Consumer Electronics Robotic & Machine Vision Data Structures and Algorithms Information and Network Security
OEXX X OEXX X OEXX X OEXX X OEXX X	courses floated as Open elective by the Departments Consumer Electronics Robotic & Machine Vision Data Structures and Algorithms Information and Network Security Human Machine Interaction
OEXX X OEXX X OEXX X OEXX X OEXX X OEXX X	courses floated as Open elective by the Departments Consumer Electronics Robotic & Machine Vision Data Structures and Algorithms Information and Network Security Human Machine Interaction Software Engineering
OEXX X OEXX X OEXX X OEXX X OEXX X OEXX X OEXX X	courses floated as Open elective by the DepartmentsConsumer ElectronicsRobotic & Machine VisionData Structures and AlgorithmsInformation and Network SecurityHuman Machine InteractionSoftware EngineeringDatabase Management Systems
OEXX X OEXX X OEXX X OEXX X OEXX X OEXX X OEXX X OEXX X X	courses floated as Open elective by the DepartmentsConsumer ElectronicsRobotic & Machine VisionData Structures and AlgorithmsInformation and Network SecurityHuman Machine InteractionSoftware EngineeringDatabase Management SystemsInternet Technology
OEXX X OEXX X OEXX X OEXX X OEXX X OEXX X OEXX X OEXX X OEXX X X	courses floated as Open elective by the Departments Consumer Electronics Robotic & Machine Vision Data Structures and Algorithms Information and Network Security Human Machine Interaction Software Engineering Database Management Systems Internet Technology Data Analytics

Open Elective III-Basic Science Electives

OEMA	Advanced Statistics
1	

OEAS1	Biology for Engineers-Part II
OEAS2	Climate and Earth Science
OEMA	Engineering Optimization
2	
OEAS3	Environment and Sustainability
OEAS4	Semiconductor Optoelectronics
OEMA	Numerical Methods for Engineers
3	
OEXX	Any other Course approved by the Dean Academics and Principal
X	

Open Elective III-Engineering Science Electives

OEXX	Thermal & Fluid Engineering
Х	
OEXX	Manufacturing Processes
Х	
OEXX	Electric Drives
X	
OEXX	Engineering Materials
Χ	
OEXX	Data Structures
Χ	
OEXX	Algorithms
Х	
OEXX	Sensors and Actuators
Χ	
OEXX	Communication Engineering
X	
OEXX	Any other Course approved by the Dean Academics and Principal
X	

Open Elective IV: Humanities and Management Related

OEHX	Management Principles
Х	
OEHX	Research Methodology
Х	
OEHX	IPR and Patents
Х	
OEHX	Law for Engineers
Х	
OEHX	Organizational Behavior
Х	
OEHX	Leadership, Innovation and Entrepreneurship
Х	
OEHX	Project Management
Х	

OEHX	Finance for Engineers
Х	
OEHX	Any course approved by Dean Academics and Principal
Χ	

Humanities and Social Sciences Electives

Special Tracks

	HSSE-I		HSSE-II		HSSE-III
HSE11	Law for	HSE12	Law for	HSE13	Law for
	Engineers-I		Engineers-II		Engineers-III
HSE21	Finance for	HSE22	Finance for	HSE23	Finance for
	Engineers-I		Engineers-II		Engineers-III
HSE31	Psychology-I	HSE32	Psychology-II	HSE33	Psychology-III
HSE41	Economics-I	HSE42	Economics-II	HSE43	Economics-III
HSE51	Ancient India	HSE52	Medieval India	HSE53	Modern India
HSE6X	Language X-I	HSE6X2	Language X-II	HSE6X	Language X-III
1				3	

Common Pool for HSSE-I, II and III (May be studied on MOOC's)

HSEC0 1	Film Appreciation	HSEC02	Universal Values
HSEC0 3	Game Theory	HSEC04	Human Behavior
HSEC0 5	Ecology and Society	HSEC06	Energy Economics and Policies
HSEC0 7	Drama Appreciation	HSEC08	Political Ideologies
HSEC0 9	Justice	HSECXX	Any other Approved Course
HSEXX	Any course from HSSE-I		

ABLL@LLC

Tab	le	2:	SE	VA

SEVA (Social Empowerment through Various Activities)					
Module	Title	Courses			
		Study of Green & White Revolutions in India	SV10		
		Government Missions [Study of any 2]	SV11		
SEVA-I	SOCHO	Study of India's top 2 problems	SV12		
	BHARAT	Study of World's top 2problems			
		How Government Works? [Study of one department of the	SV14		
		Central/ State Government]			
		Study of one of the identified Books	SV15		
		Study of two National policies	SV16		
		Any other activity approved by Dean Academics	SV1X		
Module	Title	Courses	CODE		
		River/Beach/Mohalla/School/Campus/Govt offices Cleaning	SV20		
		Waste Segregation Surveys	SV21		
SEVA-II	SWACCH	NSS camp in village for a week	SV22		
	BHARAT	Medical camps in schools	SV23		
		First Aid training for a week	SV24		
		Surveys and Estimation for roof top solar	SV25		
		NCC participation	SV26		
		Any activity approved by Dean Academics	SV2X		
Module	Title	Courses	CODE		
		Mentoring of School Children	SV30		
		Digital Literacy for yielders	SV31		
	<mark>SHIKSHIT</mark> BHARAT	Value addition for deprived schools	SV32		
SEVA-III		Mentoring junior (first year) students at SPIT	SV33		
		Teaching Assistantship at SPIT	SV34		
		Development of learning material for schools/it is	SV35		
		Participation in "Teach-for-India" movement	SV36		
		Any other activity approved by Dean Academics	SV3X		
Module	Title	Courses	CODE		
		Great Grass Root Innovations	SV40		
		Innovation and Creativity	SV41		
		Critical Thinking and Problem solving	SV42		
SEVA-IV	<mark>SAMRUDDHA</mark> BHARAT	Team work and collaboration	SV43		
		Leadership & Entrepreneurship	SV44		
		Design Thinking	SV45		
		Study of one of the identified books	SV47		
		Work with START-UP at SPIT	SV48		
		Any other activity approved by Dean Academics	SV49		

Tab	le 3:	SA	ΓVA
		~	

	SATVA (Self A	Accomplishment Through Various Activities)	
Module	Title	Courses	COD E
		Values and Ethos of Bhavan	ST10
		Essence of Indian traditional knowledge	ST11
		Philosophy of religion (any)	ST12
		Study of Life Management / Kindle Life / Life	ST13
SATVA-I	SANSKARIT	Empowerment and Enriching Program or any other	
	BHARAT	book cited.	
		Study of any of GREAT sons of INDIA [Ex. Gandhi,	ST14
		Ambedkar, Phule, Savarkar, Sardar Patel, Nehru,	
		Shivaji, JRD Tata etc]	
		Any other course approved by Dean Academics	ST1X
		Target based Physical Exercise for example-Running	ST20
		[Test 5 kms in a stretch], Swimming [Test 1 km in a	
		stretch], Walking [Test 20 kms in a stretch], Trekking	
SAI VA-II	SAKSHAM	[/days], Cycling	07701
	BHARAI	Sports – Representation of Institute at University	S T21
		level/inter college level and above in ANY sport	CT 22
		Participation in National lech Fest,	8122
		AICIE-Hackathon, Industry floated global and	
		Vege video I	ST22
		10ga viuya –i	5125 ST2V
		Any other activity approved by Deal Academics	512A ST20
		fests/competitions	5150
SATVA-III	SUNDER	Dance [Bharatanatyam /Kathak /Lavani /Western	ST31
	BHARAT	Dance]. Only for beginners	
		Learning musical instrument [Any type]. Only for	ST32
		beginners.	
		Film Appreciation/Dramatics/Seeing through	ST33
		Painting	
		Making short film/Photography	ST34
		Yogvidya-II	ST35
		Any other activity approved by Dean Academics and DOSA	ST3X
		Food that Heals	ST40
		Personal and Social Hygiene	ST41
SATVA-IV	SURAKSHIT	Intellectual Property Rights	ST42
	BHARAT	Etiquette and Conversational skills	ST43
		Basics of Avurveda	ST44
		Study of one of the identified Books	ST45
		Any other course approved by Dean Academics	ST4X

Indicative SCOPE Certification

Minor/SCOPE Certification

Minor/SCOPE Track	Partner Institute if any.	Module	С				
Computer		Data Structures and Algorithms	MN1 1				
Engineering	SPIT	Database Management Systems	MN1 2				
		Machine Learning	MN1 3				
	Internet Technology Application Specific System Design						
Industrial IoT	SPIT	Application Specific System Design	MN2 1				
		Embedded "C" Programming & Real-time Software Development	MN2 2				
		Software Design for Discrete time Control Algorithms	MN2 3				
		Industrial Internet of Things (IIoT) System design and Applications	MN2 4				
Management	S.P. Jain Institute of Management and	Finance and cost Management	MN3 1				
	Research [SPJIMR]	Supply Chain Management, operations and project Management	MN3 2				
		IT for Business, HR and Organization	MN3 3				
	S.P. Jain Institute of Management and Research [SPJIMR] Control Algorithms Supply Chain Management, operations and project Management IT for Business, HR and Organization Marketing						
		UX Design &	SC11				
User Experience	Imagin XP, Pune	Digitalization					
(UX) Design		Empathy & Its Tools	SC12				
		User Research & Its Application	SC13				
		Design Thinking & Its Applications	SC14				

CURRICULUM SCHEME FOR UNDERGRADUATE ACADEMIC PROGRAM AT SPIT

2020 ITERATION: COMPUTER DOMAIN (Information Technology)

Nomenclature of the Courses

BSC	Basic Science Course	PC	Program Core
BSE	Basic Science Elective	PE	Program Elective
ESC	Engineering Science Course	MLC	Mandatory Learning Course
ESE	Engineering Science Elective	SCOPE	Skill Certification for Outcome
			based Professional Education
SBC	Skilled Based Course	OE	Open Elective
ABL-SATVA	Self- Accomplishment Through	HSSE	Humanities and Social Science
	Various Activities		Elective
ABL-SEVA	Social Empowerment Through		
	Various Activities		

Abbreviations

L	Lecture Hour	0	Other Work (Self Study)
Т	Tutorial Hour	Е	Total Engagement in Hours
Р	Laboratory Hour	С	Credit Assigned

Sem I											
No.	Тур	Code	Course	L	Т	Р	0	E	С		
	e										
1	BSC	MA10 1	Engineering Calculus	3	1	0	8	12	4		
2	BSC	AS102	Engineering Chemistry	2	0	2	3	07	3		
3	BSC	AS103	Biology for Engineers	2	0	0	3	05	2		
4	ESC	AS105	Engineering Mechanics	2	0	2	4	08	3		
5	ESC	CS101	Problem solving using Imperative Programming	2	0	2	4	08	3		
6	ESC	EC101	Digital Systems and Microprocessors	3	0	2	5	10	4		
7	SBC	AS107	Communication Skills	1	0	2	2	05	2		
	TOTAL 15 1 10 29 55 21										

Sem II

No.	Тур	Code	Course	L	Т	Р	0	E	С
	e								
1	BSC	MA102	Differential Equations and Complex	3	1	0	8	12	4
			Analysis						
2	BSC	AS101	Engineering Physics	2	1	2	5	10	4
3	ESC	AS104	Engineering Graphics	1	0	4	2	07	3
4	ESC	ET101	Basic Electrical Engineering	3	0	2	6	11	4
5	ESC	CS102	Problem Solving using OOP	2	0	2	3	07	3
6	SBC	AS106	Skill Shop	0	0	2	0	02	1
7	ABL	SV1X/	SEVA-I or SATVA-I	0	0	0	2	02	1
		ST1X							
			11	2	12	26	51	20	

	FIRST SUMMER									
No.	Туре	Code	Course	L	Т	Р	0	E	С	
1	SBC	AS108	ENGINEERING EXPLORATION (Project to solve social problem)	0	0	0	100	100	2	

	Sem III										
No.	Туре	Code	Course	L	Т	Р	0	E	С		
1	BSC	MA203	Probability and Statistics	3	0	0	5	08	3		
1	BSC	MA202	Foundation of Mathematics-I*	2	1	0	6	09	3		
	*										
2	PC	IT201	Discrete Structures and Graph Theory	3	0	0	4	07	3		
3	PC	IT 202	Data Structures	3	0	2	5	10	4		
4	PC	IT 203	Computer Architecture and	2	0	2	4	00	1		
			Organization	3	0	2	4	09	4		
5	PC	IT 204	Database Management Systems	3	0	2	5	10	4		
6	ABL	SVXX/	SEVA II or III /SATVA II or III	0	0	0	3	03	1		
		STXX									
7	HSS	HSEX1	HSS-I	2	0	0	3	05	2		
	Е										
	TOTAL 17 0 6 29 52 21										

*Only for Lateral Entry Students

	Sem IV										
No	Туре	Code	Course	L	Т	Р	0	Е	С		
1	BSC	MA201	Linear Algebra	2	0	2	5	09	3		
1	BSC *	MA204	Foundation of Mathematics-II	3	0	0	6	09	3		
2	PC	IT205	Design and Analysis of Algorithms	3	0	2	5	10	4		
3	PC	IT206	Operating Systems	3	0	2	5	10	4		
4	PC	IT207	Computer Communications and Networks	3	0	2	5	10	4		
5	SBC	IT208	Mini Project-I	0	0	0	4	04	2		

6	ABL	SVXX/STX X	SEVA II or III /SATVA II or III	0	0	0	3	01	1
7	HSS E	HSEX2	HSS-II	2	0	0	3	05	2
8		AS201	Professional Communication Skills	1	0	2	2	05	2
9	S/M	SCX1/MNX 1	SCOPE-I/ <mark>Minor-I</mark>						3
	TOTAL			14	0	10	3 2	56	22

*Only for Lateral Entry Students

	Second Summer for HSC students									
No	Тур	Code	Course	L	Т	Р	0	Ε	С	
	e									
1	ML	AS202	Constitution of India	1	0	0	0	06	NC	
	C						5			

	Second Summer (For Lateral Entry Students)											
No.	Туре	Code	Course	L	Т	P	0	E	С			
1	BSC	MA201	Linear Algebra	2	0	2	5	09	3			
2	BSC	MA203	Probability and Statistics	3	0	0	5	08	3			
3	MLC	AS202	Constitution of India	1	0	0	5	06	NC			
Sem V												
Ν	Туре	Code	Course	T	Т	P	0	E	C			
0				L								
1	PC	CS301	Theory of Computation	3	0	0	6	9	3			
2	PC	CS302	Software Engineering	3	0	2	5	10	4			
3	PC	CS303A/	Cryptography and System	3	0	2	5	10	4			
		CS303B	Security/Artificial Intelligence									
			and Machine Learning									
4	PC	CS304	Distributed Computing	3	0	2	5	10	4			
5	SBC	CS305	Internet Technology Lab	1	0	2	5	08	2			
6	ABL	SVXX/STXX	SEVA II or III /SATVA II or III	0	0	0	2	02	1			
7	HSSE	HSEX3	HSS-III	2	0	0	3	05	2			
8	S/M	SCX2/MNX2	2 SCOPE-II/Minor-II						3			
		15	0	8	3 2	55	2 0					

	Sem VI For Cat 1 students (who have NOT preferred semester long internship)											
No.	Туре	Code	Course	L	Т	Р	0	Е	С			
1	OE	OEXXX	Open Elective-I	2	0	2	4	08	3			
2	PC	IT306	Big Data Analytics	3	0	2	5	10	4			
3	PC	IT307	Foundation of Signal Processing	3	0	2	5	10	4			
4	PE	1T3X1	Program Elective-I	2	0	2	4	08	3			
5	PE	1T3X2	Program Elective-II	2	0	2	4	08	3			
6	SBC	IT308	Mini Project-II	0	0	0	8	08	3			

8	S/M	SCX3/MNX3	SCOPE-III/Minor-III						3
				12	0	10	33	55	20

	Se	m VI For Cat 2	students (who have preferred semes	ster lo	ong in	tern	ship)		-	
No	Туре	Code	Course	L	Т	Р	0	Е	C	
1	PE*	1T3X1	Program Elective-I	2	0	2	4	08	3	
2	PE*	1T3X2	Program Elective-II	2	0	2	4	08	3	
3	SBC	IT310	Industry Internship	0	0	0	40	40	15	
4	S/M*	SCXX/MNX	SCOPE-III/Minor-III	SCOPE-III/Minor-III						
		Х								
			TOTAL	4	0	4	48	56	21	
			*To be completed online mode or allied courses from							
			MOOCs							

			Sem VII					_		
No	Туре	Code	Course	L	Т	Р	0	Е	С	
1	OE	OEXXX	Open Elective-II	2	0	2	4	08	3	
2	OE	OEXXX	Open ElectiveIII*	2	0	2	4	08	3	
3	PE	1T4X3	Program Elective-III	2	0	2	4	08	3	
4	PE	1T4X4	Program Elective-IV	2	0	2	4	08	3	
5	SBC	IT401	Main Project Stage-I	0	0	0	4	04	2	
6	ABL	SVXX/STXX	SEVA-III/SATVA-III	0	0	0	4	04	2	
7	S/M/H	SCX4/MNX4 /	SCOPE-IV/Minor-IV/Honors-I						3	
		HOXX								
	*OE-III must be from Basic Science Elective or Engineering Science Elective									
	TOTAL 8 0 8 24 40									

	Sem VIII (Option A: Cat1/Cat2)										
No.	Туре	Code	Course	L	Т	Р	0	Е	C		
1	OE*	OEHXX	Open Elective –IV	2	0	2	4	08	3		
2	PE	1T4X5	Program Elective –V	2	0	2	4	08	3		
3	PE	1T4X6	Program Elective –VI	2	0	2	4	08	3		

SBC	IT402	Main Project Stage-II	Image: Anim Project Stage-II 0 0 0 12						
ABL	SVXX / STXX	SEVA-IV/SATVA-IV	04	2					
Н	HOXX	Honors-II							
*must be	e from Humanities	and Management group, May be tal							
		TOTAL	6	0	6	28	40	17	
	SBC ABL H *must be	SBCIT402ABLSVXX / STXXHHOXX*must be from Humanities	SBCIT402Main Project Stage-IIABLSVXX / STXXSEVA-IV/SATVA-IVHHOXXHonors-II*must be from Humanities and Management group, May be talTOTAL	SBCIT402Main Project Stage-II0ABLSVXX / STXXSEVA-IV/SATVA-IV0HHOXXHonors-III*must be from Humanities and Management group, May be term from TOTAL6	SBCIT402Main Project Stage-II00ABLSVXX / STXXSEVA-IV/SATVA-IV00HOXXHonors-IIII*must be from Humanities and Management group, May be taken from HumanitiesIITOTAL60	SBCIT402Main Project Stage-II000ABLSVXX / STXXSEVA-IV/SATVA-IV000HOXXHonors-IIIII*must be from Humanities and Management group, May be taken from HUCS606	SBC IT402 Main Project Stage-II 0 0 0 12 ABL SVXX/STXX SEVA-IV/SATVA-IV 0 0 0 04 04 H HOXX Honors-II I I I I I *must be from Humanities and Management group, May be taken from SOC I	SBC IT402 Main Project Stage-II 0 0 0 12 12 ABL SVXX/STXX SEVA-IV/SATVA-IV 0 0 0 04 04 H HOXX Honors-II I I I I I *must be from Humanities and Management group, May be taken from SOC I	

	Sem VIII (Option B-Only for Cat 1 students)											
No.	Туре	Code	Course	L	Т	Р	0	Е	С			
1	SBC	IT403	Main Project Stage-II	0	0	0	36	36	15			
2	ABL	SVXX /	SEVA-IV/SATVA-IV	0	0	0	04	04	2			
		STXX										
3	Н	HOXX	Honors-II						3			
			TOTAL	0	0	0	40	40	17			

Table 2: Program Electives

PE/TD	Program Elective-I	Program Elective-II	Program Elective- III	Program Elective- IV	Program Elective- V	Program Elective- VI
Machine	1T311 :	1T312:	1T413:	1T414:	1T311,	1T311,
Learning	Machine	Soft	Natural	Deep	1T312,	1T312,
	Learning	Computing	Language	Learning	1T321,	1T321,
			Processing		1T322,	1T322,
					1T331,	1T331,
Informatio	1T321:	1T322:	1T423:	1T424:	1T332,	1T332,
n Security	Ethical	Digital	Security	Blockchain	CS311,	CS311,
	Hacking	Forensics	Operations	Technology	CS312,	CS312,
	_		Center		CS321,	CS321,
					CS322,	CS322,
					CS331,	CS331,
					CS332	CS332

General	1T331 :	1T332 :	1T433 :	1T434 :	
	Advanced	Data	Digital	Project	
	Database	Science	Image	Management	
	Systems		Processing		
	1T311,	1T311,	17/12	177412	
	1T312,	1T312,	11415,	11415,	
	1T321,	1T321,	11414,	11414,	
	1T322,	1T322,	11423,	11423,	
	1T332,	1T331,	11424,	11424, 1T422	
	CS311,	CS311,	11434,	11433,	
	CS312,	CS312,	CS413,	CS413,	
	CS321,	CS321,	CS414,	CS414,	
	CS322	CS322	CS423,	CS423,	
	CS331,	CS331,	CS424,	CS424,	
	CS332	CS332	CS433,	CS433,	
			CS434	CS434	

SEMESTER V

Course (Category)	Course Name	ר	Teaching Scheme (Hrs/week)					Credits Assigned				
Code		L	Т	Р	0	Ε	L	Т	Р	Total		
		3	0	0	6	9	3	0	0	3		
РС	Theory of Computation		Examinatio						on Scheme			
		Comp	onent]	ISE		MSE	E	SE	Total		
17701	Computation	The	eory		75		75		50	300		
11301		Labo	ratory	y								

Pre-requisite Course Codes, if any.IT201: Discrete Structures and Graph TheoryCourse Objective: To give an overview of the theoretical foundations of computer science from
the perspective of formal languages which provides the mathematical foundation of formal

models of computation, and fundamentals of formal grammars and languages that is used in most areas of computer science.

Course Outcomes (CO): At the end of the course students will be able to									
IT301.1	Design finite automaton for a regular expressions and languages.								
IT301.2	Apply the properties of regular languages.								
IT301.3	Construct the grammar for a language and convert it into normal forms.								
IT301.4	Design and Evaluate Pushdown Automata and Turing Machine for a language.								

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO	PO1	PO1	PO1							
		2	3	4	5	6	7	8	9	0	1	2
IT301.1	3	3	2	-	1	-	-	-	1	1	-	-
IT301.2	3	2	-	-	-	-	-	-	1	1	-	-
IT301.3	2	3	-	-	1	-	-	-	1	1	-	-
IT301.4	2	2	2	-	1	-	-	-	1	1	-	-

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
IT301.1	2	1	-	-	-	-	-
IT301.2	2	1	-	-	-	-	-
IT301.3	2	1	-	-	-	-	-
IT301.4	2	1	-	-	-	-	-

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
			~		

Theory Component

Modul	Unit	Topics	Ref.	Hrs.
e No.	No.			
1	Title	Sets, Relations and Languages	T1,	3
			R3	
	1.1	Relations and functions	10	
	1.2	Alphabets and languages		
	1.3	Types of proof		

2	Title	Finite Automata	T1,	7
	2.1	Regular languages and regular expressions	КI, D2	
	2.2	Finite Automata, Nondeterministic Finite Automata,	КЭ	
		Nondeterministic Finite Automata with ϵ -transitions		
	2.3	Kleene's theorem		
	2.4	NFA to DFA Conversion		
	2.5	Finite Automata with output (Moore and Mealy Machine)		
3	Title	Regular Languages	T1,	6
	3.1	The pumping lemma for regular languages. Applications of the	R1	
		pumping lemma		
	3.2	Closure properties for regular languages		
	3.3	Equivalence and minimization of automata: Testing		
		equivalence of states, Minimization of DFA's		
4	Title	Context-Free Grammars and Languages	T1,	5
	4.1	Context free grammars: Definition of context free grammars,	КJ	
		Derivations using a grammar, The language of a grammar,		
		Sentential forms		
	4.2	Parse trees: Constructing parse trees, From inferences to trees,		
		From trees to derivations, From derivations to recursive		
		inferences		
	4.3	Ambiguity in grammars and languages: Ambiguous grammars,		
		Removing ambiguity from grammars		
5	Title	Pushdown Automata	T1,	6
	5.1	Definition of the pushdown automaton: The formal definition	12	
		of pushdown automata, A graphical notation for PDA's,		
		Instantaneous descriptions of a PDA		
	5.2	The languages of a PDA: Acceptance by final state,		
		Acceptance by empty stack, From empty stack to final state,		
		From final state to empty stack		
	5.3	Equivalence of PDA's and CFG's: From grammars to		
		pushdown automata, From PDA's to Grammar		
	5.4	Deterministic pushdown automata: Definition of a		
		deterministic PDA, Regular languages and deterministic		
6	Title	PDA's, DPDA's and context free languages	T 1	5
0	The	rioperties of Context-Free Languages	T2.	3
	6.1	Eliminating useless symbols, Computing the generating and	R1	
		reachable symbols, Chomsky normal form, Greibach normal		
	6.2	of the pumping lemma for CFL's		
7	Title	Introduction to Turing Machines	T1.	6
-			T2	-
	7.1	Turing machines: Formal definition of a Turing machine,		
		Examples of Turing machines		
	7.2	Halting Problem, Post Correspondence Problem (PCP)		
	7.3	Variants of Turing machines: Multitape Turing Machines		

	7.4	Church-Turing hypothesis			
8	Title	Recursively Enumerable Languages	R1	4	
	8.1	Recursively Enumerable and recursive			
	8.2 Enumerating a language				
	8.3	Context sensitive languages and the Chomsky hierarchy			
	Self	Tractable and Intractable Problems: Tractable and Possibly	R1	5*	
	Stud	Intractable Problems: P and NP, Polynomial-Time Reductions			
	У	and NP-Completeness, Cook's Theorem			
		Total		42	

Text Books

Sr.	Title	Editio	Authors	Publisher	Year
No.		n			
1	Introduction to Automata	Third	John E. Hopcroft,	Pearson	2008
	Theory, Languages, and	Edition	Rajeev Motwani,		
	Computation		Jeffrey D. Ullman		
2	Introduction to the Theory	Third	Michael Sipser	Cengage	2013
	of computation	Edition			

Reference Books

Sr.	Title	Editio	Authors	Publisher	Year
No.		n			
1	Introduction to Languages and the Theory of	Fourth Edition	John C. Martin	McGraw-Hill	2010
	Computation				
2	Elements of the Theory of Computation	Second Edition	Harry R. Lewis, Christos H. Papadimitriou	Pearson	2015
3	Automata and Computability		Dexter C. Kozen	Springer	1997

Course (Category)	Course Name		Teaching Scheme (Hrs/week)				Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total
	Software	3	0	2	5	10	3	0	1	4
PC			Examinatio				n Scheme			
		Comp	Component		ISE		MSE	E	SE	Total
IT302	Engineering	The	Theory		50		50	1	00	200
		Laboratory			50				50	100

Pre-requisite Course Codes, if any.	CS102: Object-oriented programming language
	IT204: Database Management Systems

Course Objective: To understand the best practices in software engineering and gain knowledge to analyze, design, implement and test software project.

Course Outc	omes (CO): At the End of the course students will be able to
IT302.1	Analyze software requirements.
IT302.2	Apply UML models for a project.
17307 3	Evaluate system architecture and develop detailed task schedule from the overall
11302.3	estimates and planning.
IT302.4	Illustrate different coding principles with unit test process.
IT302.5	Understand the need for DevOps.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
IT302.1	-	3	-	-	-	-	-	-	2	2	-	-
IT302.2	-	2	-	-	2	-	-	-	2	2	-	-
IT302.3	-	3	2	1	2	-	-	-	2	2	2	-
IT302.4	-	-	3	-	2	-	-	-	2	-	-	-
IT302.4	-	1	1	-	-	-	-	-	-	-	-	1
					~				~			•

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
IT302.1	3	-	-	-	-	-	-
IT302.2	3	2	-	-	-	-	-
IT302.3	3	2	-	-	2	-	-
IT302.4	3	-	-	-	2	-	-
IT302.5	1	2	1	-	-		1

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
				~	

Theory Component

Modul	Unit	Topics	Ref.	Hrs
e No.	No.			•
1	Title	Introduction		06
	1.1	Software Development Challenges, Software Scope, The Human	T1,T2	
		Side of Software Development		
	1.2	Software Methodologies and Related Process Models with	T1,T2	
		applications, Traditional Life Cycle Models, Waterfall,		
		Incremental, Iterative models, Agile Software Engineering Process		
		Models, SCRUM, Extreme Programming		

2	Title	Requirements Management and Project Planning		10
	2.1	Requirements Development Methodology, Specifying	T1,T2	
		Requirements, Eliciting Accurate Requirements, Documenting		
		Business Requirements, SRS, Defining User Requirements,		
		Validating Requirements, Achieving Requirements Iraceability,		
		Finding Changing Requirements, Agne Requirements		
	2.2	Scheduling Work Breakdown Structure Gantt Chart Pert Chart	T1 T2	
	2.2	Critical Path, Earned Value Analysis, Schedule and Cost slippage.	11,12	
		Estimation, Decomposition techniques, Empirical estimation		
		models, Software Risk Management: Risk Identification, Risk		
		Projection, Risk Refinement, RMMM Plan		
3	Title	Software Analysis		08
	3.1	Difference between Structured and Object-Oriented analysis,	R2,R3	
	2.2	Structured Analysis, Data Flow Diagrams	DA D 2	
	3.2	Object Oriented Analysis, Uses Case, Class diagram, Interaction	K2,K3	
		Deployment diagram		
4	Title	Software Design & Development		08
	4.1	Software Architecture Architectural and Pattern-Based Design	T1.T2	00
		Model Driven Architectures		
	4.2	Software Development, Component Infrastructures, Refactoring,	T1,T2	
		Test Driven Development (TDD)		
	4.3	DevOps, Continuous Integration, Continuous Deployment, System	R1	
		Provisioning and Configuration Management		
	4.4	Software Change Management, Change Control, Version Control	T1,T2	
5	Title	Software Quality & Testing		10
	5.1	Software Quality Concepts, Quality Assurance, Quality Control,	T1,T2	
	5.0	Formal Technical Reviews	T1 T1	
	5.2	Software Metrics, Product Metrics – McCall's Quality Factor,	11,12	
		Process Metrics Metrics for Source Code		
	53	Software Testing Unit Testing Integration Testing System Testing	T1 T2	
6	Title	Advance Topic in software Engineering	11,12	5*
	Self	• Design Pattern		-
	Stu			
	dy			
		Total		42

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	Gather requirements and write a project proposal for case study.
	Prepare SRS document. (Use IEEE template)
2	Design UML diagram -Use Case, Class diagram
3	Design UML diagram -Interaction diagrams
4	Design Data flow diagram (level 0 and 1) for the case study.
5	Create work breakdown structure and schedule the activities

6	Develop Risk Mitigation, Monitoring and Management Plan for the case study.
7	Create versions of software using version control tool.
8	Implement any one Module from chosen case study.
9	Prepare test cases and perform Unit Testing (test scenario, test cases, test data)
10	Study on continuous Integration using DevOp

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Software Engineering: A	Ninth	Roger S. Pressman	McGraw-Hill	2019
	Practitioner's Approach	Edition	and Bruce Maxim		
2	Fundamentals of	Fifth	Rajib Mall	PHI Learning	2018
	Software Engineering	Edition	-	_	

Reference Books

Sr.	Title	Editio	Authors	Publisher	Year
No.		n			
1	The DevOps Handbook: How to		Gene Kin, Patrick	IT	2016
	Create World-Class Agility,		Debois, John	Revolution	
	Reliability, and Security in		Willis, Jez Humble	Press	
	Technology Organizations		and John Allspaw		
2	UML for Java Programmers		Robert C. Martin	Pearson	2006
3	UML Distilled: A Brief Guide to the	Third	Martin Fowler	Addition	2003
	Standard Object Modeling Language	Edition		Wesley	

Course (Category)	Course Name	r	Teaching Scheme (Hrs/week)						Credits Assigned			
Code		L	Т	Р	0	E	L	Т	P	Total		
		3	0	2	5	10	3	0	1	4		
(PC)		Examination Scheme										
	Cryptography and System Security	Component]	ISE	l	MSE		CSE	Total		
CS303A	System Security	The	Theory		75		75	1	50	300		

			Laboratory	50	-	50	100
--	--	--	------------	----	---	----	-----

Pre-requisit	Cod	es, if ar	ıy.	CS207						
Course Ob	jective:	То	apply	and	analyze	different	cryptography	and	system	security
protocols/techniques										
Course Outcomes (CO): At the End of the course students will be able to										
CS303A.1	Describe	Describe the different types of the cryptographic algorithms to secure information.								
CS303A.2	Apply d	iffere	ent cryp	tograj	phic techni	iques to sol	lve security-rela	ited pi	oblems.	
CS303A.3	Create a	Create a message digest from data to authenticate authorized user								
CS303A.4	Use syst	em s	ecurity	practi	ces					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	Р	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO1
		02								0		2
CS303A.	3	-	-	-	-	-	-	-	-	-	-	-
1												
CS303A.	3	3	-	-	-	-	-	-	-	-	-	-
2												
CS303A.	-	3	-	-	-	-	-	-	-	-	-	-
3												
CS303A.	-	3	3	3	2	-	-	-	-	-	-	-
4												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
CS303A.	-	-	-	-	-	-	-
1							
CS303A.	-	-	-	-	-	-	-
2							
CS303A.	-	-	-	-	-	-	-
3							
CS303A.	-	-	-	-	-	-	-
4							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create√
----------	------------	-------	---------	----------	---------

Theory Component

Module	Unit	Topics	Ref.	Hrs.
No.	No.			10
1	Title	Introduction to Security and Cryptography	1.4	10
	1.1	Introduction Security Attacks, Security Goals, Computer	1,4	
		criminals, Methods of defense, Security Services, Security		
	1.2	Mechanisms Degice of Counte graphy Symmetric Cinhor Model Systetitytion	1 2 2	
	1.2	Basics of Cryptography Symmetric Cipner Model, Substitution	1,2,3	
		Properties Confusion Diffusion Plack and Stream Ciphers		
2	Titla	Socrat and Public Koy Cryptography Techniques		10
2	2 1	Secret Key Cryptography Data Encryption Standard(DES)	123	10
	2.1	Strength of DES Block Cinher Design Principles and Modes of	1,2,3	
		Operations Triple DES AES		
	2.2	Public Key Cryptography Principles of Public Key	123	
		Cryptosystems, RSA Algorithm, Diffie-Hellman Key Exchange	1,2,5	
3	Title	Hashing Algorithms and Authentication Protocols		12
	3.1	Cryptographic Hash Functions Applications of Cryptographic	1,2,3	
		Hash Functions, Secure Hash Algorithm, Message	, ,	
		Authentication Codes – Message Authentication Requirements		
		and Functions, HMAC, Digital signatures, Digital Signature		
		Schemes, Digital Signature Standards.		
	3.2	Authentication Protocols, Kerberos, Key Management and	1,2,3	
		Distribution, X.509 Directory, Authentication service, Public		
		Key Infrastructure, Electronic Mail Security: Pretty Good		
		Privacy, S/MIME, Domain Key Identified Mail (DKIM).		
4	Title	Security		10
	4.1	IDS and Firewalls:	1,2,3,4	
		Intrusion Detection System, Types of IDS, Firewalls		
		Characteristics, Types of Firewalls, Placement of Firewalls,		
	4.2	Firewall Configuration,	1024	
	4.2	Internet Protocol Security (IPSec) Architecture, Authentication	1,2,3,4	
		Associations Internet Key Exchange		
	13	Web Security Considerations Secure Sockets Layer and	1234	
	т.5	Transport Layer Security Electronic Payment	1,2,3,4	
		Non-cryptographic protocol Vulnerabilities DoS DDoS		
		Session Hijacking and Spoofing. Software		
		Vulnerabilities-Phishing, Buffer Overflow, Format String		
		Attacks, SQL Injection.		
	Self	International Data Encryption algorithm (IDEA) algorithm,		*8
	Stud	Blowfish algorithm, Elliptic Curve Cryptography, DMZ		
	У	Architecture, and QR Code generation and scanning,		
		Honeypots, DNSSEC		
		Total(* Not in	cluded)	42

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Implement different substitution techniques.
2	Implement different transportation techniques.
3	Implementation of RSA algorithm.
4	Implementation of Diffie-Hellman key exchange algorithm.
5	Generate and calculate Hashes and checksum files.
6	Implement Pretty Good Privacy (PGP) security method.
7	Implement SNORT Intrusion Detection System.
8	Configure Firewall rules using IP tables.
9	Implement SQL Injection.
10	Implement Session Hijacking attack.

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Cryptography and Network Security: Principles and Practice	Fifth Edition	William Stallings	Pearson	2011
2	Network Security and Cryptography	Second Edition	Bernard Menezes	Cengage Learning	2011
3	Cryptography and Network Security	First Edition	Behrouz A Fourouzan	ТМН	2007
4	Security in Computing	Fifth Edition	Charles P. Pfleeger	Pearson Education	2015

Reference Books

Sr. No	Title	Editio	Authors	Publisher	Year
		n			
1.	Cryptography and Network	Second	Behrouz A	TMH	2010
		Edition	Fourouzan,		
			Debdeep		
			Mukhopadhyay		
2.	Computer Security Art and	First	Matt Bishop	Addison-Wes	2002
	Science	Edition		ley	

Course (Category)	Course Name	J	eachir (Hrs	aching Scheme (Hrs/week)				Credits Assigned			
Code		L	Т	Р	0	Е	L	Т	Р	Total	
		3	0	2	5	10	3	0	1	4	
PC	Artificial Intelligence and				Exam	inatio	n Scheme				
10		Comp	onent		ISE	I	MSE ESE			Total	
ITAAD	Machine Learning	The	ory		75		75 150 300		300		
11303B		Labor	atory		50				50	100	

Pre-requisite Cou	rse Codes, if any.	IT 202: Data Structures, MA203: Probability and Statistics					
Course Objective	Course Objective: This course covers the fundamental concepts of Artificial Intelligence and						
machine learning.							
Course Outcomes (CO): At the End of the course students will be able to							
IT303B.1	Understand AI building	Jnderstand AI building blocks presented in intelligent agents					
IT303B.2	Solve the problems us	sing suitable searching methods.					
IT303B.3	Solve the problems us	sing suitable reasoning and knowledge representation methods.					
IT303B.4	Apply suitable mac	hine learning technique for a given problem					
IT303B.5	Design an intellig	Design an intelligent system using different AIML techniques for real life					
	problems.						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO1
										0		2
IT303B.	2	3	-	-	2	-	-	-	-	-	2	-
1												
IT303B.	2	3	2	2	-	-	-	-	-	-	2	-
2												
IT303B.	2	3	2	2	-	-	-	-	-	1	2	-
3												
IT303B.	2	3	-	-	2	-	-	-	-	2	2	-
4												
IT303B.	2	3	2	2	2	-	-	-	-	2	2	2
5												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
IT303B.1	-	-	-	-	-	-	-
IT303B.2	-	-	-	-	-	-	-
IT303B.3	-	-	-	-	-	-	-

IT303B.4	1	1	1	-	-	-	-
IT303B.5	2	2	2	-	2	-	-

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
				1	

Theory Component

Modul	Unit	Topics	Ref.	Hrs.
e No.	No.			
1	Title	Introduction to Artificial Intelligence	T1	04
	1.1	Definition of AI, History and Future of AI, Problem solving		
		Approach to Typical AI problem.		
	1.2	Intelligent Agents and Environment		
		What is an Intelligent Systems, Types of Agents, structure of agent		
	1.3	Environments and Its Properties, PEAS Representation for an Agent		
2	Title	Problem solving by Searching	T1	10
	2.1	Searching: characteristics and issues in design of search programs		
	2.2	Uninformed search techniques: State Space Search, Depth First Iterative Deepening		
	2.3	Informed Search methods: Heuristic Search, Hill Climbing.		
	2.4	Adversarial Search: Game playing, Min-Max Search, Alpha-Beta		
		Pruning		
3	Title	Knowledge Representation and Reasoning	T1	08
	3.1	Reasoning: Representing and Reasoning with Uncertain Knowledge		
	3.2	Knowledge representation: A Knowledge-Based Agent, The		
		Wumpus World.		
	3.3	Propositional Logic, First-order predicate logic, Forward and		
		Backward Chaining		
4	Title	Introduction to Machine Learning		12
	4.1	Introduction: What is Machine Learning, History and overview of	Т2,	
		machine learning,	T3	
	4.2	Types of Machine Learning – Supervised, Unsupervised		
		Semi-Supervised Learning and Reinforcement Learning, Design a		
	4.2	Learning System, The curse of dimensionality		
	4.3	Evaluating a hypothesis: Model selection, training/validation/testing		
		regularization and bias/variance learning curves		
5	Title	Linear Models for Regression		8
	51	Two Simple Approaches to Prediction: Least Squares and Nearest	Т4	0
	5.1	Neighbors	17	
	5.2	Linear Regression, Multivariate Regression, Subset Selection		
		Shrinkage Methods		

6	Self Stud	Linear model for Classification : Logistic Regression, Linear Discriminant Analysis, Perceptron, Support Vector Machines, PCA	T3, T4	5*			
	У						
Total							

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	Implement an Intelligent agent.
2	Implement a given problem using the searching technique.
3	Implement a given problem using knowledge representation and reasoning rules
4	To design and implement an intelligent system, incorporating the matching algorithm
	and the rule language.
	1. It should provide a fact base updating function.
	2. It should provide a function that checks the rules' LHS and return which rules were
	matched.
	3. It should support firing RHS according to matches.
	Using SWISH Prolog or Java or Python or any other open-source tool
5	Implement supervised learning algorithms.
6	Implement unsupervised learning algorithms.
7	Implement the regression model
8	Minor project covering the concepts of AIML on the real life problem statements.

Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Artificial Intelligence:	Third	Stuart Russell and	Prentice-Hall	2009
	A Modern Approach	Edition	Peter Norvig		
2	Machine Learning	First	Kevin P. Murphy	Massachusetts Institute	2012
	A Probabilistic	Edition		of Technology	
	Perspective				
3	Machine Learning,	First	Tom. M. Mitchell	McGraw Hill	1997
		Edition		International Edition	
4	The Elements of	Second	Trevor Hastie,	Springer	2009
	Statistical Learning	Edition	Robert Tibshirani,		
	_		Jerome Friedman		

Reference Books

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Artificial Intelligence:	First	Nilakshi Jain	Wiley Publication	2019
	Making a System Intelligent	Edition			
2	Pattern Recognition and	First	C. M. Bishop	Springer	2013
	Machine Learning	Edition	_		

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	P	Total
	Distributed Computing	3	0	2	5	10	3	0	1	4
PC		Examination Scheme								
		Comp]	ISE		MSE		SE	Total	
IT304		Theory		eory 75			75		50	300
		Laboratory			50				50	100

Pre-requisite	e Course Codes, if any. IT206: Operating Systems			
_	IT207: Computer Networks and Communications			
Course Objective: To familiarize students with the fundamental concepts, techniques and design of				
Distributed S	ystems and use of distributed computing applications domains.			
Course Outcomes (CO): At the End of the course students will be able to				
IT304.1	Understand the principles and desired properties of distributed systems.			
IT304.2	Apply the various communication techniques for distributed communication.			
IT304.3	Apply the concepts of process, naming, consistency, replication and faults tolerance in distributed environment.			
IT304.4	Apply the algorithms such as clock synchronization, election, and mutual exclusion in distributed applications.			
IT304.5	Identify the challenges in developing distributed applications.			

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1
												2
IT304.1	2	1	-	-	-	-	-	-	-	-	-	2
IT304.2	2	2	2	1	-	-	-	2	2	1	-	2
IT304.3	2	2	2	1	-	-	-	2	2	1	-	2
IT304.4	2	2	2	1	-	_	-	2	2	1	-	2
IT304.5	2	2	2	1	-	-	-	1	2	1	-	2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PE04	PSO1	PSO2	PS03
IT304.1	1	1	1	-	-	-	-
IT304.2	1	1	1	-	-	1	-
IT304.3	1	1	1	-	-	1	-
IT304.4	1	1	1	-	-	1	-
IT304.5	1	1	1	-	-	1	-

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
			1		

Theory Component

Module	Unit	Topics	Ref.	Hrs.
<u>N0.</u>	NO.	Later last and Distailants I Contained		
1		Introduction to Distributed Systems	T 1	00
	1.1	Distributed Systems.	T1, T2	08
	1.2	Hardware Concepts, Software Concepts, The Client-Server Model,	T1,	
		Positioning Middleware, Models of Middleware, Services offered by	T2	
		Middleware, models of Distributed Algorithms and some		
		fundamental problems.		
2	Title	Communication In Distributed Systems		12
	2.1	Introduction to Message Passing, Desirable Features of a Good	T1,	
		Message-Passing System, Issues in IPC by Message Passing,	T2,	
		Synchronization, Buffering, Multi-datagram Messages, Group	KI	
	2.2	Communication. Remote Proceedure Cell (PPC): Regie PPC Operations Decemptor	Т1	1
	2.2	Passing Extended RPC Models	11, Т2	
		Remote Object Invocation: Distributed Objects Binding a Client to	14	
		an Object. Static Vs Dynamic RMI		
		Message Oriented Communication: Persistence and synchronicity in		
		communication, Message Oriented Transient and Persistent		
		Communications		
3	Title	Process in Distributed Systems		6
	3.1	Introduction to Threads, Threads in Distributed Systems,	T1,	
		Clients, Server	T2	
	3.2	Code Migration: Approaches to Code Migration, Models,	T1,	
		Migration and Local Resources, Migration in Heterogeneous	T2	
		Systems		
4	Title	Synchronization in Distributed Systems		10
	4.1	Clock Synchronization: Physical Clocks, Global Positioning	T1,	
		System, Clock Synchronization Algorithms;	T2	
		Logical Clocks: Lamport's Logical Clocks, Vector Clocks		
	4.2	Election Algorithms: Bully and Ring; Mutual Exclusion: Centralized	T1,	
		Algorithm, Decentralized Algorithm, Distributed Algorithm,	T2,	
		Token Ring Algorithm, Comparison of Algorithms;		

		Load Balancing: Goals, Types, Strategies.		
5	Title	Consistency and Replication		6
	5.1	Reasons for Replication, Object Replication, Replication as	T1	
		Scaling Technique Data Replication in Distributed Systems,		
		Goals, Types, Schemes,		
	5.2	Data-Centric Consistency Models, Client Centric Consistency	T1	
		Models Continuous Consistency, Consistent Ordering of		
		Operations		
6	Self	Naming Entities, Locating Mobile Entities, Distribution Protocols,	T1,	8
	Stud	Consistency Protocols, Faults Tolerance: Process Resilience,	T2,	
	у	Distributed Commit, Recovery	R1,	
			R2	
		Total		42

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiments
1	Implementation of Client Server Communication using RPC/RMI.
2	Implementation of Clock Synchronization (logical/physical).
3	Implementation of Election algorithm.
4	Implementation of Mutual Exclusion algorithm.
5	Implementation of Client Server based program to check data consistency.
6	Implement Load Balancing Algorithms.
7	Mini Project.

Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Distributed Systems-	First	Andrew S. Tanenbaum,	PHI	2004
	Principles and Paradigms.	Edition	Maarten Van Steen		
	1 0				
2	Distributed Operating	Second	P. K. Sinha	PHI	2010
	Systems Concepts and	Edition			
	Design				

Reference Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Distributed Systems – Concept and Design	Fourth Edition	George Coulouris, Jean Dollimore, Tim	Pearson	2010

			Kindberg & Gordon Blair		
2	Distributed VOD Systems	First Edition	Sudhir D. & Bandu B.M	Research India Publicatio n	2011

Course (Category)	Course Name	,	Teachi (Hı	ing Scl ·s/wee	heme k)	_	C	redit	s Assig	ned
Code		L	Т	Р	0	Ε	L	Т	Р	Total
		1	0	2	5	8	1	0	1	2
SBC		Examination Scheme							-	
	Internet Technology	Comp	onent]	ISE		MSE		SE	Total
17205		Theory								
11305A		Labor	atory		100				.00	200

Pre-requisit	e Course Codes, if any. CS208/IT208 Mini Project
Course Obj	ective: To impart knowledge of different Internet Technologies.
Course Out	comes (CO): At the End of the course students will be able to
IT305A.1	Develop a sophisticated web UX
IT305A.2	Create, integrate and test REST based web services
IT305A.3	Design secured web application/ web services
IT305A.4	Demonstrate behaviour of web crawlers and testing of web application

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
				4						0	1	2
IT305A.	-	-	1		3	-	-	-	-	-	-	-
1												
IT305A.	-	-	-	2	3	-	-	-	-	-	-	-
2												
IT305A.	-	-	-	1	3	-	-	-	-	-	-	-
3												
IT305A.	-	-	-	1	3	-	-	-	-	-	-	-
4												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

PEO1PEO2PEO3PEO4PSO1PSO2PSO3

IT305A.1

IT305A.2
IT305A.3
IT305A.4

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
					✓

Theory Component

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Designing UI		
	1.1	Fundamentals of UX Design, Defining UX Solutions, Design	T1	2
		Communication and Visualizing Ideas		
2		Web content management system		1
	2.1	Introduction to Web CMS, different types of Web CMS	T2,R1	
3		Web services		2
	3.1	Introduction to web service, REST architecture	T3,R3	
4		Web mashups		1
	4.1	Introduction to web mashups, server side mashups, client side	T2	
		mashups		
5		Secured Web application		2
	5.1	Introduction to Web Tokens, Auth2.0, OAuth, Access token	T2	
6		Integration of web services		2
	6.1	Introduction to Mule ESB, Introduction to Anypoint studio,	T4,R2	
		Integrating Web Services using Any point studio		
7		Web crawlers		2
	7.1	Introduction to web crawler, role of crawler in the internet, concept	T3	
		of page ranking		
8		Testing web applications		2
	8.1	Introduction to different types of testing, manual testing, automated	T2	
		testing, performance testing and functional testing, open source tools		
		used for testing		
		Total		14

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	Design web pages using HTML, CSS and javascript
2	Design UX for a given problem definition by using open source UX tools

SPIT/UG Curriculum/2020 Iteration/Information Technology/ pg. 37

3	Create a website using web CMS (Node Js/Angular Js/React								
	Js/Flask/Django/Wordpress/Joomla etc.)								
4	Create a Restful webservice to demonstrate different HTTP methods								
5	Testing of restful web service using Postman/ARC								
6	Create a web mashup of web services using open source framework								
7	Design secured Web application using web token								
8	Integration of web services using open source integration tools like Mulesoft								
9	Demonstrate the behavior of Web Crawlers/ spiders (use XPATH,CSS PATH),extract								
	information and store it in the database.								
10	Test the web application using open source testing tools like Selenium, Test runner and Junit								

Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Sketching the User	Second	Bill Buxton	Diane Cerra	2010
	experiences	Edition			
2	Rich Internet Application	Third	Dana Moore,	WROX	2017
	AJAX and Beyond	Edition	Raymond Budd,	Publisher	
			Edward Benson		
3	Web Technology	Second	Srinivasan	Pearson	2014
		Edition			
4	API Recipes with	First Edition	WHISHWORK	White falcon	2017
	Mulesoft(r) Anypoint		S Editorial		
	Platform		Board		

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Internet Technology And	First	R. K. JAIN	Khanna Book	2015
	Web Design	Edition		Publishing	
	_			Company	
2	Understanding the Internet:	First	Keith	А	2016
	A Clear Guide to Internet	Edition	Sutherland	Butterworth-Hei	
	Technologies			nemann Title	
	_				
3	RESTful Web APIs:	Third	Leonard	O'REILLY	2013
	Services for a Changing	Edition	Richardson,		
	World		Mike		
			Amundsen,		
			Sam Ruby		

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Τ	Р	0	Ε	L	Т	Р	Total
SBC	Object Oriented	1	0	2	1	4	1	0	1	2
		Examination Scheme								
		Component]	ISE		MSE		SE	Total
IT305B	Programming Lab	Theory			50					
		Laboratory			100				00	200

Pre-requisit	e Course Codes, if any.	ES11- Structured Programming Approach					
		ESL25- Python Programming Lab					
Course Obje	Course Objective: To learn Object-Oriented programming paradigm using Java programming						
language							
Course Outo	Course Outcomes (CO): At the End of the course students will be able to						
IT305B.1	Demonstrate programmin	g using basic constructs of JAVA					
IT305B.2	Apply Inheritance and pol	lymorphism for a given scenario					
IT305B.3	Apply abstraction and exception handling to create an efficient program.						
IT305B.4	Use Generic classes and c	collection for solving problem					

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
IT305B. 1	3				2							2
IT305B. 2	2				2							2
IT305B. 3	2				2							2

IT305B. 4	2				2					2
IT305B. 5	2	1	1	1	2	1		2	2	2

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
IT305B. 1		2			2		2
IT305B. 2		2			2		2
IT305B. 3		2			2		2
IT305B. 4		2			2		2
IT305B. 5		2			2		2

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understand	Apply 🗸	Analyze	Evaluate	Create
---------------------	---------	---------	----------	--------

Modul e No.	Unit No.	Topics	Ref.	Hrs.		
1	Title	Introduction to JAVA	T1, T2	03		
	1.1 Fundamentals of Java Programming: Classes, JDK, JRE, JVM, Unicode system, I/O using Scanner class and BufferedReader class					
	1.2	Instance variables, Methods, Constructors				
	1.3	Object class, Nested class, Access Specifiers, Abstract Classes and Wrapper Classes				
2	Title	OOP Concepts Mapping to JAVA	T1, T2	04		
	2.1	Inheritance (IS – A), Aggregation & Composition (Has – A) Method overloading & overriding, this, super, final keyword, static	R1			
	2.3	Autoboxing and Unboxing, Polymorphism				

	2.4	Packages and Interfaces: Package concept, Creating user defined package, Access control protection, Interface		
3	Title	Exception Handling and Multithreading	T1, T2	04
	3.1	try and catch block, Multiple catch block, nested try, finally block, throw and throws keyword, Exception propagation, Custom exception	R1	
	3.2	Create thread using Thread and Runnable class. Thread methods, schedule, sleep, join, Thread priority, Thread group, perform multiple tasks using multiple thread, Thread synchronization		
4	Title	Generics and Collection	T1, T2	03
	4.1	Creating Generic Classes, Generic Methods, Bounded Type	R1	
	4.2	Collection's framework, methods of collection interface (Arraylist, Linked list, Queue etc.)		
			Total	14

Laboratory Component.

Sr. No	Title of the Experiment
1	Program on I/O using command line arguments, scanner class, BufferedReader etc.
2	Program on Constructor, types of constructor and constructor overloading
3	Program on Polymorphism, Runtime polymorphism.
4	Program on Inheritance, Abstract Class, Interface.
5	Program on Nested Class, Aggregation, Composition.
6	Program on Multithreading
7	Program on Exception Handling. (built in and User defined)
8	Program on Package and access modifiers.
9	Program on Generics
10	Program on Collection

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Java Programming From the Group Up	First	Ralph Bravaco, Shai Simoson	TataMcGrawHill	2009
2	Java The Complete Reference	Eleventh	Herbert Schildt	TataMcGrawHill	2019

Sr. No	Title	Edition	Authors	Publisher	Year
1	An introduction to Programming and Object Oriented Design using Java	Third	Jaime Nino, Frederick A. Hosch	Wiley Student Edition	2008
2	Java Programming A Practical Approach	First	C Xavier	TataMcGrawHill	2011
3	Java [™] Programming Language	Fourth	Ken Arnold, James Gosling, David Holmes	The (Java Series) by Sun	2005

SEMESTER VI

SEM VI FOR CAT 1 STUDENTS (NORMAL STUDENTS)

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Е	L	Т	Р	Total
	Big Data Analytics	3	0	2	5	10	3	0	1	4
РС		Examinatio				n Scheme				
		Component]	ISE		MSE	E	SE	Total
IT306		Theory			75		75	1	50	300
		Laboratory			50				50	100

Pre-requisit	e Course Codes, if any.	IT204:Database Management Systems
Course Obje	ective: To understand the co	oncept of big data and the tools used for accessing the big
data		
Course Out	comes (CO): At the End of	f the course students will be able to
IT306.1	Apply rules of linear algel	bra for processing big data.
IT306.2	Choose appropriate storag	e structures to make sense out of big data.
IT306.3	Apply scalable algorithm Analytics.	s based on Hadoop and Map Reduce to perform Big Data

SPIT/UG Curriculum/2020 Iteration/Information Technology/ pg. 43

IT306.4	Analyze information from social network graphs.
---------	---

	PO1	PO2	PO	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
			3							0	1	2
IT306.1	2	-	-	-	-	-	-	-	-	-	-	-
IT306.2	-	-	2	-	-	-	-	-	-	-	-	-
IT306.3	-	-	-	-	3	-	-	-	-	-	-	-
IT306.4	-	-	-	2	-	-	-	-	-	-	-	-

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
IT306.1	-	-	-	-	-	-	-
IT306.2	-	-	-	-	-	-	-
IT306.3	-	-	-	-	-	-	-
IT306.4	-	_	-	_	-	-	_

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
			✓		

Module	Unit	Topics	Ref.	Hrs
No.	No.			•
1	Title	Introduction to Big data and Linear Algebra		
	1.1	Big Data characteristics, types of Big Data, Traditional vs. Big Data, Big data challenges	T1,R1	
	1.2	Matrices as linear transformations, Linear systems and vector spaces, Solving linear systems, role of Eigen values and eigenvectors in data analytics, SVD - Singular Value Decomposition	T3	8
2	Title	Memory-efficient data structures		
	2.1	Introduction to data streams, problems related to handling data stream, Need of dimensionality reduction - PCA, Mining Data Streams using DGIM algorithm	T3,R1	
	2.2	Hash functions, universal / perfect hash families, Bloom filters, Sketches for distinct count, Flajolet Martin Sketch, Majority Algorithm, Misra-Gries sketch, Count-Min Sketch, Count Sketch, kd-trees, LSH, MinHash, SimHash	Τ2	12

3	Title	Scaling with Big Data using Hadoop		
	3.1	HDFS - Data in Hadoop	T1	
	3.2	Hadoop Ecosystem architecture	T1	
		Hive - Architecture, various data operations using Hive		
		HBase - Architecture, General Commands		10
		Pig - What is Pig, advantages		
	3.3	Relational Algebra using Big data framework - Map Reduce	T1	
		Selection, Projections, Union, Intersection, Natural Join, Grouping and		
		Aggregation by Map Reduce, Matrix Multiplication		
4	Title	Frequent Itemsets And Clustering		
	4.1	Handling Larger Data sets in Main Memory Algorithm - Park, Chen	T1,R3	
		and Yu Algorithm, The Multi stage Algorithm, The Multihash		5
		Algorithm. The SON Algorithm, BFR clustering algorithm, CURE		
		algorithm		
5	Title	Mining Social- Network Graphs and Link Analysis		
	5.1	Clustering of Social-Network Graphs - Clique Percolation	T1,R3	
		Method, counting triangles, PageRank, Efficient Computation		7
		of PageRank, Topic-Sensitive PageRank, Link Spam, Hubs and		
		Authorities		
6	Self	Scaling with Big Data using Apache SPARK SPARK	T4	
	Study	Ecosystem, SPARK streaming, Distributed Batch Processing		5*
		with Spark		
		Total ([*] Not included)		42

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr.	Title of the Experiment
No.	
1	Installation of Hadoop and execution of HDFS commands
2	Study of any latest research paper on memory efficient data structure for big data.
3	Implement algorithms in Map-Reduce on Strings and integers
4	Implement algorithms in Map-reduce on Relational Algebra
5	Download a real world dataset and find insights using map reduce. For e.g for a movie dataset list all the movies and the number of ratings, list all the Movie IDs which have been rated (Movie Id with at least one user rating it), list all the Users who have rated the movies (Users who have rated at least one movie), list of all the User with the max, min, average ratings they have given against any movie
6	Explore and present interactive data insights from real world dataset (Dashboards) using Tableau
7	Extract facts in real world dataset using Hive
8	Extract sessions in real world dataset using Pig

9	Implement word count using Apache Spark.
10	Demonstrate use of modern tools like Matlab for Exploratory Data Analysis.

Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Mining of Massive	Third	Anand Raja Raman and	Cambridge	2019
	Datasets	Edition	Jeff Ullman	University	
2	Algorithms and models of	First	Jeff Erickson	University of	2015
	computation	Edition		Illinois	
3	Introducing Data Science	Third	Davy Cielen, Meysman,	Dreamtech Press	2014
		Edition	Mohamed Ali		
4	Learning Apache Spark 2	Second	Muhammad Asif Abbasi	Packt Publishing	2017
		Edition			

Reference Books

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Data streams : Algorithms and	Second	Muthukrishnan. S.	now publishers	2005
	applications.	Edition		Inc	
2	Introducing Data Science	Third	Davy Cielen, Meysman,	Dreamtech	2015
	_	Edition	Mohamed Ali	Press	
3	Hadoop, the Definitive Guide	Third	Tom White	O'Reilly	2013
	_	Edition		-	

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Е	L	Т	Р	Total
		3	0	2	5	10	3	0	1	4
DC		Examination Scheme								
PC	Foundation of Signal Processing	Comp	onen]	ISE	Ι	MSE	E	SE	Total
		1	t							
IT307		Theory			50		50	1	00	200
		Laboratory			50			4	50	100

Pre-requisite Course Codes, if any.

Course Objective: Foundations of Digital Signal Processing! The study of digital signal processing explores how we transform data into new representations to better understand, compress, and leverage it. The course begins with a rigorous review of tools from Signals and Systems: sampling, convolution, Fourier representations and flow graph, fast linear filtering algorithms. It also comoares DSP Processor and General Purpose Processor.

SPIT/UG Curriculum/2020 Iteration/Information Technology/ pg. 46

Course Outcomes (CO): At the End of the course students will be able to								
IT307.1	Interpret DT signal and perform signal manipulation in Time Domain and							
	Frequency Domain							
IT307.2	Develop FFT flow-graph							
IT307.3	Implement Fast Linear filtering algorithms							
IT307.4	Compare the DSP processor with General Purpose Processor (GPP)							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12
IT307.1	2	2		-	-	-	-	-	-	-	-	-
IT307.2	-	-	3	-	-	-	-	-	-	-	-	-
IT307.3	-	-	3	-	-	-	-	-	-	-	-	-
IT307.4	-	2	-	-	-	-	-	-	-	-	-	-

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
IT307.1	-	-	-	3	-	-	-
IT307.2	-	-	-	3	3	-	-
IT307.3	-	-	-	3	3	-	-
IT307.4	-	-	-	3	-	-	-

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
		<i>✓</i>	<i>s</i>	<i>✓</i>	

Modul	Unit	Topics	Ref.	Hrs.
e No.	No.			
1	Title	Discrete-Time Signal	T1,T2	12
	1.1	Introduction:	T1,T2	04
		Signals, Systems, and Signal, Continuous Time signal, Discrete -		
		Time signal and representation, Digital signal, The Sampling		
		theorem, Some elementary discrete time signals, Classification of		
		Discrete - Time Signals, Modifications of Discrete - Time Signals.		
	1.2	Operations on Discrete - Time Signals:	T1,T2	05
		Linear Convolution, Circular Convolution, Matrix Representation		
		of Circular Convolution, Linear Convolution using Circular		
		Convolution, Auto and Cross Correlation.		
	1.3	Discrete - Time systems:	T1,T2	03

		Static and dynamic, time variant and time invariant, linear and nonlinear, causal and non causal. Representation of system using impulse response, Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) system, Response of the FIR system using convolution.		
2	Title	Discrete Fourier Transform	T1.T2	08
	2.1	Introduction to DTFT, Relation between DFT and DTFT, DFT of DT signal, Inverse DFT.	T1,T2	02
	2.2	Properties of the DFT: Scaling and Linearity, Symmetry for real valued signal, Periodicity, Time Shift and Frequency Shift, Time Reversal, Convolution Property and Parsevals Energy Theorem.	T1,T2	06
3	Title	Fast Fourier Transform	T1,T2	08
	3.1	Fast Fourier Transform: Need of FFT, Radix-2 DIT-FFT algorithm	T1,T2	04
	3.2	Flow graph for N=4 and 8 using Radix-2 DIT-FFT, Inverse FFT algorithm, Comparison of complex and real, multiplication and additions of DFT and FFT	T1,T2	04
4	Title	DSP Algorithms	T1,T2	08
	4.1	Fast Circular Convolution Algorithm, Fast Linear Convolution Algorithm.	T1,T2	04
	4.2	Linear FIR filtering using Overlap Add Algorithm and Overlap Save Algorithm and implementation using FFT.	T1,T2	04
5	Title	DSP Processors and Applications of DSP	T3	06
	5.1	Need DSP processor, Difference between DSP processor & General Purpose (GP) Processor.	T3	02
	5.2	Case study of DSP applications to Speech Signal Processing and Biomedical Signal Processing.	Т3	04
6	Self	Multi-rate Signal Processing: Up sampling and Down sampling,	T1,	02
	Study	Signal Compression, Carl Correlation Coefficient for measurement of	Τ2,	02
	*	degree of similarity between two signals.	T3,R1 ,R2	01
		Total		42

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment	Marks
1	Signal Operations	5
2	Discrete Convolution	5
3	Discrete Correlation	5
4	Discrete Fourier Transform	5
5	Magnitude and Phase Spectrum	5
6	Fast Fourier Transform	5
7	Overlap Add Method using FFT	5
8	Overlap Save Method using FFT	5
9	Application of DSP Part I	5
10	Application of DSP Part II	5

SPIT/UG Curriculum/2020 Iteration/Information Technology/ pg. 48

Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Digital Signal	Fourth	Proakis	Pearson Education, ISBN	2007
	Processing :	Edition	Manolakis	81-317-1000-9	
	Principles,				
	Algorithms and				
	Applications				
2	Digital Signal	First	S.	TataMcgraw Hill	2010
	Processing	Edition	Salivahanan,	ISBN 978-0-07-066924-6	
			A. Vallavaraj,		
			C. Gnanapriya		
3	Digital Signal	First	Jonathan (Y)	Copyright © 2000 John	2000
	Processing: A	Edition	Stein	Wiley & Sons, Inc	
	Computer Science	published		Print ISBN:9780471295464	
	Perspective	on 25th		Online	
		Sept,		ISBN:9780471200598	
		2000		DOI:10.1002/047120059X	

Reference Books

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Digital Signal		Emmanuel C.	Pearson Education ISBN	2001
	Processing: A		Ifeachor,	0-201-59619-9	
	Practical Approach		Barrie W.		
			Jervis		
2	Digital Signal	Sixth	P. Ramesh	Scitech Publication	2014
	Processing	Edition	Babu		

Course (Category)	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned					
Code		L	Т	Р	0	Ε	L	Т	Р	Total	
	Machine Learning	2	0	2	4	8	2	0	1	3	
(PE1)			Examination					n Scheme			
		Component]	ISE		MSE	E	SE	Total	
1T12		The	ory		50		50		00	200	
				Laboratory		50				50	100

 Pre-requisite Course Codes, if any.

 Course Objective: To learn methodology and tools to apply machine learning algorithms to real data and evaluate their performance.

 Course Objective: To learn methodology and tools to apply machine learning algorithms to real data and evaluate their performance.

Course Outcomes (CO): At the End of the course students will be able to

1T11.1	Define the fundamental principles of Machine learning.
1T11.2	Apply understanding of techniques, mathematical concepts, and algorithms used in machine learning.
1T11.3	Interpret limitations of various machine learning algorithms and the way to evaluate performance of machine learning algorithms
1T11.4	Design an application through software implementation of different concepts and algorithms covered in the course.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
1T11.1	2	2							2	2	2	2
1T11.2	2	2	2		2				2	2	2	2
1T11.3	2	2	2		2				2	2	2	2
1T11.4	2	2	2	2	2				2	2	2	2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
1T11.1	2	2	1	1	1		2
1T11.2	2	2	1	1	2		2
1T11.3	2	2	1	1	2		2
1T11.4	2	2	1	1	2	1	2

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understand	Apply	Analyze	Evaluate	Create
---------------------	-------	---------	----------	--------

Modul e No.	Unit No.	Topics	Ref	Hrs.
1	Title	Introduction Machine learning	1,2,	8
	1.1	Learning Associations, Classification, Regression, Unsupervised Learning, Reinforcement Learning	3	

		SupervisedLearning:Vapnik-Chervonenkis(VC)Dimension,ProbablyApproximatelyCorrect(PAC)Learning,Noise,LearningMultipleClasses,Regression,ModelSelectionandGeneralization.Parametricmethods:Introduction,MaximumLikelihoodEstimation:BernoulliDensity;MultinomialDensity:Gaussian(Normal)Density, Evaluating an Estimator:Bias and Variance,TheBayes'EstimatorParametricClassification and Regression,TuningModelComplexity,ModelSelectionProcedures.NonparametricMethods:Introduction,NonparametricDensityEstimation,HistogramEstimator,KernelEstimator,k-NearestNeighborEstimatorGeneralizationtoMultivariateData		
		Nonparametric Classification, Regression: Smoothing Models.	1.0	4
2	1 itle	Dimensionality Reduction	1,2, 3	4
	2.1	Introduction. Curse of Dimensionality, Feature selection, Feature Extraction, Subset Selection, Forward and backward selection, Univariate, Multivariate Feature selection, Principal Components Analysis, Factor Analysis, Multidimensional Scaling, Linear Discriminant Analysis.	3	
3	Title	Algorithms and Performance Measures	1,2,	10
	3.1	Supervised learning Algos: Linear Regression and Classification (Logistic Regression, Decision Tree, Naïve Bays, KNN, Random Forest), Support Vector Machine (SVM): Maximum Margin Linear Separators; Kernel SVM; Kernels for learning non-linear functions.	3	
		Analysis; The Apriori Algorithm; Example: Market Basket Analysis; Frequent Pattern Tree (FPT)Unsupervised as Supervised Learning; Generalized Association Rules, k-Means Clustering; Expectation-Maximization Algorithm; Mixtures of Latent Variable Models; Supervised Learning after Clustering, Hierarchical Clustering; Choosing the Number of Clusters.		
	3.2	Cross-Validation and Resampling Method, k-Fold Cross-Validation, Bootstrapping, Measuring Error, Interval Estimation, Hypothesis testing, Ensemble Methods, Bagging,Adaboost Gradient Boosting, Grid Search, XGBoost. T-test, P-test.		
4	Title	Graphical Models	1,2,	6
	4.1	Bayesian Networks, Markov Random Fields, Hidden Markov Model: Discrete Markov Processes; Hidden Markov Models; Problems of HMMs; Evaluation Problem; Finding the State Sequence; Learning Model Parameters; Continuous Observations; The HMM with Input; Model Selection in HMM.	3	
_	Self	Reinforcement Learning		
Э	Stud V			

	Elements determinist Generaliza	of tic re tion	Reinforcement wards and action	Learning, ns, Tempora	Q I Dif	Learning, ference Lea	Non rning,	1	5*
								Total	28

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

All experiments should be performed through PYTHON Language

Sr. No	Title of the Experiment
1	Implement and analyse Regression (Regression/Classification) Algorithm.
2	Implement and analyse k-nearest Neighbors algorithm
3	Implement and analyse classification using SVM algorithm
4	Implement Association rules for given problem statement
5	Implement K-means/ K-Modes Clustering/ Expectation-Maximization(EM) algorithm to
	Find Natural Patterns in Data
6	Implement and analyse Principle Component Analysis for Dimensionality Reduction
7	To implement Linear Discriminant Analysis (LDA) for Dimensionality Reduction
8	Implement HMM algorithm for given problem statement.
9& 10	Capstone project covering the concepts of Machine Learning.

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Introduction to	3rd	Ethem	MIT , PRESS	2012
	Learning		Alpaydin		
2	Pattern Recognition and Machine Learning,	1st Edition	C. M. Bishop	Springer	2013
3	Elements of Statistical Learning	2 nd Edition	Trevor Hastie Robert Tibshirani Jerome Friedman	Springer	2001

Sr. No	Title	Edition	Authors	Publisher	Year
4	Machine	1st Edition	Tom Mitchell	Mc-Grawhill	1997
	Learning				
5	Machine	1st	Peter	DreamTech	2001
	Learning In		Harrington	Press	
	Action				

Course (Category)	Course Name	,	Teaching Scheme (Hrs/week)				Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total
	Soft Computing	2	0	2	4	8	2	0	1	3
PE		Examinatio				inatio	n Scheme			
		Component]	ISE		MSE	E	SE	Total
1T312		Theory			50		50	1	.00	200
		Laboratory			50				50	100

Pre-requisite Course Codes, if any.

Course Objective: This course introduces three important soft computing techniques like Neural network, Fuzzy Logic and Genetic algorithms in brief. Students will be able to understand the supervised and unsupervised learning algorithm for real world applications. The design of fuzzy logic controller helps them to develop an adaptive control system for industrial operations. This course also covers the importance of optimizations and its use in computer engineering fields.

Course Out	Course Outcomes (CO): At the End of the course students will be able to						
1T312.1	Illustrate the basic principles of soft computing techniques.						
1T312.2	Apply the supervised and unsupervised neural network learning algorithm for real world applications.						
1T312.3	Design a fuzzy controller system using different FIS.						
1T312.4	Apply genetic algorithms to solve optimization problems.						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
1T312.1	2	-	-	-	-	-	-	-	-	-	-	-
1T312.2	2	2	-	-	-	-	-	-	2	2	-	2
1T312.3	3	2	2	-	-	-	-	-	2	2	-	2
1T312.4	3	2	2	-	-	-	-	-	-	-	-	2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
1T312.1	1	1	1	-	-	-	-
1T312.2	2	2	2	-	-	-	-
1T312.3	2	2	2	-	-	-	-
1T312.4	2	2	2	-	-	-	-

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
		✓			

Modul	Unit	Topics	Ref.	Hrs.
e No.	No.			
1	Title	Introduction to Soft Computing		04
	1.1	Soft computing Constituents, Characteristics of Neuro	T3,T4	
		Computing and Soft Computing		
	1.2	Difference between Hard Computing and Soft Computing,		
		Concepts of Learning and Adaptation		
2	Title	Neural Networks		10
	2.1	Basics of Neural Networks: Introduction to Neural	T1,T3,R	
		Networks, Biological Neural Networks and their artificial	1,R2,R5	
		models		
	2.2	McCulloch Pitt model, Hebb Network, Linear separability		
	2.3	Supervised Learning algorithms: Perceptron (Single		
		Layer, Multilayer), Delta learning rule, Back Propagation		
		algorithm.		
	2.4	Un-Supervised Learning algorithms: Winner take all, Self-		
		Organizing Maps, Learning Vector Quantization.		
3	Title	Fuzzy Set theory		10
	3.1	Classical Sets and Fuzzy Sets, Membership functions,	T2,T3,R	
		Classical Relations and Fuzzy Relations	1,R3	
	3.2	Fuzzy Max-Min and Max-Product Composition, Fuzzy		
		extension principle		
	3.3	Fuzzy Systems- fuzzification, defuzzification methods,		
		and design of fuzzy controllers.		
4	Title	Genetic Algorithms	T3,T4,R	04
	4.1	Biological Background: The Cell, Chromosomes, Genetics,	4	
		Reproduction, Selection, Traditional Optimization and		
		Search Techniques		
	4.2	Simple GA, Operators in GA, Encoding, Selection,		
		Crossover, Mutation, Stopping Condition for GA		
		.Applications of GA.		
5	Self	Recurrent Neural Networks, Deep Learning: Deep Belief		04*
	Stud	Network, Deep Reinforcement Learning		
	У			
		Total		28

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment							
1	To implement (MP-Neuron) Mc-Culloch Pitts Model.							
2	To implement Transfer/Activation Functions.							
	A symmetric hard limit transfer function.							
	A Binary step activation function.							
	A Bi	polar step activation	on function.					
	A sa	turating linear tran	sfer function.					
	A hy	perbolic tangent si	igmoid (tansig) transfer function.					
2	A 10	g-sigmoid transfer	Tunction					
5	To implement B	asic neural netwo	ork rearning rules.					
	PROBLEM TO	DISTINGUISH B	ETWEEN APPLES AND ORANG	ES				
	A produce deale	er has a warehouse	that store a variety of fruits & veget	tables. When fruit is				
	brought to the w	arehouse, a variou	us types of fruits may be mixed toge	ther. The dealer				
	wants a machine	e that will sort the	fruit according to type . There is a co	onveyer belt on				
	which the fruit i	s loaded .This con	veyer passes through a set of sensors	s, which measure				
	three properties	of fruits :shape, te	exture and weight.					
	Bias= < Any Va	lue>						
	Tuna of	Output of	Condition					
	sensor	Sensor	Condition					
	SCHSOL	SCHSOI						
	Shape sensor	1	if fruit is approx. round					
	_	0	if fruit is elliptical.					
	Texture	1	If surface is smooth					
	Sensor							
		0	If surface is rough					
	Fruit sensor	1	Apple					
		0	Orange					
	Design a percep	tron to recognize t	hese patterns using Joone Editor.					
4	Write a program	m to design a pe	erceptron to recognize these patter	ns for the problem				
5	To implement In exp	eriment No.3.(Use	e any Open source tools)					
6	To implement N	an unsupervised 1	earning algorithm (KSOEM) for n	attern classification				
	nrohlem	an unsupervised I	canning argonumin (KSOPWI) for p					
7	To implement	an unsupervised	learning algorithm (LVO) for n	attern classification				
	problem.	unsuper (1500						
8	To implement fu	zzy set and fuzzy	relations for a given problem.					
9	To design and ir	nplement Fuzzy C	ontroller for a given problem					
10	To apply genetic	e algorithms for a g	given problem.					

Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Introduction to Artificial		Jacek M. Zurada	Jaico	1992
	Neural Systems			Publishing	
				House	
2	Fuzzy Logic with	Third	Timothy J. Ross	Wiley India	1995
	Engineering Applications	Edition	-		
3	Principles of Soft	Second	S. N. Sivanandam	Wiley, India	2011
	Computing	Edition	and S. N. Deepa	_	
4	Neural Networks, Fuzzy	Kindle	S.Rajasekaran	PHI Learning	2013
	Logic and Genetic	Edition	and	-	
	Algorithms		G.A.Vijayalaks		

Sr.	Title	Edition	Authors	Publisher	Year
1	Neuro-Fuzzy and Soft Computing– A Computational Approach to Learning and Machine Intelligence	First Edition	Jang J.S.R, Sun C. T. and Mizutani E.	PHI	1997
2	Fundamentals of Neural Networks – Architectures, Algorithms, And Applications	First Edition	Laurene Fausett	Pearson Education	2004
3	Fuzzy Set Theory and its Applications	Second Edition	H.J. Zimmermann	Allied Publishers Ltd.	1996
4	An Introduction to Genetic Algorithms	Fifth Edition	Melanie Mitchell	The MIT Press	1999
5	Neural Network Design	Second Edition	Hagan, Demuth, Beale	CENGAGE Learning, India Edition	1996

Course (Category)	Course Name]	Teaching Scheme (Hrs/week)				Credits Assigned			
Code		L	Т	Р	0	Е	L	Т	Р	Total
	Ethical Hacking	2	0	2	2	6	2	0	1	3
(PE)		Examination				n Scheme				
		Comp		ISE		MSE	F	CSE	Total	
1T321	•	Theory			50		50	1	100	200
		Labor	atory		50				50	100

Pre-requisit	e Course Codes, if any.	IT206: Operating Systems	
		IT207:Computer Communications and Networks	
		IT303A: Cryptography and System Security	
Course Objective: To understand the techniques involved in ethical hacking			
Course Outcomes (CO): At the End of the course students will be able to			
1T321.1	Demonstrate the understa	nding of attack vectors	
1T321.2	Perform network scanning	g to identify live and vulnerable machines in a network.	
1T321.3 Identify and use viruses, computer worms, and malware to exploit systems.		computer worms, and malware to exploit systems.	
1T321.4	Perform web application	hacking and wireless hacking	

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2
1T321.1	3				3	2		1				1
1T321.2	3	2	1	2	3	2		1				1
1T321.3	3	2		2	3	2		1				1
1T321.4	3	2		2	3	2		1				1

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
1T321.1	2	2		1			
1T321.2	2	2	2	1			
1T321.3	2	2	2	1			
1T321.4	2	2	2	1			

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply 🗸	Analyze 🖌	Evaluate	Create
~	~				

Modul e No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Introduction to hacking	T1	8
	1.1	Introduction: Hacking, Types of Hacking/Hackers, Cybercrime, Types of cybercrime, Hacker Mind set, Threats, Concept of ethical hacking, Phases involved in hacking, Role of Ethical Hacking, Common Hacking Methodologies, Profiles of Hackers, Benefits of Ethical Hacking, Limitations of Ethical Hacking		
	1.2	Foot Printing & Reconnaissance: Introduction to foot printing, use of foot printing, Types of foot printing, Understanding the information gathering process, Information on a company website, methodology of the hackers, Tools used for the reconnaissance phase.		
	1.3	System Hacking: System hacking, Types of System hacking, hacking tools, Computer Hole, Hacking Process, Various methods of password cracking, Remote Password Guessing, Role of eavesdropping, Keystroke Loggers, Types of Keystroke Loggers, Detection, Prevention and Removal		
	1.4	Sniffers: Introduction, Sniffer, Types of sniffers, Protocols Susceptible to Sniffing, Active and Passive Sniffing, ARP Spoofing, ARP Spoofing, ARP Poisoning, DNS Spoofing Techniques, MAC Flooding, Sniffing Countermeasures.		
2	Title	Hacking Techniques	T1,T2,	10
	2.1	Trojans, Backdoors, Viruses, and Worms: Trojans and Backdoors, Overt and Covert Channels, Types of Trojans, Reverse-Connecting Trojans, Netcat Trojan, Indications of a Trojan Attack, Wrapping, Trojan Construction Kit and Trojan Makers, Countermeasure Techniques in Preventing Trojans, Trojan-Evading Techniques, System File Verification Sub objective to Trojan Countermeasures Viruses and Worms, Difference between a Virus and a Worm, Types of Viruses, Understand Antivirus Evasion Techniques, Understand Virus Detection Methods		
	2.2	Session Hijacking: Understanding Session Hijacking, Phases involved in Session, Hijacking, Types of Session		

	i			
		Hijacking, and Session Hijacking Tools.		
	2.3	Social Engineering Social Engineering, Common Types of Attacks, Insider Attacks, Identity Theft, Phishing Attacks, Online Scams, URL Obfuscation, Social-Engineering Countermeasures.		
	2.4	Denial of Service: Denial of Service, Types of DoS Attacks, DDoS Attacks, BOTs/BOTNETs, "Smurf" Attack, "SYN", Flooding, DoS/DDoS Countermeasures		
3	Title	Hacking Web applications and Wireless Networks	T1,T2,R	10
	3.1	Hacking Web Applications & SQL Injection: Hacking Web Servers, Types of Web Server Vulnerabilities, Attacks against Web Servers, IIS Unicode Exploits, Patch Management Techniques, Web Server Hardening Methods Web Application Vulnerabilities, Objectives of Web Application Hacking, Anatomy of an Attack, Web Application Threats, Google Hacking, Web Application Countermeasures Web-Based Password Cracking Techniques, Authentication Types, Password Cracker, Password Attacks: Classification ,Password Cracking Countermeasures.	2	
	3.2	SQL Injection and Buffer Overflows: SQL Injection, Steps to Conduct SQL Injection, SQL Server Vulnerabilities, SQL Injection, Countermeasures Buffer Overflows, Types of Buffer Overflows and Methods of Detection, Stack-Based Buffer Overflows, Buffer Overflow Mutation Techniques		
	3.3	Hacking Wireless Networks: Introduction to 802.11, Role of WEP, Cracking WEP Keys, Sniffing Traffic, Wireless DOS, attacks, WLAN Scanners, WLAN Sniffers, Hacking Tools, Securing, Wireless Networks.		
4	Self-	Steganography, cryptography.		
	stud			
	У			
			Total	28

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Foot printing a target network.
2	Scanning a network using:
	a) Nmap Network Mapper
	b) Nessus vulnerability scanner
3	Exploit Windows vulnerability to get unauthorized access.
4	Exploiting Client-side vulnerabilities and establishing a VNC session
5	Performing Man-in-the-Middle Attack using Wireshark & Ettercap
6	Creating a Trojan using Social-Engineer Toolkit.
7	Implementing the DoS attack.

8	Performing SQL injection
	A. Manual SQL Injection, John the Ripper.
	B. Automate SQL Injection with Sql Map.
9	Demonstrating the Wireless hacking
10	Case study

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1.	Certified Ethical Hacker Study Guide v9	Study Guide Edition	Sean-Philip Oriyano	Sybex-Wiley	2017
2.	CEH official Certified Ethical Hacking Review Guide	Revised Edition	Kimberly Graves	Wiley	200 7

Sr. No	Title	Editio	Authors	Publisher	Year
		n			
1	Certified Ethical Hacker	1	Michael Gregg	Pearson Education	2011
2	Certified Ethical Hacker	3	Matt Walker	McGraw-Hill	2016
				Education	

Course (Category)	Course Name	Teachi	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	P	0	E	L	Т	Р	Total	
	Digital forensics	2	0	2	2	6	2	0	1	3	
PE		Examination Scheme						eme			
		Component			ISE		MSE		ESE	Total	
1T322		Theory			50		50		100	200	
		Laboratory			50				50	100	

Pre-requisite	e Course Codes, if any.	IT206: Operating Systems						
_		IT207: Computer Communications and Networks						
Course Objective: To emphasize the fundamentals and importance of digital forensics								
Course Outcomes (CO): At the End of the course students will be able to								
1T322.1	Explain the principles and	l techniques associated with the digital forensic practices.						
1T322.2	Understand the importance	e of evidence handling and storage for various devices.						
1T322.3	Analyze the adequate applications.	perspectives of digital forensic investigation in various						
1T322.4	Analyze the Post-mortem	investigation.						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO1 2
1T322.1	3	-	-	-	-	-	-	-	3	-	-	-
1T322.2	-	3	-	3	-	-	-	-	-	-	2	-
1T322.3	-	-	3	-	3	-	-	-	-	-	-	2
1T322.4	_	_	_	-	-	3	-	3	-	-	-	-

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
1T322.1	-	-	-	-	-	-	-
1T322.2	-	-	-	-	-	-	-
1T322.3	2	-	2	-	-	-	2
1T322.4	-	-	-	-	-	-	-

Remember	Understand	Apply	Analyze	Evaluate	Create
			~		

Modul	Unit	Topics	Ref	Hrs.
e No.	No.		•	
1	Title	Introduction to Digital Forensics	T1,	5
	1.1	Introduction, A brief history of digital forensics, Digital	T2,	
		forensics methodology, The need for digital forensics as	R1	
		technology advances, Commercial tools available in the field of		
		digital forensics, Lab setup for digital forensics. Operating		
		systems forensics, Anti-forensics: threats to digital forensics.		
	1.2	Understanding File systems and Storage Media, Filesystems		
		and operating systems, Data volatility ,The paging file and its		
		importance in digital forensics		
2	Title	Incident Response and Data Acquisition	T1,	7
	2.1	Introduction, Digital evidence acquisitions and procedures,	T2	
		Incident response and first responders, Documentation and		
		evidence collection.		
	2.2	Chain of Custody ,Powered-on versus powered-off device		
		acquisition, Write blocking, Data imaging and hashing, Device		
		and data acquisition guidelines and best practices		
3	Title	Digital forensics tool	T1,	8
	3.1	Evidence Acquisition and Preservation ,Drive and partition	R2	
		recognition in Linux, Maintaining evidence integrity, Image		
		acquisition using Guymager.		
	3.2	File Recovery and Data Carving with Foremost, Scalpel, and		
		Bulk Extractor, Forensic test images used in Foremost and		
		Scalpel, Using Foremost for file recovery and data carving,		
		Using Scalper for data carving, Burk extractor.		
		Framework Downloading test images for use with Volatility		
1	Title	Post-mortem analysis	Т1	7
7		Autonsy – The Sleuth Kit Kit Sample Digital forensics with	R2	,
	7.1	Autonsy The Sleath Kit, Kit, Sample, Digital follistes with	114	

	4.2	Network and Internet Capture Analysis with Xplico, Software					
	required, Packet capture analysis using Xplico, Revealing						
		Evidence Using DFF, Installing DFF					
5	Self-s	Use python libraries to develop forensics tools for portable	R3,	6*			
	tudy	devices or tiny OS. Cloud forensics, mobile and portable	R1				
		device forensics.					
		Total		28			

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	To acquire a disk image
2	To study the use of md5deep hashing tool to compute the hashes of the directories and
	compare them to check the integrity of the directories.
3	Imaging a disk using AccessData FTK imager on windows
4	a. To use a forensic tool Foremost in order to recover files
	b. To use Vinetto forensic tool to analyze Thumps.db files and extract data.
5	Use of Galleta tool to study cookie created in during browsing.
6	a. Use of password forensics tool to crack zip and rar password protected files
	b. Use of password forensic tool to get an access to a windows machine
7	Learn art of steganography
8	Memory forensic tool to capture and analyze RAM's image
9	Use of wireshark to do network forensics
10	Analyze a PDF file to check if its malicious or not.

Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Digital Forensics with	Second	Shiva V. N. Parasram	Packt	2017
	Kali Linux	Edition			
2	Computer Forensics:	Essential	First Warren G. Kruse	Addison-Wesl	2001
	Incident Response	S	II	ey	
			and Jay G. Heiser	Professional	

Sr.	Title	Edition	Authors	Publisher	Year
No.					

1	Guide to Computer Forensics and Investigations	Second Edition	Nelson, B, Phillips, A, Enfinger, F, Stuart, C	Thomson Course Technology	2006
2	Computer Forensics, Computer Crime Scene Investigation	First Edition	Vacca, J	Charles River Media,	2005
3	Learning Python for Forensics	Second Edition	Preston Miller,Chapin Bryce	Packt Publishing	2019

Course (Category)	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned				
Code		L	Т	Р	0	Ε	L	Т	Р	Total
	Advanced Database	2	0	2	4	8	2	0	1	3
PE		Examinatio					n Scheme			
		Component]	ISE		MSE	E	SE	Total
1T331	Systems	Theory			50		50	1	00	200
		Laboratory			50				50	100

Pre-requis	site Course Codes, if any. I'	T204: Database Management Systems						
Course Ob	Course Objective: To get knowledge of Query optimization, data warehousing, data models,							
graph databases, Parallel and distributed database systems,								
Course Outcomes (CO): At the End of the course students will be able to								
1T331.1	Evaluate the performance of q	uery.						
1T331.2	Apply NO SQL, graph datab	bases and enhanced data model concepts for a given						
	scenario.							
1T331.3	Apply data warehousing conce	epts for a given scenario.						
1T331.4	Design parallel and distributed	l databases.						

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2
1T331.1	2	-	-	-	2	-	-	-	-	-	-	2
1T331.2	-	2	-	-	2	-	-	-	2	-	-	2
1T331.3	-	-	-	-	3	-	-	-	2	1	-	2
1T331.4	-	-	-	2	3	-	-	-	2	-	-	2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

SPIT/UG Curriculum/2020 Iteration/Information Technology/ pg. 64

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
1T331.1	1	-	-	-	-	-	-
1T331.2	-	2	2	2	1	-	-
1T331.3	-	-	2	2	-	-	1
1T331.4	-	-	-	1	-	-	1

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
				>	

Modul	Unit	Topics	Ref.	Hrs.
e No.	No.			
1	Title	Parallel Database	T1,T2	4
	1.1	Introduction, Architectures for parallel database,		
	1.2	Parallel query Evaluation, Parallelizing individual operation,		
		Parallel Query Optimization		
2	Title	Distributed Database Systems	T1,T2	8
	2.1	Distributed Database Concepts, Types of Distributed		
		Database Systems, Distributed Database Architectures		
	2.2	Data Fragmentation, Replication, and Allocation Techniques		
		for Distributed Database Design, Query Processing and		
		Optimization in Distributed Databases, Overview of		
		Transaction Management in Distributed Databases,		
		Overview of Concurrency Control and Recovery in		
		Distributed Databases, Current Trends in Distributed		
		Databases		
3	Title	NOSQL And Graph Databases	T4	6
	3.1	No SQL, Weaknesses of the Relational Data Model,		
		Inadequate Representation of Data, Semantic Overloading.		
	3.2	Graph database: Graphs and Graph Structures, The Property		
		Graph Model, Storing Property Graphs in Relational Tables,		
		Advanced Graph Models, Neo4J, Hyper Graph DB		
4	Title	Enhanced Data Models	T1	4
	4.1	Temporal Database Concepts, Spatial Database Concepts,		
		Multimedia Database Concepts, Image database		
	4.2	Applications of Enhanced Data Models		

5	Title	Overview of Data Warehousing and OLAP	T3,R	6				
			1					
	5.1	Introduction, Definitions, and Terminology, Characteristics						
		of Data Warehouses, Data Modeling for Data Warehouses,						
		Building a Data Warehouse ,						
	5.2	Typical Functionality of a Data Warehouse, Data Warehouse						
		versus Views, Difficulties of Implementing Data						
		Warehouses, OLTP, OLAP						
6	Self	Applications of Hyper Graph DB, cloud database, Block	T2,T3	5*				
	Stud	chain databases, data warehousing tools.	,T4,R					
	У		1					
		Total		28				

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	Demonstrate the concept of deadlock in distributed systems.
2	Design a distributed database by applying the concept of horizontal fragmentation.
3	Design a distributed database by applying the concept of vertical fragmentation.
4	To implement the replication technique for a given scenario.
5	Demonstration of use of Cloud Database.
6	Demonstration of graph database.
7	Demonstration of Multimedia database
8	Build Data Warehouse and explore WEKA tool.
9	Create a data model for a given scenario.
10	Apply OLAP operations on a given scenario.

Text Books

Sr.	Title	Editio	Authors	Publisher	Year
No.		n			
1	Fundamentals of	Sevent	Ramez Elmasri &	Pearson	2016
	Database Systems	h	Shamkant	Education	
		Edition	B.Navathe		
2	Principles of Distributed	Fourth	M. Tamer Ozsu	Springer	2019
	Database Systems	Edition	,Patrick Valduriez		
3	Data Warehousing, Data	Tenth	Alex Berson and	TataMc Graw	2007
	Mining & OLAP	Edition	Stephen J. Smith	Hill Edition	
4	"Advanced Data	First	Lena Wiese	De Gruyter	2015
	Management: For Sql,	Edition		Oldenburg	
	Nosql, Cloud And				
	Distributed Databases				

SPIT/UG Curriculum/2020 Iteration/Information Technology/ pg. 66

Reference Books

Sr.	Title	Editio	Authors	Publisher	Year
No.		n			
1	Database Systems –	Ninth	Peter Rob and	Thompson	2011
	Design, Implementation	Edition	Corlos Coronel	Learning,	
	and Management			Course	
	_			Technology	
2	Database System	Sevent	Henry F Korth,	McGraw Hill	2010
	Concepts	h	Abraham		
		Edition	Silberschatz, S.		
			Sudharshan		

Course (Category)	Course Name	r	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total	
	Data Science	2	0	2	4	8	2	0	1	3	
PE		Examination Scheme									
		Component]	ISE		MSE		SE	Total	
1T332		Theory			50		50		00	200	
		Laboratory		50					50	100	

Pre-requisit	e Course Codes, if any.	IT303B: Artificial Intelligence and Machine Learning				
		MA203: Probability and Statistics				
Course Obje	ective: To choose and apply	y tools, methodologies to solve <i>data science</i> tasks.				
Course Outcomes (CO): At the End of the course students will be able to						
1T332.1	Make use of data to perform exploratory data analysis.					
1T332.2	Apply supervised and uns	supervised learning on a dataset.				
1T332.3	Apply Association rule m	Apply Association rule mining on a dataset.				
1T332.4	Develop a data science ap	plication using ethical practices.				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO12
	1									0	1	
1T332.1	-	1	2	-	2	-	-	-	-	-	-	2
1T332.2	-	1	2	-	2	-	-	-	-	-	-	2
1T332.3	-	1	2	-	2	-	-	-	-	-	-	2

1T332.4 - 1 2 - 2 - 2 2 - 2 2 2 2 2 2 2	
--	--

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
1T332.1	-	-	2	-	-	-	2
1T332.2	-	-	2	-	-	-	2
1T332.3	-	-	2	-	-	-	2
1T332.4	-	-	2	-	2	-	2

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
					~

Modul e No.	Unit No.	Topics	Ref.	Hrs.
1		Introduction	T1, T2	04
	1.1	Introduction : Data Science, data science process, stages of a data science project		
	1.2	Preliminaries for Data Science: Data Cleaning, mean, median, mode, standard deviation, correlation coefficient, regression coefficient		
2		Exploratory Data Analysis and Data visualization	T1, T2	06
	2.1	Data Integration; Data Reduction: Attribute subset selection, Dimensionality Reduction, Sampling; Data Transformation & Data Discretization: Normalization, Binning, Histogram Analysis and Concept hierarchy generation		
	2.2	Visualizing Geographical data, network data, Temporal data		
3		Supervised and Unsupervised Learning	T1, T2	06

28
די
04*
06
]
06

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	To identify various tools and types of data
2	To perform the data exploration on a dataset
3	To Identify the data needed in terms of attributes, class inputs, training, validating, and
	testing files.
4	To perform data visualization
5	To perform supervised learning on a dataset
6	To perform unsupervised learning on a dataset
7	To perform density based clustering on a dataset
8	To perform association rule mining on a dataset
9	Mini Project Phase-I: To develop an application on a real life scenario
10	Mini Project Phase-II: To develop an application on a real life scenario

Text Books

Sr. No. Title Edition Authors Publisher	Year
1 Learning From Data First Edition Yaser S. AMLBook Abu-Mostafa, Malik Malik	2012

			l, Husan-Tien Lin		
2	Doing Data Science	First Edition	First Cathy O'Neil, Rachel Schutt	O'Reilly	2013

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Python Data Science	First Edition	Jake	O'Reilly	2016
	Handbook: Essential		VanderPlas		
	Tools for Working				
	with Data				

Course (Category)	Course Name]]	Feachi (Hr	ng Scheme s/week)			Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total
SBC	Mini Project-II	0	0	0	8	8	0	0	0	3
		Examination Scheme								
		Component]	SE]	MSE	ŀ	ESE	Total
IT308		Theory							-	
		Laboratory			200				100	300

Course Objective: This course inculcates self-learning, research and entrepreneurship attitude i students. Students will be able to understand the formal project development process to complet						
students. Students will be able to understand the formal project development process to complet						
students. Students will be able to understand the formal project development process to complete						
a project in a team. It will help students to develop communication, organizational skills and						
maturity through discussion, presentation etc.						
Course Outcomes (CO): At the End of the course students will be able to						
Course outcomes (CO). In the Line of the course stations will be uble to						
TT308 1 Conduct a survey of basic and contemporary literature in the preferred field b						
identifying problems based on societal /research needs.						
IT308.2 Formulate the problem statement by making judgments on validity of ideas.						
TT208.2 Conclude suitable inferences from obtained results throug						
theoretical/experimental/simulations based analysis.						

IT308.4	Develop interpersonal skills to work as member of a team.
IT308.5	Prepare a report of the findings for the study conducted in the preferred domain.

	PO	PO1	PO1	PO12								
	1	2	3	4	5	6	7	8	9	0	1	
IT308.1	2	2	-	-	-	2	1	3	3	3	-	2
IT308.2	2	3	2	2	-	-	1	3	3	3	-	2
IT308.3	2	2	2	2	2	-	-	3	3	3	-	2
IT308.4	-	-	-	-	-	-	-	3	3	3	3	2
IT308.5	2	2	-	-	-	-	-	3	3	3	2	2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
IT308.1	2	2	2	2	2	2	2
IT308.2	2	2	2	2	3	2	2
IT308.3	2	2	2	2	3	2	2
IT308.4	2	2	2	2	2	2	2
IT308.5	2	2	2	2	2	2	2

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create	
					1	

Mini Project II is an opportunity to inculcate the research aptitude in students. It helps them to identify research gaps and come up with possible solutions. Students should be able to analyze these solutions for feasibility of their implementation. Mini project II is based on a small research project correlating scientific knowledge and day to day experience which encourages development of scientific attitude to solve real life problems among students.

Steps for Research:

- ✓ Keen observation of the surrounding/society
- ✓ Read existing Literature to understand and identify the research gaps
- \checkmark Analysis of the problem
- \checkmark Formulation of the problem statement

- ✓ Collection of relevant information by formulating research questions
- ✓ Suggesting plan of action
- ✓ Conducting experiments and draw conclusion
- \checkmark To find the possible solution to rectify the problem
- ✓ To execute experiments and remedial measures wherever possible

Students can seek guidance from teachers, other experts and make effective use of other sources of information available around them. Students must ensure that problem to be manageable in one semester.

Criteria of a good project:

- ✓ Appropriate idea, clear understanding and proper presentation of the concept
- ✓ Quality of work
- ✓ Project plan and its execution
- ✓ Credibility of the work
- ✓ Probable impact of the work on the attitude of students and society
- Scientific attitude, creativity and novelty reflected in project work and analysis of the situation
- ✓ Utility and innovation of the remedial measures
- ✓ Desirability, Feasibility and Viability in real life

The H/W and S/W resources required to complete the Mini Project II may be beyond the scope of curriculum of courses taken or may be based on the courses but thrust should be on

- ✓ Learning additional skills
- ✓ Development of ability to define and design the problem and lead to its accomplishment with proper planning
- ✓ Learn the behavioral discipline by working in a team. Students should work in groups of three on the Mini Project-II.

Evaluation:

Project report should be submitted on A-4 size pages. Use both printing. Report must carry project title, student details, certificate and acknowledgements. Other sections of the report shall be decided by the department based on projects. But it must have introduction, necessity of project, objectives, hypothesis, plan, observations, and analysis of results, conclusion and references along with other sections related to technology.

The ISE and ESE evaluation will be carried out based on the rubrics framed by the Department. ISE marks will be based on the performance of the individual student in three phases of
evaluation. The evaluation of the Phase I will be based on Title approval where the domain and scope of the project will be evaluated. Phase II will be on presentation of the selected approach, justification and Design and some part of implementation. Evaluation of Phase III is based on demonstration of complete implementation, testing, presentation and technical report.

The ESE marks will be based on demonstration in front of the expert appointed by the Department. In the ESE examination each individual student would be assessed for his/her contribution in selecting the originality of the problem statement, understanding and knowledge gained about the task completed through presentation/demonstration, work done, and preparing the technical report/poster/technical paper of the project in the standard format provided by the Department.

Bhartiya Vidya Bhavan's Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) [Knowledge is Nectar]

Liberal, Pi-Model of Engineering Education @ SPIT (Department of Information Technology)

Final Year Engineering (Semester VII – VIII)

			Sem VII		_		-		-
Ν	Туре	Code	Course	L	Т	Р	0	Е	С
0									
1	OE	OEXXX	Open Elective-II	2	0	2	4	08	3
2	OE	OEXXX	Open ElectiveIII*	2	0	2	4	08	3
3	PE	1T4X3	Program Elective-III	2	0	2	4	08	3
4	PE	1T4X4	Program Elective-IV	2	0	2	4	08	3
5	SBC	IT401	Main Project Stage-I	0	0	0	4	04	2
6	ABL	SVXX/STXX	SEVA-IV/SATVA-IV	0	0	0	4	04	2
7	S/M/H	SCX4/MNX4	SCOPE-IV/Minor-IV/Honors-I						3
		/HOXX							
*OE-III must be from Basic Science Elective or Engineering Science Elective									
			TOTAL	8	0	8	24	40	16

	Sem VIII (Option A: Cat1/Cat2)											
N	Туре	Code	Course	L	Т	Р	0	Е	C			
0												
1	OE*	OEHXX	Open Elective –IV	2	0	2	4	08	3			
2	PE	1T4X5	Program Elective –V	2	0	2	4	08	3			

3	PE	1T4X6	Program Elective –VI	2	0	2	4	08	3
4	SBC	IT402	Main Project Stage-II	0	0	0	12	12	7
5	ABL	SVXX/STX	SEVA-IV/SATVA-IV	0	0	0	04	04	1
		Х							
6	Н	HOXX	Honors-II						3
	*must be	e from Humani	ies and Management group, May be taken from MOOCs						
			TOTAL	6	0	6	28	40	17

	Sem VIII (Option B-Only for Cat 1 students)											
No	Туре	Code	Course	L	Т	P	0	Е	С			
1	SBC	IT403	Main Project Stage-II	0	0	0	36	36	16			
2	ABL	SVXX/STX	SEVA-IV/SATVA-IV	0	0	0	04	04	1			
		Х										
3	Н	HOXX	Honors-II						3			
			TOTAL	0	0	0	40	40	17			

SEMESTER VII

Course		Teaching Scheme (Hrs/week)					Credits Assigned				
(Category)	Course Name	L	Т	Р	0	Ε	L	Т	Р	Total	
Code											
	Natural Language Processing	2	0	2	4	8	2	0	1	3	
РЕ		Examination Scheme									
		Component]	ISE		1SE	ES	E	Total	
1T413		Theo	ory		50		50	10	0	200	
		Laboratory		50				50)	100	

Pre-requisi	te Course Codes, if any.	IT307B: Artificial Intelligence and Machine Learning						
Course Objective: To understand the basic knowledge on various morphological, syntactic and								
semantic NI	LP tasks.							
Course Out	tcomes (CO): At the End of	f the course students will be able to						
1T413.1	Apply the Natural language	e processing pipeline to solve a given problem						
1T413.2 Identify use of Natural language Models								

1T413.3	Analyze Parts-Of-Speech tagging, Parsing and Semantic Analysis models for a given scenario
1T413.4	Develop system to solve a Natural Language Processing problem

	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
	1									0	1	2
1T413.1	2	-	-	-	2	-	-	-	-	-	-	2
1T413.2	2	-	-	-	2	-	-	-	-	-	-	2
1T413.3	2	-	-	-	2	-	-	-	-	-	-	2
1T413.4	2	-	-	-	2	-	-	-	-	1	1	2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
1T413.1	-	-	2	-	1	-	2
1T413.2	-	-	2	-	1	-	2
1T413.3	-	-	2	-	1	-	2
1T413.4	-	_	2	-	1	-	2

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
			~		

Theory Component

Modul	Unit	Topics	Ref	Hrs.
e No.	No.		•	
1		Introduction	1,2	06
	1.1	Introduction: NLP tasks/pipeline, syntax, semantics, classical		
		applications in NLP, Role of Machine Learning in Natural		
		Language Processing.		
	1.2	Spelling error and Noisy Channel Model; Concepts of		
		Parts-of-speech and Formal Grammar of English.		
2		Language Modelling: N-gram and Neural Language Models	1,2	07
	2.1	Language Modelling with N-gram, Simple N-gram models,		
		Estimating parameters in Smoothing, Evaluating language models		
	2.2	Neural Networks and Neural Language Models		

3		Parts-of-speech Tagging	1,2	07
	3.1	Rule based Part of Speech Tagging, Transformation based Tagging		
		(TBL)		
	3.2	POS tagging using HMM, POS Tagging using Neural Model		
4		Parsing and Semantics	1,2	08
	4.1	Basic concepts: Grammar Formalism, Treebank, Syntactic parsing:		
		CKY parsing, Probabilistic Context Free Grammar (PCFG);		
		Probabilistic CKY Parsing of PCFGs		
	4.2	Vector Semantics, Words and Vector, Measuring Similarity,		
		Semantics with dense vectors, Embeddings from prediction:		
		Skip-gram and CBOW		
5	Self	Applications: Sentiment Analysis, Text Summarization, chatbots,	3,4	04*
	Stud	Language Translation; Word Sense, WordNet		
	у			
		Total		28

Laboratory Component (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	To perform Lexical Analysis on a given text data
2	To perform Syntax Analysis on a given text data
3	To perform n-gram model on a given text data
4	To perform N-grams smoothing on a given text data
5	To perform POS Tagging using HMM and neural model
6	To apply parsing techniques on the data
7	To perform Semantic Analysis on a given text data
8	To perform word embedding on a given text data
9	Capstone Project- Phase I: To develop an application on a real life scenario
10	Capstone Project-Phase II: To develop an application on a real life scenario

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Speech and Language	Third Edition	Daniel	Prentice Hall	2018
	Processing		Jurafsky,		
			James H.		
			Martin		
2	Foundations of	First Edition	Christopher	MIT Press	1999
	Statistical Natural		D.Mannig and		
	Language Processing		Hinrich		
			Schutze,		

Reference Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Natural Language	First Edition	Siddiqui and	Oxford	2008
	Processing and		Tiwary U.S	University	
	Information Retrieval			Press	
2	Natural Language	First Edition	Thushan	Pakt	2018
	Processing with		Ganegedara	Publishing	
	TensorFlow		_	Ltd.	

Course (Category)	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned				
Code		L	Τ	Р	0	Ε	L	Т	Р	Total
	Deep Learning	2	0	2	4	8	2	0	1	3
PE		Examination Scheme								
		Component]	ISE		MSE	E	SE	Total
1 T 414		Theory			50		50	1	.00	200
		Laboratory			50				50	100

Pre-requisite Course Codes, if any.IT312: Soft ComputingCourse Objective:

То	introduce the fundamental concepts of Deep learning with primary focus on the					
arc	hitectures and applications as appropriate to real world problems					
Course O	Course Outcomes (CO): At the End of the course students will be able to					
1T414.1	Interpret the mathematical foundations of Deep Learning architectures.					
1T414.2	Construct deep neural networks for a given problem.					
1T414.3	Analyze deep learning models for a given scenario.					
1T414.4	Develop real-world applications using various deep learning techniques.					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
										0	1	2
1T414.1	2	2	2	-	3	-	-	-	-	-	-	1
1T414.2	3	2	3	-	3	-	-	-	-	-	-	1
1T414.3	3	2	3	2	3	-	-	-	-	-	-	1
1T414.4	3	3	3	2	3	-	-	-	3	3	2	2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
1T414.1	1	2	2	-	-	-	2
1T414.2	1	2	2	-	-	-	2
1T414.3	1	2	2	-	-	-	2
1T414.4	2	2	2	-	3	-	3

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
					1

Theory Component

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	Title	Introduction to Deep Learning	T1,T2	4
	1.1	Revision of Learning Algorithms Concepts: Capacity, Overfitting and Underfitting, Hyperparameters and Validation Sets, Estimators, Bias and Variance, Stochastic Gradient Descent,		
	1.2	Challenges Motivating Deep Learning		

2	Title	Convolutional Neural Networks	T1,T2,	6		
	2.1	The Convolution Operation, Motivation, Pooling, Convolution	T4,R2			
		and Pooling as an Infinitely Strong Prior,				
	2.2	Variants of the Basic Convolution Function, Structured				
		Outputs, Data Types, Efficient Convolution Algorithms,				
		Random or Unsupervised Features				
3	Title	Autoencoders	T1,	6		
	3.1	Architecture of Autoencoder, Undercomplete v/s Overcomplete	T2,R1,			
		Autoencoder, Regularized Autoencoders,	R2			
	3.2	Representational Power, Layer Size and Depth, Applications of				
		Autoencoders				
4	Title	Sequence Modelling	T1,T2,	6		
	4.1	Recurrent Neural Networks (RNN), Bidirectional RNNs	T3,T4,			
	4.2	Encoder-Decoder sequence to sequence architecture	R1,R2			
	4.3	Deep Recurrent Network, Long short term memory (LSTM)				
		and gated RNNs				
5	Title	Generative Adversarial Networks	T3,R2	6		
	5.1	Introduction to GANs, The GAN Architecture: Discriminator,				
		Generator,				
	5.2	Training the GAN, Applications of GAN				
6	Self	Applications of Deep Learning: Large-Scale Deep Learning,	Т3,	4*		
	Study	Computer Vision, Speech Recognition, Natural Language	R1,R2			
		Processing, Other Applications				
Total 2						

Laboratory Component: ** Lab experiments may be performed using any open-source, freely available deep learning frameworks.

Sr. No.	Title of the Experiment
1	To implement a deep feed-forward network for a given problem
2	To implement a CNN for image data.
3	To implement a CNN for textual data.
4	To implement autoencoders.
5	To implement RNN for a given problem.

6	To implement Encoder-Decoder Model for a given problem
7	To implement generative adversarial networks for a given problem
8-10	Capstone project covering the concepts of Deep Learning on real world problem
Capstone	statements.
Project	

Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Deep Learning	First Edition	Ian Goodfellow,	An MIT	2016
			Yoshua Bengio,	Press book	
			Aaron Courvile		
2	Fundamentals of Deep	First Edition	Nikhil Buduma	O'Reilly	2017
	Learning			_	
3	Generative Deep	First Edition	David Foster	O'Reilly	2019
	Learning			_	
4	Deep Learning using	First Edition	Dr. S Lovelyn	Wiley	2019
	Python		Rose, Dr. L Ashok	-	
			Kumar, Dr. D		
			Karthika Renuka		

Reference Books

Sr.	Title		Edition	Authors	Publisher	Year
No.						
1	Deep Methods Application	Learning: and s	First Edition	Deng & Yu	Now Publishers	2013
2	Deep CookBook	Learning	First Edition	Douwe Osinga	O'Reilly	2017

Course (Category)	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned				
Code		L	Т	Р	0	Ε	L	Т	P	Total
	Security Operations	2	0	2	2	6	2	0	1	3
PE		Examination Scheme								
		Comp	onent]	ISE]	MSE]	ESE	Total
117422	Center	Theory			50		50		100	200
11423		Laboratory			50				50	100

Pre-requisit	e Course Codes, if any.	IT206: Operating systems			
		IT207: Computer Communications and Networks			
Course Objective: To analyze the security incidents, events and respond to it.					
Course Outcomes (CO): At the End of the course students will be able to					
1T423.1	Explain the SOC processe	Explain the SOC processes, procedures, technologies, and workflows.			
17472.7	Identify the indicators of	f compromise by recognizing the attacker tools, tactics, and			
11425.2	procedures.				
1T423.3	Analyze the logs and alert	ts from various technologies.			
1T423.4	Evaluate the use cases that	t are widely used across the SIEM deployment.			

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12
1T423.1	3	-	-	-	-	-	-	-	-	-	-	-
1T423.2	-	3	3	3	3	-	-	-	-	-	-	-
1T423.3	-	-	-	2	3	-	-	2	-	-	-	-
1T423.4	-	-	-	-	-	2	2	-	-	-	-	3

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
1T423.1	2	-	-	-	-	-	-
1T423.2	-	-	-	-	-	-	2
1T423.3	-	-	2	2	-	-	2
1T423.4	-	-	-	2	-	-	-

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
				~	

Theory Component

Modul	Unit	Topics	Ref	Hrs.
e No.	INO.		•	
1	Title	SOC basics	T1,	7
	1.1	Introduction to SOC, security challenges, Information	T2,	
		generations. A modern SOC - SecOps and next-gen tech.	KI	

	1.2	Elements of SOC-data collection and analysis, vulnerability management, threat intelligence, compliance.		
2	Title	The plan phase	T1	7
		SOC strategy – strategy element, SOC model operation, SOC services, SOC capabilities road map.		
3	Title	The design phase	T1	6
	3.1	The SOC infrastructure -design consideration, model of operation, facilities and active infrastructure.		
	3.2	Security event generation and collection -data collection, cloud security, intrusion detection and prevention system, honeypots, DNS server.		
4	Title	The build and operate phase	T1,	8
	4.1	The technology- network, security, system, storage, collaboration Breach detection, sandboxes.	R2	
	4.3	Key challenges -people, process, technology. Reacting to events and incidents. maintain review and improve- reviewing and assessing the SOC, maintaining and improving SOC.		
5	Self-s	User and Entity Behavioral Analytics, SIEM Analytics		6*
	tudy	and Incident Response and Automation		
		Total		28

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	To do Vulnerability Scanner set-up by Configuring nessus and OpenVAS
2	Implementation of SOC using Prelude SIEM
3	Establishing baselines of files and directories with Kali Linux and Windows 7.
4	To implement event log collection and correlation
5	To conduct log analysis and cross examination for false positives
6	To generate log event reports
7	To prioritization and escalation of incidents by generating incident ticket
8	To implement containment of incidents
9	To implement eradication of incidents
10	To recover data from the incidents and Creating report of the incident

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Security Operations Center: Building, Operating, and Maintaining your SOC	First Edition	Joseph Muniz	Cisco Press	2015

Reference Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	The Modern Security Operations Center	First	Joseph	Addison-W	2021
		Edition	Muniz	esley	
				Professional	
2	Security Operations Center - SIEM Use	First	Arun E	Arun E	2018
	Cases and Cyber Threat Intelligence	Edition	Thomas	Thomas	

Course (Category)	Course Name]	Feachi (Hr	ng Scl s/weel	heme k)		C	redit	s Assig	gned
Code		L	Т	Р	0	Е	L	Т	Р	Total
	Blockchain Technology	2	0	2	5	10	3	0	1	3
PE		Examination Scheme								
PL		Comp	onent]	ISE	1	MSE	E	SE	Total
1T424		The	ory		50		50	1	.00	200

	Laboratory	50	 50	100
	•/ · · · ·			

Pre-requisit	e Course Codes, if any.	IT206:Operating systems			
	_	IT207:Computer Communications and Networks			
Course Objective: To understand and use the blockchain technology					
Course Out	comes (CO): At the End of	s (CO): At the End of the course students will be able to			
1T424.1	Explain the basic concepts	of blockchain technology, Bitcoin and Ethereum.			
1T424.2	Apply a smart contract on	the Ethereum test network			
1T424.3	Build a Decentralized A network	Application running on a decentralized peer-to-peer			
1T424.4	Explain the General Date application	ata Protection Regulation for relevant blockchain			

	PO	PO1	PO1	PO1								
	1	2	3	4	5	6	7	8	9	0	1	2
1T424.1	2	-	-	-	-	-	-	-	-	-	-	2
1T424.2	-	2	-	-	2	2	1	-	-	-	-	2
1T424.3	-	-	3	2	3	2	1	-	-	-	-	2
1T424.4	-	-	-	-	-	2	1	2	-	-	-	2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
1T424.1	-	-	-	-	-	-	-
1T424.2	2	2	2	2	-	2	2
1T424.3	2	2	2	2	-	2	2
1T424.4	2	-	-	2	-	2	-

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
					~

Theory Component

Modul	Unit	Topics	Ref.	Hrs.
e No.	No.			

1	Title	Introduction to Blockchain	T1,	6
	1.1	The consensus problem - Asynchronous Byzantine Agreement	T2,	
		- AAP protocol and its analysis - Nakamoto Consensus on	KI	
		permission-less, nameless, peer-to-peer network - Abstract		
		Models for BLOCKCHAIN - GARAY model - RLA Model		
	1.2	Proof of Work (PoW) as random oracle - formal treatment of		
		consistency, liveness and fairness - Proof of Stake (PoS) based		
2	Title	Consensus	Т1	8
4	2.1	Ritcoin - Wallet - Blocks – Merkle Tree - hardness of mining -	T2	0
	2.1	transaction verifiability - anonymity - forks - double spending		
		- mathematical analysis of properties of Bitcoin.		
	2.2	Permissioned Blockchain: Basics, Distributed consensus,		
		RAFT Consensus, Byzantine General Problem, Practical		
		Byzantine Fault Tolerance.		
3	Title	Hyperledger Fabric	T1,	8
	3.1	Transaction Flow. Hyperledger Fabric Details, Fabric -	T2	
		Membership and Identity Management, Hyperledger Fabric		
		Network Setup, Fabric Demo on IBM Blockchain Cloud.		
	3.2	Hyperledger Composer - Application Development.		
		Hyperledger Composer - Network Administration, Ethereum -		
		Ethereum Virtual Machine (EVM) - Wallets for Ethereum -		
		Solidity - Smart Contracts - some attacks on smart contracts.		
	75.4	Blockchain: Enterprise use cases.	751	
4	Title	Data Protection and applications of blockchain	T1, T2	6
	4.1	General Data Protection Regulation (GDPR) and its relevance	12, T2	
		for Indian businesses, Internal Policy on management and	13, P2	
		sharing data, ODFK compliance between multiple	N2	
		for Entrepreneurs		
	4.2	Applications of blockchain - Uses of Blockchain in		
		E-Governance Land Registration Medical Information		
		Systems, and smart cities, smart industries, anomaly		
		detections, FinTech, Shaping the Financial World, IoT.		
6	Self-s	Scaling the blockchain: payment channels and state channels	R1,	6*
	tudy	Scaling the blockchain using optimism and using SNARK	R2	
	-	Privacy in public blockchain: deanonymizing the blockchain		
		and mixing.		
		Total		28

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.

1	Implementation of symmetric key cryptosystems – I
2	Implementation of asymmetric key cryptosystems – I
3	To implement Merkle Tree and genesis block
4	Demonstration of Bootstrapping
5	Demonstration of Hyperledger Fabric
6	Demonstration of Hyperledger Fabric – Ethereum
7	Implementation of Bitcoin
8	To implement the application: Land Registration
9	To implement the application: Smart Contract
10	To implement the application: FinTech

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Bitcoin and	Illustrate	Arvind Narayanan,	Princeton	2016
	Cryptocurrency	d	Joseph Bonneau,	University	
	Technologies: A		Edward Felten,	Press	
	Comprehensive		Andrew Miller and		
	Introduction		Steven Goldfeder		
2	Blockchain: Blueprint for	First	Melanie Swa	O'Reilly	2015
	a New Economy	Edition			
3	Building-Blocks of a Data	First	Shraddha Kulhari	Nomos	2018
	Protection Revolution:	Edition			
	The Uneasy Case for				
	Blockchain Technology to				
	Secure Privacy and				
	Identity				

Reference Books

Sr. No.	Title	Edition	Authors	Publishe	Year
				r	
1	The Bitcoin Standard: The Decentralized Alternative to Central Banking	First Edition	Saifedean Ammous	Wiley	2018
2	Blockchain For Dummies	Second Edition	Tiana Laurence	Wiley	2019

Code		L	Т	Р	0	E	L	Т	Р	Total
		2	0	2	4	8	2	0	1	3
DE		Examination Scheme								
F E	Digital Image	Comp	onen]	ISE	Ι	MSE	E	SE	Total
	Processing	1	ţ							
117.422		The	ory		50		50	1	00	200
11433		Labor	atory		50				50	100

Pre-requisit	e Course Codes, if any.					
Course Objective: To Evaluate the techniques for image processing to analyze Images.						
Course Out	Course Outcomes (CO): At the End of the course students will be able to					
1T433.1	Evaluate the techniques for enhancing and segmenting Images.					
1T433.2	Analyze images using various transforms.					
1T433.3	Categorize various compression techniques and standards for Images and Videos.					
1T433.4	Apply image processing algorithms in practical applications.					

	PO	PO1	PO1	PO1								
	1	2	3	4	5	6	7	8	9	0	1	2
1T433.1	3	2	2	-	2	-	-	-	-	-	-	-
1T433.2	3	2	-	-	2	-	-	-	-	-	-	-
1T433.3	3	2	2	-	2	-	-	-	-	-	-	-
1T433.4	2	1	-	-	1	-	-	-	2	2	-	-

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
1T433.1	2	-	-	-	-	-	-
1T433.2	2	-	-	-	-	-	-
1T433.3	2	-	-	-	-	-	-
1T433.4	2	2	-	1	2	-	1

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
			~		

Theory Component

Modul	Unit	Topics	Ref Hrs		
e No.	No.		•		
1		Fundamentals of Image Processing			
	1.1	Structure of the Human Eye, Light, Brightness adaption and	T1		
		discrimination, Pixels, Coordinate conventions	03		
	1.2	Imaging Geometry, Image acquisition, Sampling and Quantization,	on, T1		
		image resolution, basic relationship between pixels, color images,			
		RGB, HSI models			
2		Image Enhancement and Segmentation			
	2.1	Point Processing, Histogram processing, Smoothing and	T1		
		Sharpening Filters.		07	
	2.2	Detection of discontinuities, Edge linking and Boundary detection,	T1		
		Hough transform, Thresholding, Region oriented segmentation.			
3		Image Transform and Morphology			
	3.1	Discrete Fourier Transforms, Hadamard-Walsh Transform,	T1		
		Discrete Cosine Transform, Discrete Wavelet Transform.		06	
	3.2	Image Morphology: Structuring Element, Erosion & Dilation. T1			
		Opening & Closing, Region filling.			
4	Title	Video Processing			
	4.1	Digital Video Sampling, Video Frame classifications, Moving	R1	05	
		picture types, Macroblock, Motion Compensation.			
	4.2	Motion Models, 2D Apparent-Motion Estimation, 3D Motion and	T2		
		Structure Estimation.			
5	Title	Image and Video Compression			
	5.1	Redundancies, Lossy and Lossless Compression	T1		
	5.2	RLE, Huffman Coding, Arithmetic Coding, LZW, JPEG,	T1	07	
		Predictive Coding			
	5.3	H.261, MPEG	R1		
6	Self	Object Representation and Object Recognition, Image Restoration,	T1	T1 6*	
	Stud	Applications of Image Processing			
	У				
		Total		28	

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	Image Enhancement using Point Processing Operations.
2	Smoothing and Sharpening of Images.
3	To enhance Image using Histogram equalization.
4	To segment Image using Image Segmentation.
5	To perform morphological operations on Image
6	To perform Region Filling in the Image
7	To implement transform on the Image.
8	To implement compression of the Image.
9	To detect object in the Video.

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Digital Image Processing	Third Edition	Rafael C. Gonzalez and Richard E. Woods	Pearson Education	2010
2	Digital Video Processing	Second Edition	Murat Tekalp	Pearson Education	2010

Reference Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Multimedia Systems Design		Prabhat K Andleigh / Kiran Thakrar	Pearson	2015
2	Handbook on Image and Video Processing		A.I.Bovik	Academic Press	2009

Course(Category	Course Name	Т	eachin (Hrs	ng Scl /wee	heme k)		С	redit	s Ass	igned
Code		L	Τ	Р	0	Ε	L	Т	Р	Total
		2	0	2	4	8	2	0	1	3
DE		Examination Scheme								
PL	Project	Componen			ISE		MSE	E	SE	Total
	Management	1	t							
1T434		The	ory		50		50	1	00	200
		Laboratory			50				50	100

Pre-requisit	e Course Codes, if any.	IT 302: Software Engineering				
Course Objective: To study the fundamentals of Project Management						
Course Outcomes (CO): At the End of the course students will be able to						
1T434.1	Align the project to the or throughout its lifecycle	organization's strategic plans and business justification				
1T434.2	Manage the scope, cost, tin project success as defined b	ning, and quality of the project, at all times focused on by project stakeholders				
1T434.3	Identify Project constraints	and justify resource utilization.				
1T434.4	Adapt projects in response	Adapt projects in response to issues that arise internally and externally				
1T434.5	Analyze the failed projects					

	PO	PO1	PO1	PO12								
	1	2	3	4	5	6	7	8	9	0	1	
1T434. 1	-	-	2	-	-	-	-	-	2	2	-	-
1T434. 2	-	-	2	-	-	-	-	-	2	2	3	-
1T434. 3	-	-	-	-	-	-	2	1	2	2	3	-
1T434. 4	-	-	-	2		1	2	1	2	2	-	-
1T434. 5	-	-	-	2	1	1	2	1	2	2	3	2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
1T434.1	3	-	-	-	2	-	-
1T434.2	3	-	-	-	2	-	-
1T434.3	-	1	-	-	-	-	_
1T434.4	_	-	2	-	-	_	1

	1T434.5	-	-	2	-	-	-	1
--	---------	---	---	---	---	---	---	---

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
				~	

Theory Component

Modul	Unit	Topics	Ref.	Hrs.
e No.	No.			
1		Introduction		04
	1.1	Project Attributes, Project Characteristics, The Framework of	T1,T2,	
		Project Management	T3	
	1.2	The Project Life Cycle, Overview of Scrum Project		
		Management		
2		Project Initiation and Planning		08
	2.1	Project Initiation, Project Charter	T1,T2, T3	
	2.2	Project Scope, Work Breakdown Structure, Project Schedule and Time Management, Project Costs, Make/buy/outsource decision		
3		Software Project Status Monitoring		06
	3.1	Network Scheduling technique, Earned Value Analysis, Schedule & Cost slippage, Critical chain project management, Goldratt's critical chain	T1,T2, T3	
	3.2	Resource Loading and Leveling, Techniques for Managing Resources		
4		Change Management		06
	4.1	Change management plan, Dealing with resistance and conflicts.	T1,T2, T3	
	4.2	Project Risk Management		
	4.3	Techniques for Quality management		
5		Project Implementation & Closure		04
	5.1	Project Implementation methods	T1,T2,	
	5.2	Administrative closure, Project evaluations	T3	
	5.3	Project audit, Post production review		
6	Self	Case studies, Co- located and Distributed Projects, Project		8
	Stu	failures, Challenges and tools.		
	dy			
	· · ·	Total		28

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	To design Business Case for given case study
2	Define Scope and WBS
3	To use decision making tools for Project make- buy decision
4	Project planning using MS Project or using similar tools
5	Project status reporting EVA
6	Risk assessment/ Quality Management Tools
7	Project communication Using JIRA
8	Software Contracts
9	Resource Loading and Leveling
10	Case study on conflict Management using Meyers Briggs Model

Text Books

Sr.	Title	Editio	Authors	Publisher	Year
No.		n			
1	Project Management For Engineering Business And Technology	2021 Edition	John M. Nicholas and Herman Steyn	Taylor and Francis	August 2020
2	Project Management		Adrienne Watt	Creative Commons-ShareAlik e 4.0 International License	2015
3	Information Technology Project Management	Fourth Edition	Jack T. Marchewka	4th edition, Wiley India	2014

Reference Books

Sr.	Title	Editio	Authors	Publisher	Year
No.		n			
1	Managing Information Technology Project	Fourth Edition	Kathy Schwalbe	Cengage Learning publication	September 2010
2	Effective Software Project Management		Robert K.Wysocki	Wiley Publication	September 2010
3	Project Management in Distributed Projects		Thomas Gollubits	VDM Verlag Dr. Mueller E.K	May 2008

SEMESTER VIII