Bharatiya Vidya Bhavan's Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai)

Computer Science and Engineering [AIML]

Effective from Academic Year 2021-22

Board of Studies Approval: 8th May, 2023

Academic Council Approval: 3rd February, 2023

Dr. D.R. Kalbande

Dr. Y.S. Rao

Dr. B.N. Chaudhari

HOD, CSE

Dean Academics

Principal

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai)
[Knowledge is Nectar]

Liberal, Pi-Model of Engineering Education @ SPIT

(Department of Computer Science & Engineering[AIML])

CURRICULUM SCHEME FOR UNDERGRADUATE ACADEMIC PROGRAM (COMPUTER SCIENCE & ENGG[AIML]) AT SPIT

(For 2021-2025 Batch)

Salient Features

- 160-Credit **Liberal** Engineering Education Model.
- A strong **program core of 15 courses** and **6 baskets of program electives** to ensure the breadth and depth in a chosen domain of studies. Program electives are arranged either to grow in a specified vertical or have diversified exposure.
- Full semester industry internship to interested students.
- Aggressive model of "**Learning-by-doing**". (Engagement in classroom and laboratory sessions is 50:50)
- Special tracks for "Minor" Certification for interested learners, ensuring significant awareness of additional discipline leading to multiple specializations
- Unique, multi-track model of "Honors" Certification, for well performers for enhanced depth in the domain of study.
- Special sequel of optional **industry floated "SCOPE"** courses (Skilled Certification for Outcome-based Professional Education) for interested learners, ensuring high technical skills, in the diversified cutting-edge technologies.
- First-of-its-kind-in-education blend to Engineering Curriculum. "ABLL@LLC"® (Activity Based Liberal Learning about Life, Literature and Culture) in Six semesters, ensuring all dimensional holistic growth of the learner.

This curriculum aims at development of an **all-rounded** personality. It follows **holistic** approach of education, ensures strong science, mathematics foundation and program core, develops expertise in domain vertical though sequel of electives, ensures significant exposure of additional discipline through "Minor" program, collaborates outside world for the imparting relevant skills through "SCOPE" courses, challenges good learners through "Honors" evaluation, and systematically develops soft skills, and social, physical, mental, spiritual personality through carefully articulated **Liberal Learning** and **Humanities** sequels. Thus, offers a unique, liberal "**Pi-Model**" of Engineering Education.

Program Core

At SPIT, every undergraduate program consists of **Twelve Core Courses** referred to as Program **Core**. Several academic models from reputed institutions in the country and outside the country are studied in articulating this Program Core, to make curriculum Globally Competitive. All courses in this Core have laboratory components to augment the learning. Each program core course has an additional optional component of "Contents beyond the curriculum" which is carefully designed to ensure additional 15-20 hours engagement of the learners. The learner thus is nurtured towards the "Self-Learning" and "lifelong learning "which are essential attributes of 21st Century learner.

Program Electives

At SPIT, every program has **Six baskets** of Program Electives, each basket having a minimum 3 courses. This enables learners to grow in a **domain-specialization** or **domain-vertical**. For example, learners can graduate with B.Tech Electronics with a vertical in "Embedded Systems" or "VLSI" or "Signal Processing". Or a learner can graduate with B.Tech Computer Engineering with specialization in "Security" or "ML & AI" or "Computer Networking" or "Data Science". At the same time, a learner can increase her bandwidth by opting for elective courses which are general in nature, not pointing out towards a specific vertical.

Open Electives

Every undergraduate program has three baskets of open electives. This is planned to give exposure to interdisciplinary and cross disciplinary domains. The courses in these baskets are planned both at department and institute level. Students can choose any combination of these courses (not floated by the parent department) to get familiar with other domains of learning. One of these open electives must be chosen from Basic science courses or Engineering Science courses. This unique approach of offering additional basic science or engineering science elective at senior level aims at appreciating the importance of other domains of learning.

Humanities and Social Science Electives

National Education policy 2019 has aptly spelled out the necessity of Humanities in Professional Education. It quotes, "A holistic and liberal education as described so beautifully in India's past is indeed what is needed for the education of India in the future to truly lead the country into the 21st century and the fourth industrial revolution. Even engineering schools such as the IITs must move towards a more liberal education integrating arts and humanities". Every program at SPIT has three baskets of humanities. Learners are encouraged to take diversified courses in the field of languages, law, history, economics, management, finance etc.

SCOPE Certification

This unique sequel is designed to systematically develop skills required for an industrial sector. SPIT is partnering with various industries to offer the high-end skills required for a specific industrial sector. Well performing students can stretch the envelope and add a new dimension to their Professional Personality by earning this certification. There are multiple tracks for SCOPE certification. Each track is offered with partnership with a reputed institution or industry. These tracks are jointly designed by SPIT and partnering industry. Each track has four courses (modules). Each module/course is of 2-3 credits including laboratory

components for most of the tracks. These tracks are also open for outside learners, leading to Certificate Program in a chosen domain.

Minor Certification

This additional and optional certification provides an opportunity to learners to develop the learners in the additional domain of interests. It broadens the education and ensures the multi-disciplinary development which is an essential attribute of 21^{st} century engineers. However, this is optional. Well performing students can stretch the envelope and add a new dimension to their Professional Personality. Each track for this minor certification is offered either by SPIT or with partnership with other reputed institutions. Each track has four courses (modules). Each course is of 3 credits and laboratory components if any. These tracks are also open for outside learners, leading to a Certificate Program of 12 credits in a chosen domain.

Honors Certification

While the Minor and SCOPE certifications aim at adding an additional professional dimension to the professional personality of the learners, the Honors certification gives opportunity to well performing learners to drive deep in the chosen field of study. Multiple plans/ways are planned to encourage learners to earn this certification which essentially excite the learners to push an envelope and go extra/deep in the chosen area of the study. Students earn additional stars (*) as shown in Table 1 during their program. If at the time of graduation a student earns total **TWELVE** stars, she is conferred with "Honors" certification.

Table 1: Additional "STAR" Earning leading to "Honors" certification					
Activity	Definitio	on of "STAR"	Maximum Limit		
Earning top grade in any of the 15 courses which constitute the program core.	Top Grade: Full STAR Next GRADE: Half STAR		8 STARs		
Enrolling additional "Honors" Course in fourth year.	Top Grade: 3 STARs Next GRADE: 2 STARs Next GRADE: 1 STAR		6 STARs		
Success in the GATE examination			8 STARs		
	Percentile Score	STARs Earned			
	Above 99	6			
	Above 98	5			
	Above 95	4			
	Above 90	4			
	Valid score	2			
Research Publication	Journal* :2- 6 STARs SPIT supported Patent : 3 STARs		8 STARs		
Completion of PG level on line course			6 STARs		
from IITs available on NPTEL	Percentile Score	STARs Earned			
	Above 95	3			
	Above 90	2			
	Above 80	1			
#Winning prestigious technical					
competitions at National level	Rank	STARs Earned	6 STARTs		
	1	4			
	2	3			
	3	2			

**Enrolling for optional "Special Honors Paper" in Semester 3, 4, and 5.	Above 70%: 3 STARs Above 60%: 2 STARs Above 50%: 1 STAR	8 STARs
---	---	---------

^{*}In identified journals only. No. of STARs to be decided by the Institute Committee.

#In identified events by the institute

^{**}This special paper will cover all core courses in the semester and its difficulty level will be higher than the normal end semester examination paper. The question paper will be of GATE standard.

Activity Based Liberal Learning about Life, Literature and Culture (ABLL@LLC)

"Education will fail ignominiously in its objective if it manufactures only a robot and called him an economic man stressing the adjective economic and forgetting the substantive man. A university cannot afford to ignore the cultural aspects of education whatever studies it specializes in. Science is a means, not an end. Whereas culture is an end in itself. Even though you may ultimately become a scientist, a doctor, or an engineer, you must, while in college, absorb fundamental values which will make you a man of culture..."

Kulpati Dr. K. M. Munshi

How aptly our visionary founder has given direction to the education. His wisdom towards education inspires, encourages us to experiment in the field of education, to make it as relevant and helpful to the society as possible. Mahatma Gandhi once quoted, "By education I mean an all-round drawing out of the best in man; body, mind and spirit."

Recently announced National Policy on Education-2019, reconfirms this and profoundly stresses the need of liberalizing the higher education including professional education. It quotes, "Higher education must develop good, well-rounded and creative individuals, with intellectual curiosity, spirit of service and a strong ethical compass". Moving towards a more liberal undergraduate education is one of the most important features of this policy. It narrates, "The needs of the 21st century require that liberal broad-based multidisciplinary education become the basis for all higher education. This will help develop well-rounded individuals that possess critical 21st century capacities in fields across arts, humanities, sciences, social sciences, and professional, technical, and vocational crafts, an ethic of social engagement, and rigorous specialization in a chosen field or fields. Such a liberal education would be, in the long run, the approach across all undergraduate programs, including those in professional, technical, and vocational disciplines. Imaginative and flexible curricular structures will enable creative combinations of disciplines for students to study, thus demolishing currently prevalent rigid boundaries and creating new possibilities for lifelong learning. The notion of 'knowledge of many arts'- i.e. what is called 'liberal arts' in modern times – must be brought back to Indian education, as it is exactly the kind of education that will be required for the 21st century."

We at Bhavan's SPIT, make sincere attempt to blend engineering education appropriately with arts, humanities, crafts, ethic of personal and social engagement to ensure holistic development of the learner. We have carefully designed liberal learning courses covering Life, Literature, and Culture (LLC @ LLC) for all the semesters of the program. Learner concurrently studies these courses. These courses broadly fall under LLC. Further each module has multiple courses of 1 or 2 credits (An engagement of 35-40 hours is expected to earn one credit). Every learner at SPIT is expected to take 1 such course on LLC every semester. We strongly believe that these EIGHT liberal learning modules will help us to appropriately blend the professional education as envisaged by the National Policy Makers.

SUGGESTED LIST OF COURSES (INDICATIVE ONLY)

Open Electives I and II

OEXXX	IoT and I ² oT
OEXXX	Cloud Computing
OEXXX	Augmented and Virtual Reality
OEXXX	3D Printing
OEXXX	Industrial Automation
OEXXX	Artificial Intelligence and Machine learning
OEXXX	Cyber Security & Digital Forensics
OEXXX	Block Chain Technology
OEXXX	E-Mobility
OEXXX	Smart Grid
	courses floated as Open elective by the Departments
OEXXX	Consumer Electronics
OEXXX	Robotic & Machine Vision
OEXXX	Data Structures and Algorithms
OEXXX	Information and Network Security
OEXXX	Human Machine Interaction
OEXXX	Software Engineering
OEXXX	Database Management Systems
OEXXX	Internet Technology
OEXXX	Data Analytics
	Any other 12 weeks Course approved by the Dean Academics and Principal

Open Elective III-Basic Science Electives

OEMA1	Advanced Statistics
OEAS1	Biology for Engineers-Part II
OEAS2	Climate and Earth Science
OEMA2	Engineering Optimization
OEAS3	Environment and Sustainability
OEAS4	Semiconductor Optoelectronics
OEMA3	Numerical Methods for Engineers
OEXXX	Any other Course approved by the Dean Academics and Principal

Open Elective III-Engineering Science Electives

OEXXX	Thermal & Fluid Engineering
OEXXX	Manufacturing Processes
OEXXX	Electric Drives
OEXXX	Engineering Materials
OEXXX	Data Structures
OEXXX	Algorithms
OEXXX	Sensors and Actuators
OEXXX	Communication Engineering
OEXXX	Any other Course approved by the Dean Academics and Principal

Open Elective IV: Humanities and Management Related

OEHXX	Management Principles
OEHXX	Research Methodology
OEHXX	IPR and Patents
OEHXX	Law for Engineers
OEHXX	Organizational Behavior
OEHXX	Leadership, Innovation and Entrepreneurship
OEHXX	Project Management
OEHXX	Finance for Engineers
OEHXX	Any course approved by Dean Academics and Principal

Humanities and Social Sciences Electives

Special Tracks

	HSSE-I		HSSE-II		HSSE-III
HSE11	Law for Engineers-	HSE12	Law for Engineers- II	HSE13	Law for Engineers- III
HSE21	Finance for Engineers-I	HSE22	Finance for Engineers-II	HSE23	Finance for Engineers-III
HSE31	Psychology-I	HSE32	Psychology-II	HSE33	Psychology-III
HSE41	Economics-I	HSE42	Economics-II	HSE43	Economics-III
HSE51	Ancient India	HSE52	Medieval India	HSE53	Modern India
HSE6X1	Language X-I	HSE6X2	Language X-II	HSE6X3	Language X-III

Common Pool for HSSE-I, II and III (May be studied on MOOC's)

HSEC01	Film Appreciation	HSEC02	Universal Values
HSEC03	Game Theory	HSEC04	Human Behavior
HSEC05	Ecology and Society	HSEC06	Energy Economics and Policies
HSEC07	Drama Appreciation	HSEC08	Political Ideologies
HSEC09	Justice	HSECXX	Any other Approved Course
HSEXX	Any course from HSSE-I		

ABLL@LLC

- Students are required to earn 6 credits through 8 semesters.
- If student is not able attendance/performance requirements, he/she will be dropped from the course and will have to enroll in additional course in the next semester.
- A student can enroll in maximum 2 courses in a semester.

Table 2: SEVA

	SEVA (Social Empowerment through Various Activities)					
Module	Title	Courses	CODE			
		Study of Green & White Revolutions in India	SV10			
SEVA-I	SOCHO	Government Missions [Study of any 2]	SV11			
	BHARAT	Study of India's top 2 problems	SV12			
		Study of World's top 2problems	SV13			
		How Government Works? [Study of one department of the Central/ State Government]	SV14			
		Study of one of the identified Books	SV15			
		Study of two National policies	SV16			
		Any other activity approved by Dean Academics	SV1X			
Module	Title	Courses	CODE			
		River/Beach/Mohalla/School/Campus/Govt offices Cleaning	SV20			
SEVA-II	SWACCH BHARAT	Waste Segregation Surveys	SV21			
		NSS camp in village for a week	SV22			
		Medical camps in schools	SV23			
		First Aid training for a week	SV24			
		Surveys and Estimation for roof top solar	SV25			
		NCC participation	SV26			
		Any activity approved by Dean Academics	SV2X			
Module	Title	Courses	CODE			
		Mentoring of School Children	SV30			
G. T.	g	Digital Literacy for yielders	SV31			
SEVA-III	SHIKSHIT BHARAT	Value addition for deprived schools	SV32			
		Mentoring junior (first year) students at SPIT	SV33			
		Teaching Assistantship at SPIT	SV34			
		Development of learning material for schools/ITIs	SV35			
		Participation in "Teach-for-India" movement	SV36			

		Any other activity approved by Dean Academics	SV3X
Module	Title	Courses	CODE
		Great Grass Root Innovations	SV40
CENA IN	GAMPUPPMA	Innovation and Creativity	SV41
SEVA-IV	SAMRUDDHA BHARAT	Critical Thinking and Problem solving	SV42
		Team work and collaboration	SV43
		Leadership & Entrepreneurship	SV44
		Design Thinking	SV45
		Study of one of the identified books	SV47
		Work with START-UP at SPIT	SV48
		Any other activity approved by Dean Academics	SV49

Table 3: SATVA

SATVA (Self Accomplishment Through Various Activities)					
Module	Title	Courses	CODE		
		Values and Ethos of Bhavan	ST10		
		Essence of Indian traditional knowledge	ST11		
SATVA-I	SANSKARIT	Philosophy of religion (any)	ST12		
	BHARAT	Study of Life Management / Kindle Life / Life Empowerment and Enriching Program or any other book cited.	ST13		
		Study of any of GREAT sons of INDIA [Ex. Gandhi, Ambedkar, Phule, Savarkar, Sardar Patel, Nehru, Shivaji, JRD Tata etc]	ST14		
		Any other course approved by Dean Academics	ST1X		
SATVA-II	SAKSHAM BHARAT	Target based Physical Exercise for example-Running [Test 5 kms in a stretch], Swimming [Test 1 km in a stretch], Walking [Test 20 kms in a stretch], Trekking [7days], Cycling	ST20		
		Sports – Representation of Institute at University level/Inter college level and above in ANY sport	ST21		
		Participation in National Tech Fest, AICTE-Hackathon, Industry floated global and national competitions, Robocon, BAHA etc	ST22		
		Yoga vidya -I	ST23		
		Any other activity approved by Dean Academics	ST2X		
GATIVA W	GVVPPP	Institute representation in prestigious cultural fests/competitions	ST30		
SATVA-III	SUNDER BHARAT	Dance [Bharatanatyam /Kathak /Lavani /Western Dance]. Only for beginners	ST31		
		Learning musical instruments [Any type]. Only for beginners.	ST32		
	Film Appreciation/Dramatics/Seeing through Painting				
		Making short film/Photography	ST34		
		Yogvidya-II	ST35		

		Any other activity approved by Dean Academics and DOSA	ST3X
		Food that Heals	ST40
SATVA-IV	SURAKSHIT	Personal and Social Hygiene	ST41
	BHARAT	Intellectual Property Rights	ST42
		Etiquette and Conversational skills	
		Basics of Ayurveda	ST44
		Study of one of the identified Books	ST45
		Any other course approved by Dean Academics	ST4X

Indicative SCOPE Certification

Minor/SCOPE Certification

Minor/SCOPE Track	Partner Institute if any.	Module	C
G		Data Structures and Algorithms	MN11
Computer Engineering	SPIT	Database Management Systems	MN12
		Machine Learning	MN13
		Internet Technology	MN14
T 1 . ' 1 T M	CDVD	Application Specific System Design	MN21
Industrial IoT	SPIT	Embedded "C" Programming & Real- time Software Development	MN22
		Software Design for Discrete time Control Algorithms	MN23
		Industrial Internet of Things (IIoT) System design and Applications	MN24
	S.P. Jain Institute of	Finance and cost Management	MN31
Management	Management and Research [SPJIMR]	Supply Chain Management, operations and project Management	MN32
		IT for Business, HR and Organization	MN33
		Marketing	MN34
		UX Design & Digitalization	SC11
User Experience	ImaginXP, Pune	Empathy & Its Tools	SC12
(UX) Design	magmar, rune	User Research & Its Application	SC13
		Design Thinking & Its Applications	SC14

CURRICULUM SCHEME FOR UNDERGRADUATE ACADEMIC PROGRAM AT SPIT

2021-ITERATION: B.Tech. (Computer Science and Engineering [AIML])

Nomenclature of the Courses

BSC	Basic Science Course	PC	Program Core
BSE	Basic Science Elective	PE	Program Elective
ESC	Engineering Science Course	MLC	Mandatory Learning Course
ESE	Engineering Science Elective	SCOPE	Skill Certification for Outcome based Professional Education
SBC	Skilled Based Course	OE	Open Elective
ABL-SATVA	Self- Accomplishment Through Various Activities	HSSE	Humanities and Social Science Elective
ABL-SEVA	Social Empowerment Through V	arious Activ	vities

Abbreviations

L	Lecture Hour	О	Other Work (Self Study)
T	Tutorial Hour	Е	Total Engagement in Hours
P	Laboratory Hour	С	Credit Assigned

			Sem I						
No	Type	Code	Course	L	Т	P	О	E	C
1	BSC	MA101	Engineering Calculus	3	1	0	8	12	4
2	BSC	AS102	Engineering Chemistry	2	0	2	3	07	3
3	BSC	AS103	Biology for Engineers	2	0	0	3	05	2
4	ESC	AS105	Engineering Mechanics	2	0	2	4	08	3
5	ESC	CS101	Problem solving using Imperative Programming	2	0	4	4	10	4
6	ESC	EC101	Digital Systems and Microprocessors	3	0	2	5	10	4
7	SBC	AS107	Communication Skills	1	0	2	2	05	2
			TOTAL	15	1	12	29	57	22

			Sem II						
No	Type	Code	Course	L	Т	P	О	E	C
1	BSC	MA102	Differential Equations and Complex Analysis	3	1	0	8	12	4
2	BSC	AS101	Engineering Physics	2	1	2	5	10	4
3	ESC	AS104	Engineering Graphics	1	0	2	2	05	2
4	ESC	ET101	Basic Electrical Engineering	3	0	2	6	11	4
5	ESC	CS102	Problem Solving using OOP	2	0	4	4	10	4
6	SBC	AS106	Skill Shop	0	0	2	0	02	1
7	ABL	SV1X/ST1X	SEVA-I or SATVA-I	0	0	0	2	02	1
			TOTAL	11	2	12	27	52	20

			Sem III						
No	Type	Code	Course	L	T	P	O	E	C
1	BSC	MA203	Probability and Statistics	3	0	0	5	08	3
1	BSC*	MA202	Foundation of Mathematics-I*	2	1	0	6	09	3
2	PC	CS201	Discrete Structures and Graph Theory	3	0	0	4	07	3
3	PC	CS202	Data Structures	3	0	2	5	10	4
4	PC	CS203	Computer Architecture and Organization	3	0	2	4	09	4
5	PC	CS204	Database Management Systems	3	0	2	5	10	4
6	ABL	SVXX/ STXX	SEVA II or III /SATVA II or III	0	0	0	3	03	1
7	HSSE	HSEX1	2	0	0	3	05	2	
	·		17	0	6	29	52	21	

^{*}Only for Lateral Entry Students

			Sem IV						
No	Type	Code	Course	L	Т	P	O	E	C
1	BSC	MA201	Linear Algebra	2	0	2	5	09	3
1	BSC*	MA204	Foundation of Mathematics-II	3	0	0	6	09	3
2	PC	CS205	Design and Analysis of Algorithms	3	0	2	5	10	4
3	PC	CS206	Operating Systems	3	0	2	5	10	4
4	PC	CS207	Computer Communications and Networks	3	0	2	5	10	4
5	SBC	CS208	Mini Project-I	0	0	0	4	04	2
6	ABL	SVXX/STXX	SEVA II or III /SATVA II or III	0	0	0	3	01	1
7	HSSE	HSEX2	HSS-II	2	0	0	3	05	2
8	SBC	AS201	Professional Communication Skills	1	0	2	2	05	2
9	S/M	SCX1/MNX1	SCOPE-I/Minor-I						3
		,	TOTAL	14	0	10	32	54	22

^{*}Only for Lateral Entry Students

			Summer term for HSC students						
No	Type	Code	Course	L	T	P	0	E	C
1	MLC	AS202	Constitution of India	1	0	0	05	06	NC

	Summer term (For Lateral Entry Students)									
No Type Code Course L T P O E C									С	
1	BSC	MA201	Linear Algebra	2	0	2	5	09	3	
1	BSC	MA203	Probability and Statistics	3	0	0	5	08	3	
2	MLC	AS202	Constitution of India				06	06	NC	

			Sem V						
No	Type	Code	Course	L	Т	P	O	E	C
1	PC	AI301	Theory of Computation	3	0	0	6	9	3
2	PC	AI302	Fundamentals of signal & Image Processing	3	0	2	5	10	4
3	PC	AI 303	Fundamentals of AI	3	0	2	5	10	4
4	PC	AI304	Neural Network & Fuzzy Logic	3	0	2	5	10	4
5	SBC	AI 305	Internet Technology Lab	1	0	2	5	08	2
7	HSSE	HSEX3	HSS-III	2	0	0	3	05	2
8	ABL	SVXX/STXX	SEVA II or III /SATVA II or III	0	0	0	3	3	1
9	S/M	SCX2/MNX2	SCOPE-II/Minor-II						3
		7	TOTAL	15	0	8	29	52	20

	Sem V	I (Cat 1- For St	udents who have NOT preferred	seme	ster	long i	intern	ship)	
No	Type	Code	Course	L	T	P	О	E	C
1	OE	OEXXX	Open Elective-I	2	0	2	4	8	3
2	PC	AI306	Distributed Computing	3	0	2	5	10	4
3	PC	AI307	Machine Learning	3	0	2	5	10	4
4	PE	AI3X1	PE-I	2	0	2	4	8	3
5	PE	AI3X2	PE-II	2	0	2	4	8	3
6	SBC	AI308	Main Project-Stage-I	0	0	0	8	8	3
7	ABL	SVXX/STXX	SEVA II or III /SATVA II or III	0	0	0	3	3	1
8	S/M	SCX3/MNX3	SCOPE-III/Minor-III						3
		Т	OTAL	12	0	10	33	55	21

	Sem VI (Cat 2-For Students who have preferred semester long internship)											
No	Type	Code	Course	L	T	P	O	E	C			
1	PE*	AI3X1	PE-I	2	0	2	4	8	3			
2	PE*	AI3X2	PE-II	2	0	2	4	8	3			
4	SBC	AI309	Research Internship	0	0	0	40	40	15			
5	S/M*	SCXX/MNXX	SCOPE-III/Minor-III						3			
	TOTAL 4 0 4 48 56 21											
	*To be completed online mode or allied courses from MOOCs											

			Sem VII						
No	Type	Code	Course	L	Т	P	О	E	C
1	PC	AI401	Natural Language Processing	2	0	2	4	8	3
1	OE	OEXXX	OE-II	2	0	2	4	8	3
2	OE	OEXXX	OE-III*	2	0	2	4	8	3
3	PE	AI4X3	PE-III	2	0	2	4	8	3
4	PE	AI4X4	PE-IV	2	0	2	4	8	3
5	SBC	AI402	Main Project Stage-I/ Main Project Stage- II	0	0	0	6	6	3
6	ABL	SVXX/STXX	SEVA-IV/SATVA-IV	0	0	0	4	4	1
7	S/M/H	SCX4/MNX4 /HOXX	SCOPE-IV/Minor-IV/Honors-I						3
	TOTAL 19								
*OE	E-III must	be from Basic S	Science Elective or Engineering Sci	ence E	lecti	ve	•		

	Sem VIII (Option A: Cat1/Cat2)											
No	Type	Code	Course	L	Т	P	О	Е	C			
1	PC	AI403	Human Machine Interaction	2	0	2	4	8	3			
2	OE *	OEHXX	OE-IV	2	0	2	4	8	3			
3	PE	AI4X5	PE-V	2	0	2	4	8	3			
4	PE	AI4X6	PE-VI	2	0	2	4	8	3			
5	SBC	AI404	Main Project Stage-II	0	0	0	6	6	3			
6	Н	HOXX	Honors-II						3			
	*May b	e taken from MO	OOCs, Essentially Humanities, Mana	ageme	ent re	lated						
		Т	OTAL						15			

	Sem VIII (Option B: Only for Cat1 students)											
No	Type	Code	L	T	P	О	E	C				
1	SBC	AI405	Industry Internship/ Major Project	0	0	0	36	36	15			
3	Н	HOXX	Honors-II						3			
	*May b	e taken from MO	OOCs, Essentially Humanities, Mana	ageme	ent re	lated						
						40	15					

The 'Major Project' in the "Option B" must be completed from an institute of national interest. If a student wishes to complete a Major Project under the mentorship of SPIT faculty, approval from the Dean Academics and Research is required.

Table 2 - PROGRAM ELECTIVES

Sem	V	I	v	II	V	III			
Program	Program	Program	Program	Program	Program	Program			
Elective / Thread	Elective-I	Elective-II	Elective- III	Elective- IV	Elective- V	Elective- VI			
Industry	1T11:	1T12:	1T13:	1T14:	1T11,1T12,	1T11,1T12,			
-driven	[AI311]	[AI312]	[AI413]	[AI414]	1T21,1T22,	1T21,1T22,			
AIML	Computer	Big Data	Deep	Data	1X,1Y	1X,1Y			
	Vision	Analytics	Learning	Warehousing					
				and Business					
				Intelligence					
Emergin	1T21:	1T22:	1T23:	1T24:					
g AIML	[AI321]	[AI322]	[AI423]	[AI424]					
	Explainable	Blockchain	Data-Driven	AI for					
	Artificial	Technology	Internet of	Healthcare					
	Intelligence		Things	Analytics					
General	1T11,1T12,	1T11,1T12,	1T13,1T14,	1T13,1T14,					
	1T21,1T22,	1T21,1T22,	1T23,1T24	1T23,1T24					
	1X,1Y	1X,1Y	1P,1Q	1P,1Q					

In this case the Computer Science & Engineering Department has to 1T11,1T12,1T21,1T22, 1X,1Y, 1T13,1T23,1T14,1T24, 1P,1Q i.e. 12 Courses to take care of 6 Elective Baskets, where,

1X: Software Engineering

1Y: User Experience Design

1P: Information System and Security

1Q: Advanced Algorithm and Complexity

Semester-I

	Sem I									
No	Type	Code	Course	L	Т	P	О	E	C	
1	BSC	MA101	Engineering Calculus	3	1	0	8	12	4	
2	BSC	AS102	Engineering Chemistry	2	0	2	3	07	3	
3	BSC	AS103	Biology for Engineers	2	0	0	3	05	2	
4	ESC	AS105	Engineering Mechanics	2	0	2	4	08	3	
5	ESC	CS101	Problem solving using Imperative Programming	2	0	4	4	10	4	
6	ESC	EC101	Digital Systems and Microprocessors	3	0	2	5	10	4	
7	SBC	AS107	Communication Skills	1	0	2	2	05	2	
	,		TOTAL	15	1	12	29	57	22	

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned				
Code		L	Т	P	O	E	L	Т	P	Total	
		3	1	0	8	12	3	1	0	4	
(BSC)		Examination Scheme									
	Engineering Calculus	Comp]	ISE			E	ESE	Total		
MA101		Theory			100		100		200	400	
WIATUI		Laboratory								-	

Pre-requisite	Course Codes, if any.								
Course Objec	Course Objective: To develop mathematical skills for solving engineering problems.								
Course Outco	Course Outcomes (CO):At the End of the course students will be able to:-								
MA101.1	Differentiate a function partially.								
MA101.2	Find extreme values of a given function.								
MA101.3	Find the nth order derivative of a given function.								
MA101.4	Expand a given function as a power series.								
MA101.5	Calculate the value of integrals in one variable using different techniques and solve multiple integrals in various coordinate systems.								
MA101.6	Calculate Area using double integration.								

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MA101.1	3											
MA101.2	3	1										
MA101.3	2											
MA101.4	2											
MA101.5	3											
MA101.6	2	1										

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
MA101.1						
MA101.2						
MA101.3						
MA101.4						
MA101.5						
MA101.6						

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember •	Understand ~	Apply	Analyze	Evaluate	Create
------------	---------------------	-------	---------	----------	--------

		Theory Component						
Module No.	Unit No.	Topics	Ref	Hrs.				
1	Title	Partial Differentiation	1,2,3	10				
	1.1	Partial derivatives of first and higher order. Partial derivatives of composite functions.		4				
	1.2		3					
	1.3 Application of partial derivatives: i) Local Maxima and Minima of functions of two variables. ii) Lagrange's Method of undetermined multipliers.							
2	Title	Successive Differentiation and Series	1,2,3	10				
	2.1	Successive Differentiation: Proofs of nth derivatives of standard functions. Use of De Moivre's theorem and partial fractions to calculate nth derivatives of given functions.		3				
	2.2	Leibnitz's Theorem on nth derivative of product of two functions		2				
	2.3	Infinite series: 1) Maclaurian's series (without proof) and derivation of series of some standard functions using Maclaurin series. Expansion of functions in powers of x by using i) Standard series method ii) Method of differentiation and integration. 2) Taylor's series and applications.		5				
3	Title	Integral Calculus (one variable)	1,2,3	8				
	3.1	Gamma functions: properties of gamma functions and integrals reducible to gamma functions.		2				
	3.2	Beta functions: properties, relation between Beta and Gamma functions, integrals reducible to Beta functions, Duplication formula.		4				
	3.3	Differentiation under Integral sign: differentiating integrals with constant limits of integration for one parameter.		2				
4	Title	Integral Calculus (multi variable)	1,2,3	14				
	4.1	Tracing of curves. Sketching standard solids (Spheres, Ellipsoids, Cylinders, Cones, Tetrahedrons, planes)		2				
	4.2	Double Integration: definition and evaluation. Evaluate by changing the order of integration and by changing to polar form.		7				
	4.3	Application of double integral to finding area of given regions.		2				
	4.4	Triple integration: definition and evaluation (Cartesian and cylindrical coordinates).		3				

5	Self Study	 1.1 Partial differentiation of implicit functions. 2.3 Series by method of Substitution 3.2 Proof of Duplication Formula 3.3 Differentiation under Integral sign using two parameters and variable limits 4.1 Finding lengths of curves in Cartesian and polar form 	1,2,3	08
Total				42*

^{*}Total of 42 hours does not include self study hours.

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Higher Engineering Mathematics	Forty Fourth	Dr. B. S. Grewal	Khanna Publications	2020

Reference Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Advanced Engineering Mathematics	Twenty Eighth	H.K Das	S. Chand	2014
2	Advanced Engineering Mathematics	Tenth	Erwin Kreysizg	John Wiley & Sons	2011
3	Advanced Engineering Mathematics	Fourth	Jain and Iyengar	Narosa Publications	2014

Course (Category)	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned				
Code		L	T	P	o	E	L	T	P	Total
		2	0	2	3	7	2	0	1	3
BS	Engineering Chemistry	Examination Scheme								
		Component			ISE		MSE		ESE	Total
AS102		Theory			50		50		100	200
		Laboratory			50				50	100

Pte-requisit	e Course Codes, if any. HSC level Chemistry						
Course Obj	ective: To provide necessary background of Chemistry suited for relevant areas of engineering						
Course Out	comes (CO):At the End of the course students will be able to						
AS102.1	Relate thermodynamic principles and laws to crucial applications like heat engines (Understanding)						
AS102.2	Summarize properties and applications of different materials like polymers, ceramics, alloys nanomaterials, conductors and insulators (Understanding)						
AS102.3	Identify methods for corrosion control based on knowledge of different types of corrosion and factors affecting rate of corrosion (Application)						
AS102.4	Compare different sources of energy like conventional fossil fuels, alternative fuels, batteries and fuel cells with respect to availability, working principles, constitution, efficiency of performance and environmental impact (Understanding)						
AS102.5	Apply knowledge of electro-chemistry and green chemistry in the interest of public health and environment (Application)						
AS102.6							
AS102.7	AS102.7 Estimate key properties of lubricants like flash point, viscosity and acid value						
AS102.8	Estimate molecular weight of polymer						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AS102.1	1											
AS102.2	1											
AS102.3	2											
AS102.4	2						1					
AS102.5	1						2					
AS102.6				1								
AS102.7				1								
AS102.8				1								

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
AS102.1						
AS102.2						
AS102.3						
AS102.4						
AS102.5						
AS102.6						
AS102.7						
AS102.8						

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create	
----------	------------	-------	---------	----------	--------	--

		Theory Component					
Module No.	Unit No.	Topics	Ref.	Hrs.			
	Title	Thermodynamics					
	1.1	Introduction, Terminology, Concepts of Internal Energy and Thermodynamic equilibrium, Zeroth and First Law of Thermodynamics, Implications and Limitations of First law	1,3				
1		Concept of Enthalpy, Joule Thomson Effect, Carnot's Cycle, Carnot's theorem and related numericals, Second Law of Thermodynamics	's Cycle, Carnot's				
	1.3	Applications of thermodynamic principles to the working of refrigerator and air conditioner	1,3				
	Title	Polymers					
2	2.1	Introduction, Effect of heat on polymers : Glass transition temperature and melting with significance;	1,2,3	3			
	2.2	Conducting polymers, Liquid crystal polymers, Engineering Polymers	1,2,3				
	Title	Corrosion					
	3.1	Introduction, Dry corrosion (i) Due to oxygen (ii) Due to other gases	1,2				
	3.2	Electrochemical corrosion and mechanism, Galvanic, differential aeration corrosion, Significance of galvanic series for corrosion phenomenon	1,2				
3	3.3	Factors affecting rate of corrosion (i)Position in galvanic series, (ii) relative areas of anode and cathode, (iii) conductance of medium	1,2	5			
	3.4	Methods to decrease the rate of corrosion: Material selection, Proper designing, Cathodic protection- i) Sacrificial anodic protection ii) Impressed current method, Metallic coatings, Cathodic and anodic coatings (Galvanization and Tinning: principle and application only)	1,2				
	Title	Energy Sciences					
4	4.1	Definition and classification of fuels, Calorific value: Definition, Gross or Higher calorific value & Net or lower calorific value, Dulong's formula & numerical for calculations of Gross and Net calorific values.	1,2	5			
	4.2	Knocking, Octane number, Cetane number, Antiknock agents, unleaded petrol	1,2				

	4.3	Combustion- Calculations for requirement of only oxygen and air (by weight and by volume only) for given solid & gaseous fuels.	1,2	
	4.4	Disadvantages of fossil fuels, Alternative (Green) Fuels: Power alcohol, Biomass, Biogas, Bio diesel, Natural Gas and CNG (Description, Utility, advantages and disadvantages)	1,2	
	Title	Batteries and Battery Technology		
	5.1	Introduction, Important terms, Nickel-Hydrogen(metal hydride), Rechargeable Lithium ion batteries	1,2	
5	5.2	Reserve Batteries, Fuel cells, characteristics, description, construction and working of Hydrogen-oxygen fuel cells, Types of fuel cells (in brief)	1,2	4
	5.3	Electrochemical sensors : Working principle, construction and applications	1,2	
	Title	Green Chemistry		
6	6.1	12 principles of green chemistry with examples, numericals on Atom Economy, Green Solvents (Water, Supercritical Fluids),	1,2	3
	Title	Engineering Materials		
	7.1	Eutectic mixtures and soft solders, Advanced Ceramic materials and cermets: magnetic, electronic and electrical applications Carbon nanomaterials: Fullerenes and Carbon nanotubes, Structure, Properties and applications	1,2,3	
7	7.2	Insulators, Semiconductors and Superconductors: Thermal and electrical insulating materials and important engineering applications, Stoichiometric, defect and controlled valency semiconductors.	1,2,3	4
	7.3	Superconductors, perovskite structure and 1:2:3 compound YBa2Cu3O7-y, properties and applications	1,2,3	
8	Self Study	 Supramolecular polymers and their applications Anodic Protection as a corrosion control strategy Current research and advances in fuel cells Commercial applications of superconducting materials Tops down vs bottoms up approach to nanotechnology and applications of nanoparticles other than carbon 		4*
		Total (* Not Inc	luded)	28

Laboratory Component

Sr. No.	Title of the Experiment
1	Determination of total, temporary and permanent hardness of water sample
2	Removal of hardness using ion exchange column
3	Molecular weight determination of polymers by Oswald's Viscometer
4	To determine flash point of a lubricating oil
5	Determination of Viscosity of oil by Redwood Viscometer
6	Estimation of acid value of lubricant
7	Determination of amount of strong acid present in a solution using a conductometer
8	Determination of strength of acid using a pH meter
9	Estimation of Copper in brass by Iodometric Titration
10	Analysis of Flue gas for its composition (by Orsat's Apparatus)
11	Estimation of Iron in plain Carbon steel
12	Determination of COD of wastewater sample

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Engineering Chemistry	Eleventh	P.C.Jain & M.Jain	Dhanpat Rai & Co. (Pvt) Ltd.	2014
2	A Textbook of Engineering Chemistry	Twelfth	S.S.Dara & S.S.Umare	S. Chand & Co.	2014
3	A Textbook of Engineering Chemistry	Third	S Chawla	Dhanpat Rai & Co. (Pvt) Ltd.	2015

Reference Books

Si	Little	Edition	Authors	Publisher	Year
1	Physical Chemistry	Eleventh	Peter Atkins	Oxford University Press	2017

Course (Category) Code	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
		L	T	P	О	E	L	T	P	Total
(BSC)	Biology for Engineers	2	0	0	3	5	2	0	0	2
		Examination Scheme								
		Component			ISE		MSE		ESE	Total
AS103		Theory			50		50		100	200
		Laboratory			-				-	-

Pre-requisite Course Codes, if any.		HSC level Biology				
Course Objective: To provide engineering perspective towards the biological principles and systems						
Course Outcomes (CO):At the End of the course students will be able to						
AS103.1 understand basic biological principles and organizational structure of living systems at molecular level.						
AS103.2	comprehend basic biological principles and organizational structure of living systems at cellular level					
AS103.3	know Energy transformation	and information processing in biological systems				
AS103.4	appreciate biological process with engineering perspective					
AS103.5	identify significance of Gene	e, Blood and Skin in human health system.				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AS103.1	3											
AS103.2	3											
AS103.3	2											
AS103.4	2	1										
AS103.5	2	1										

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
AS103.1						
AS103.2						
AS103.3						
AS103.4						
AS103.5						

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Unders	stand Apply	Analyze	Evaluate	Create
-----------------	-------------	---------	----------	--------

	Theory Component							
Module No.	Unit No.	Topics	Ref.	Hrs.				
	Title	Bio-molecules and bio-polymers: Structure and Function	1,3					
1	1.1	Organic and inorganic molecules, Unique Properties of water						
1.2		Carbohydrates, Lipids, Amino Acids and proteins, Nucleic Acids (DNA and RNA)		4				
	Title	Levels of organization of life	1,3					
2	2.1	Cell as a basic unit of life, prokaryotic and eukaryotic cells, microbes, plant and animal cells; Cell organelles – structure and function; Cell membrane.		4				
	2.2	Levels of organization: cells, tissues, organs, systems & organism						
	Title	Energy transformations	1,3					
3	3.1	Energy transformations in Chloroplast: Photosynthesis (photochemical & biochemical phase) and ATP generation, Aerobic and anaerobic systems		5				
	3.2	Energy transformations in Mitochondria: Cellular respiration (glycolysis and Kreb cycle) and ATP generation						
	Title	Transport and Defense mechanisms	1,3					
4	4.1	Transport Phenomena in Biological Systems: Membrane channels and ion channels; Fluid flow and mass transfer (nutrients & ions); In plants: Xylem and Phloem; In animals: Blood and Lymph Transport of gases: Oxygen and Carbon dioxide Heat Transport - Body temperature regulation.		5				
	4.2	Defense mechanisms: In plants: Herbivory, secondary metabolites In animals: Innate and Adaptive immune systems						
	Title	Engineering perspectives of biological sciences:	1,3					
5	5.1	Biology and engineering crosstalk – At cell level: Hybridoma technology At tissue level: Plant Tissue Culture, Animal Tissue Culture;		_				
	5.2	Tissue Engineering: Principles, methods and applications Introduction to Biomimetics and Bio-mimicry, nano-biotechnology		6				

	Title	Role of Gene, Blood and Skin in human health system.	2,4	
6	6.1	Introduction to Genetic Engineering. Blood Type, Complete Blood Count Test and Abnormalities.		4
	6.2	Structure of Skin, Functions of Skin. Engineering methods for identification of Skin diseases.		
7	Self Study	Introduction to Biosensors, transducers, amplifiers; Introduction to medical imaging and different medical Imaging modalities; Review of Signals and system; Electro Physiological Signal Analysis.		4*
	•	Total (* Not	included)	28

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Molecular Cell Biology	Fourth	Lodish H, Berk A, Zipursky SL	W. H. Freeman	2000
2	Textbook of Anatomy and Physiology for Nurses and allied Health Sciences	First	Indu Khurana & Arushi	CBS Publsihers & Distributors Pvt Ltd	2019

Reference Books

Sr. No.	Title	Edition	Authors	Publisher	Year
3	Lehninger Principles of Biochemistry	Fourth	Nelson, D. L., & Cox, M. M.	Freeman	2004
4	Introduction to Biomedical Engineering.	Third	Joseph D. Bronzino, John Enderle	Academic Press	2012

Course (Category)	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned				
Code		L	T	P	O	E	L	T	P	Total
		2	0	2	4	8	2	0	1	3
(ESC)		Examination Scheme						•		
	Engineering Mechanics	Component			ISE		MSE ESE Total		Total	
A C107		Theory			50		50		100	200
AS105		Laboratory			50				50	100

Pre-requisit	e Course Codes, if any.							
	Course Objective: To provide knowledge of force analysis methods required in engineering applications as solutions. Also, to develop analytical and computational ability.							
Course Out	comes (CO):At the End of the course students will be able to							
AS105.1	Draw free body diagram and determine reactive forces using conditions of equilibrium and Lami's theorem							
AS105.2	Determine coefficient of friction for various contact surfaces							
AS105.3	Analyze the three-dimensional system of space forces.							
AS105.4	Analyze the kinematics of particle and obtain the various parameters of motion.							
AS105.5	Determine Instantaneous centre of rotation (ICR).							
AS105.6	Design and conduct an experiment to demonstrate principles of statics and dynamics							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AS105.1	3	3										
AS105.2	3	3										
AS105.3	3	3										
AS105.4	3	3										
AS105.5	3	3										
AS105.6	3	3										

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
AS105.1	3					
AS105.2	3					
AS105.3	3					
AS105.4	3					
AS105.5	3					
AS105.6	3					

Remember	Understand	A Apply	Analyze	Evaluate	Create
----------	------------	---------	---------	----------	--------

		Theory Component		
Module No.	Unit No.	Topics	Ref.	Hrs
1	Unit1	Equilibrium of forces		
	1.1	Equilibrant force, conditions of equilibrium for concurrent forces, parallel forces and general force system, equilibrium of connected bodies, Lami's theorem.	1,3	8
	1.2	Types of supports, types of loads, Beams, Determination of reactions at supports for various types of loads on beams	3	
2	Unit2	Friction		_
	2.1	Introduction to Laws of friction, Cone of friction, Equilibrium of bodies on inclined plane, Application to problems involving wedges, ladders.	1,2	4
3	Unit3	Forces in space		5
	3.1	Rectangular Components of Forces in Space, Resultant of Space forces, Moment of a Force about a point, axis and line. Equilibrium of a particle in space.	1	
4	Unit4	Kinematics of Particle		8
	4.1	Motion along straight and curved path, Rectangular component of velocity and acceleration, Tangential & Normal component of acceleration, Motion curves(a-t, v-t, s-t curves), Projectile motion,	2,3	
5	Unit5	Kinematics of Rigid Bodies		3
	5.1	Instantaneous center of rotation for the velocity of bodies in plane motion, (up to 2 linkage mechanism)	3	
6	Self Study	 Applications of resultant of forces, concept of couple and moments, Centroid and center of gravity, analysis of trusses. Kinetics of rigid body, work energy principle. Principle of Law of Conservation of momentum, Impact and collision. 	1,2,3	6*
	1	Total (*Not inc	cluded)	28

Laboratory Component

Sr. No.	Title of the Experiment
1	Draw the force polygon and determine the equilibrant force for concurrent coplanar force system.
2	Use the conditions of equilibrium for parallel force system and determine the support reactions.
3	Apply the principle of moment for equilibrium of levers.
4	Determine the coefficient of friction for glass slab and a metal plate on an inclined plane.
5	Determine the axial forces using Lami's theorem for Jib crane apparatus.
6	Use the conditions of equilibrium for non-concurrent non-parallel force system and draw the force polygon.
7	Measure the acceleration due to gravity with the help of simple pendulum apparatus.
8	Determine the range of projectile and the time of flight for the projectile motion.
9	Verify the law of conservation of momentum and determine the coefficient of restitution for collision
10	(Plot the motion of projectile using air-cushion table apparatus.) A small project based on Engineering Mechanics concept.

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Vector Mechanics for Engineers statics and dynamics	Nineth	Beer and Johnston	McGraw Hill	2010
2	Engineering Mechanics	Fifth	Bhavikatti S and Rajsekharappa	New Age International	2009
3	Engineering Mechanics Statics and Dynamics	Fourteenth	A K Tayal	Umesh Publication, Delhi	2012

Reference Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Engineering Mechanic: Statics and Dynamics,	Fifth	E.W. Nelson, C.L. Best, W.G. McLean,	McGraw Hill	1998
2	Singer's Engineering Mechanics Statics and Dynamics	Third	Vijaya Kumar Reddy. K. and Suresh Kumar. J	BS Publication	2012

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	P	0	E	L	Т	P	Total
	Problem Solving using Imperative Programming	2	0	4	6	12	2	0	2	4
(ESC)		Examination Scheme								
		Comp	Component		ISE		MSE		ESE	Total
00101		Theory			-		-		-	-
CS101		Laboratory			300				100	400

Pre-requisite	Course Codes, if any.					
Course Object	Course Objective: To develop problem solving skills using imperative programming.					
Course Outco	omes (CO):At the End of the c	ourse students will be able to				
CS101.1	Explain the problem solving a	aspects using various programming paradigms.				
CS101.2	Solve real world problems usi	ing imperative programming approach.				
CS101.3	Solve problems using control	structures for real world problems.				
CS101.4	Solve problems using Arrays	and Text processing.				
CS101.5	CS101.5 Develop modular code for a given problem.					
CS101.6	Solve real world problems usi	ing Structures and Unions				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CS101.1	1											
CS101.2	2	2										
CS101.3	2	2										
CS101.4	2	2										
CS101.5	2	2										
CS101.6	2	2										

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
CS101.1	1(CS)/1(IT)	1(IT)	1(CS)/1(IT)				1(IT)
CS101.2	1(CS)/1(IT)	1(IT)	1(CS)/1(IT)			1(CS)	1(IT)
CS101.3	1(CS)/1(IT)	1(IT)	1(CS)/1(IT)			1(CS)	1(IT)
CS101.4	1(CS)/1(IT)	1(IT)	1(CS)/1(IT)			1(CS)	1(IT)
CS101.5	1(CS)/1(IT)	1(IT)	1(CS)/1(IT)			1(CS)	1(IT)
CS101.6	1(CS)/1(IT)	1(IT)	1(CS)/1(IT)			1(CS)	1(IT)

Remember Understand Apply	Analyze	Evaluate	Create	1
---------------------------	---------	----------	--------	---

		Theory Component						
Module No.	Unit No.	Topics	Ref.	Hrs.				
	Title	Introduction to Problem Solving and Programming Paradigms						
1	1.1	What is a Problem, Problem Solving Aspect, Top Down Design, Implementation of Algorithms, Characteristics of a good algorithm, what is a computer program, real life examples of programming, Computer based applications of programming, Steps followed in Program Development, Characteristics of good Program	3,4	2				
	1.2 Overview of Programming Paradigms - Declarative and Imperative, Problem solving using Algorithm and Flowcharts,							
	Title	Basic Elements of Computer Programming and Control flow						
2	2.1							
2	2.2	Branching Structures: if statement, if-else statement, multi-way decision, switch statement, continue statement, break statement Iterative Structures: while, do-while, for, nested loops	1,2	3				
	2.3 Problem solving using Control Structures for real world problems							
	Title	Problem Solving using Array Techniques						
	3.1	Introduction to Arrays: Declaration, Definition, accessing array elements, one-dimensional array, two-dimensional array, array of characters, Strings	1,2	2				
3	3.2	Classical Problem Solving using Arrays like Array Order Reversal, Array Counting or Histogramming, Finding the maximum number in a set.	1,2,4	2				
	3.3	Text Processing problems like finding length, keyword search, finding anagrams	1,2,4	2				
	Title	Problem Solving using Modular Approach						
4	4.1	Defining a Function, accessing a Function, Function Prototype, Passing Arguments to a Function, call by value, pointers and call by reference, Recursion	1,2	4				
	4.2	Problem solving using Functions and Recursive applications	1,2,4	3				
	Title	Structures and Unions						
5	5.1	Structures and Union: Declaration, Initialization, structure within structure, Array of Structure, Operation on structures, Concept of Union, Difference between structure and union,	1,2	3				
	5.2	Real world problems using Structures and Unions	1,2,4	2				
		•						

	I	Total (* not counted in total	hours)	28
6	Self Study	File handling: Types of File, File operation- Opening, Closing, Creating, Reading, Processing File, Command line arguments, Dynamic Memory Allocation	1,2,4	4*

Laboratory Component (Minimum 10 Laboratory experiments are expected)

Note: All problems should be implemented using C language.

Sr. No.	Title of the Experiment
1	Use the formatted input/output statements, operators and expressions of C language
2	Apply various control structures to solve given problems.
3	Apply the concept of functions to incorporate modularity.
4	Demonstrate the use of one-dimensional arrays to solve a given problem.
5	Demonstrate the use of two-dimensional arrays to solve a given problem.
6	Apply the concept of recursion to solve a given problem.
7	Implement various text processing problems.
8	Apply the concepts of structures/union to solve a given problem.
9	Demonstrate the use of pointers to solve a given problem.
10	Implement various operations on files to solve a given problem.

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Programming with C	Fourth	Byron Gottfried	McGraw Hill (Schaum's outline series)	2018
2	The C programming Language	Second	Kernighan, Ritchie	Pearson	2015
3	Foundations of Programming Languages	Second	Kent D. Lee	Springer	2017
4	How to Solve it by Computer	First	R.G. Dromey	Prentice Hall India	1998

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Let Us C	Sixteenth	Yashavant Kanetkar	BPB	2017
2	Programming Language Concepts	Third	Carlo Ghezi, Mehdi Jazayeri	John Wiley & Sons	2008
3	Computer Programming in C	Second	V. Rajaraman & Neeharika Adabala	PHI Learning, Eastern Economy Edition,	2014

Course (Category)	Course Name	Teach	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	P	О	E	L	T	P	Total	
		3	0	2	5	10	3	0	1	4	
(ESC)	Digital Systems and Microprocessor	Examination Scheme									
		Comp	onent	ISE		MSE		ESE		Total	
EC101		Theory		75		75		150		300	
		Labor	atory	5	0			50		100	

Pre-requis	Pre-requisite Course Codes, if any.						
	Course Objective: To prepare students to perform the analysis and design of various digital electronic circuits and introduce them to the concept of microprocessors						
Course Ou	Course Outcomes (CO):At the End of the course students will be able to						
EC101.1	Explain various logic gates, SOP, POS forms and their minimization with k- map for given combinational circuits.						
EC101.2	Construct combinational circuits using given MSI devices.						
EC101.3	Apply the knowledge of flip-flops and MSI to design sequential circuits						
EC101.4	01.4 Compare the logic families based on their characteristics						
EC101.5	CC101.5 Comprehend the architectural features of 8085 with basic assembly language programming						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC101.1												
EC101.2												
EC101.3												
EC101.4												
EC101.5												

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC101.1							
EC101.2							
EC101.3							
EC101.4							
EC101.5							

		Theory Component		
Module No.	Unit No.	Topics	Ref.	Hrs.
	Title	Combinational Circuits		
1	1.1	Logic Gates: Basic gates, Universal gates, Sum of products and products of sum, minimization with Karnaugh Map (up to four variables), Quine Mc'Clusky method and realization.	1,4	11
	1.2	Combinational Circuits using basic gates as well as MSI devices: Half adder, Full adder, Half Subtractor, Full Subtractor, Multiplexer, Demultiplexer, Decoder, Comparator	1,4	
	Title	Sequential Circuits		
	2.1	Sequential Logic: Latches and Flip-Flops. Conversions of Flip-Flops.	1,4	
2	2.2	Counters: Asynchronous Counters, Synchronous Counters, UpDown Counters, Mod Counters, Ring and Twisted Ring Counters, Shift Registers, Universal Shift Register	1,4	11
	2.3	MSI counters (IC 7490, IC 74160, IC 74163, IC 74169), MSI Shift registers (IC 74194) and their applications	2,5	
	Title	Clocked Synchronous Machines		
3	3.1	Mealy and Moore Machines, Clocked synchronous state machine analysis, State reduction techniques.	2,5	05
	Title	Logic Families		
4	4.1	Types of logic families (TTL and CMOS), characteristic parameters (propagation delays, power dissipation, Noise Margin, Fan-out and Fan-in), transfer characteristics of TTL NAND.	1,4	05
	Title	Introduction to Microprocessors		
	5.1	Evolution of computers and Microprocessors	3	
5	5.2	Essential components of a conventional Central Processing Unit (CPU)	3	10
-	5.3	Architecture of 8-bit microprocessor 8085	3	
	5.4	Basic instruction set with its addressing modes and concepts of Instruction cycle, Machine cycle and T states. Elementary programming in assembly language.	3	

	5.5	Elements of I/O data transfer with the concept of interrupts	3				
6	Self Study	Concepts of PROM, PAL and PLA. Timing Considerations and Metastability in Flip-Flops. Clocked synchronous state machine design. Interfacing CMOS to TTL and TTL to CMOS. Concepts of peripherals and memory with its interfacing with 8085 microprocessor		5*			
Total (*Not included)							

Laboratory Component (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment					
1	To implement the combinational logic for given function using basic gates/MSI ICs. a. To study and verify the truth table of logic gates b. To study the universal NAND and NOR gate c. To study the working of half adder, full adder, half subtractor, Full subtractor along with truth table					
2	To implement TTL and CMOS logic family a. To study TTL NAND gate (BJT implementation). b. To study CMOS NAND gate c. To study interfacing of the TTL /CMOS					
3	To implement 4-bit, 5-bit and 8 bit comparator using given MSI					
4	To design implement gate level multiplexers and MSI multiplexers					
5	To design and implement gate level and MSI circuits of flip-flops					
6	To design counters a. To design a MOD4 synchronous up/down counter b. To study IC 7490 – Asynchronous Decade Counter					
7	To synchronous counters, synchronous counters and shift register using given MSI. a. To study IC 74160 as Synchronous Decade Counter and Mod 6 counter b. To study IC 74163 as Synchronous MOD 16 Counter and Mod 10 counter c. To verify the truth table of IC 74194 as Universal Shift Register and implement Ring and Twisted Ring Counter.					
8	To perform basic arithmetic operations through assembly language program in 8085					
9	To simulate COPY and PASTE operation through 8085 assembly program					
10	To write a program to add N elements stored in an array of 8 bit numbers (8085)					

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1.	Modern Digital Electronics	Fourth	R. P. Jain	Tata McGraw Hill	2009
2	Digital Design Principles And Practices	Third	John F. Wakerly	Pearson Education	2001
3	Microprocessor Architecture, Programming, and Applications with the 8085	Sixth	Ramesh S. Gaonkar	Penram International	2013

Reference Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Digital Design	Forth	Morris Mano	Pearson Education	2008
2	Fundamentals of digital logic design with VHDL	Second	Stephen Brown and ZvonkoVranesic	McGraw Hill	2006

Course (Category) Code	Course Name	Teach	Teaching Scheme (Hrs/week)					Credits Assigned			
		L	T	P	O	E	L	T	P	Total	
		1	0	2	2	5	1	0	1	2	
(SBC)	Communication Skills	Examination Scheme									
		Comp		ISE		MSE		ESE	Total		
A C107		Theory					50**			50	
AS107		Laboratory		1	150*					150	

^{**} MSE will be evaluated on the basis of written test based on module 1 and 2.

^{**} ISE will be evaluated on the basis of marks scored in practicals, out of 150.

Pre-requisite Course Codes, if any.						
Course Objective: To apply the principles of communication in personal and professional environment.						
Course Outcomes (CO):At the end of the course students will be able to						
AS107.1	Apply the principles of business writing for professional documents.					
AS107.2	Develop advance vocabulary and grammar for spoken and written communication.					
AS107.3	Design the draft a formal speech.					
AS107.4	Analyze received information by using active listening and reading skills.					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AS107.1										2		
AS107.2										2		
AS107.3										2		
AS107.4										2		

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
AS107.1							
AS107.2							
AS107.3							
AS107.4							

Remember Understan	Apply	Analyze	Evaluate	Create	
--------------------	-------	---------	----------	--------	--

Theory Component

Module No.	Unit No.	Topics	Ref.	L Hrs.	P Hrs
1	Title	Vocabulary Building & Grammar		2	4
	1.1	Concept of word formation, the root words from foreign languages and their use in English	7,1	2	4
	1.2	Common errors in writing, confused pair of words, redundancies, clichés	6, 2		
2	Title	Writing Skills		7	14
	2.1	Principles of Business Writing: 7Cs of communication, sentence structures, Organizing paragraph in direct and indirect style; Summarization	4		
	2.2	Practices in Writing: E-mail Etiquettes, e-mail for business purposes	3		
	2.3	Critical Reading: understanding the concept of critical reading and applying to analyze a given text.	5		
3	Title	Oral Skills		5	10
	3.1	Listening Comprehension(audio): Pronunciation, intonation, Stress and Rhythm	5		
	3.2	Speaking Practices: Common everyday situation: Conversation and dialogues (group activity, ice-breaking session) Public Speaking: Extempore, formal speech	3		
4	Self Study	 Basic Rules Of Grammar GRE Vocabulary Reading a book(fiction/non-fiction) and preparing a review on it 		6*	
	•	Total (*Not incl	uded)	42 hrs	•

List of activities (Graded, Non-graded)

Sr. No.	Title of the assignments	Marks				
1	Skit based on a given situation	-				
2	ISE 1 – Summary Writing	10				
3	ISE 2 – Extempore					
4	ISE 3 – Grammar					
5	ISE 4 – Vocabulary	20				
6	Reviewing a book (fiction/ non-fiction)	10				
7	ISE 5 – Email Writing (Inquiry)	20				
8	ISE 6 – Email Writing (Complaint)	20				
9	ISE 6 – Speech	20				
10	ISE 7 – Critical Reading	20				
	Total	150				

Text Books:

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Communication Skills	2013	Shirley Mathews	Technical Publication, Pune	2013
2	English Vocabulary in Use	1999	Michael McCarthy, Felicity O'Dell	Cambridge University Press, India	1999

Reference Books:

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Oxford Practice Grammar	1999	John Eastwood	Oxford, India	1999
2	Communication Skills 2011 Meenakshi Raman, Sangeeta Sharma Oxford, In		Oxford, India	2011	
3	Communication Skills	2010	Dr. Meera Bharwani	Synergy Knowledgeware, India	2010
4	English Grammar for Today	2005	Geoffrey Leech	Palgrave, UK	2005
5	Word Power Made Easy	1978	Norman Lewis	Anchor Books, New York	1978

Semester-II

	Sem II										
No	Type	Code	Course	L	Т	P	О	E	C		
1	BSC	MA102	Differential Equations and Complex Analysis	3	1	0	8	12	4		
2	BSC	AS101	Engineering Physics	2	1	2	5	10	4		
3	ESC	AS104	Engineering Graphics	1	0	2	2	05	2		
4	ESC	ET101	Basic Electrical Engineering	3	0	2	6	11	4		
5	ESC	CS102	Problem Solving using OOP	2	0	4	4	10	4		
6	SBC	AS106	Skill Shop	0	0	2	0	02	1		
7	ABL	SV1X/ST1X	SEVA-I or SATVA-I	0	0	0	2	02	1		
			11	2	12	27	52	20			

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	P	О	E	L	Т	P	Total
	Different dial East diam	3	1	0	8	12	3	1	0	4
(BSC)		Examination Scheme								
	Differential Equations and	Component]	ISE		MSE	E	ESE	Total
MA102	Complex Analysis	Theory			75		75		150	400
WIATUZ		Labor	atory							

Pre-requisit	e Course Codes, if any.	MA101					
Course Obje	Course Objective: To develop mathematical skills for solving engineering problems.						
Course Out	Course Outcomes (CO):At the End of the course students will be able to:-						
MA102.1	Solve differential equations	olve differential equations of first order.					
MA102.2	Solve differential equations	Solve differential equations of higher order using operators.					
MA102.3	Solve differential equations	s in electrical engineering problems.					
MA102.4	Find powers, roots & logar complex number into real a	ithm of a complex number and to separate the function of a and imaginary.					
MA102.5	Check whether a given fun	ction is analytic and construct analytic functions.					
MA102.6	Compute integrals of comp	plex valued functions.					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MA102.1	3											
MA102.2	3											
MA102.3	1	1										
MA102.4	3											
MA102.5	2											
MA102.6	2	1										

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
MA102.1							
MA102.2							
MA102.3							
MA102.4							
MA102.5							
MA102.6							

Remember	Understand	Apply	Analyze	Evaluate	Create
----------	------------	-------	---------	----------	--------

		Theory Component		
Module No.	Unit No.	Topics	Ref	Hrs.
1	Title	Linear Differential Equations of first order	1,2,3	11
	1.1	Exact Differential Equations, Integrating Factors, equations reducible to exact form.		3
	1.2	Linear differential equations (Definition), equations reducible to linear form, Bernoulli's equation		2
	1.3	Simple application of differential equation of first and second order to electrical engineering problems.		2
	1.4	Numerical solution of ordinary differential equations of first order and first degree using (a)Taylor's series method (b)Euler's method (c) Modified Euler method (d) Runge-Kutta fourth order formula.		4
2	Title	Linear Differential Equations of higher order	1,2,3	11
	2.1	Linear Differential Equation with constant coefficient- complementary function, particular integrals of differential equation of the type $f(D)y = X$ where X is e^{ax} , $\sin(ax+b)$, $\cos(ax+b)$, x^m , $e^{ax}V$, xV , where V is a function of x.		7
	2.2	Cauchy's homogeneous linear differential equation and Method of variation of parameters for second order.		2
	2.3	System of Differential Equations.		2
3	Title	Complex Numbers	1,2,3	12
	3.1	Revision: Complex Numbers as ordered pairs, Argand's diagram, Cartesian, Polar and Exponential form of Complex Numbers.		1
	3.2	De Moivre's Theorem and its application to determine powers of complex numbers. Roots of complex numbers by De Moivre's Theorem.		3
	3.3	Expansion of $\sin n\theta$ and $\cos n\theta$ in terms of powers of $\sin \theta$ and $\cos \theta$. Expansion of $\sin n\theta$ and $\cos n\theta$ in terms of sines and cosines of multiples of θ .		2
	3.4	Hyperbolic Functions: relation between circular and hyperbolic functions, Inverse hyperbolic functions. Separation into real and imaginary parts of complex functions.		4
	3.5	Logarithm of a complex number.		2

4	Title	Analytic functions and Complex Integrals	1,2,3	8
	4.1	Analytic functions, Cauchy Reimann equations in cartesian and polar form, construction of analytic functions using Milne-Thompson's method, Harmonic functions, poles of f(z).		4
	4.2	Line Integral, Cauchy's Integral theorem for simply connected regions, Cauchy's Integral formula (for poles lying inside or outside the curve).		4

5	Self Study	 To form D.E. for given L-C-E-R circuit Picard's method Method of undetermined coefficients to solve differential equations. Legendre's differential equation, Method of variation of parameters for third order differential equations. Complex examples using De Moivre's Theorem. Construction of analytic function f(z) =u+iv when u+v or u-v is given. Orthogonal trajectories 		08
	•		Total	42*

^{*}Total of 42 hours does not include self study hours.

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1.	Higher Engineering Mathematics	Forty Fourth	Dr.B.S. Grewal	Khanna Publications	2020

Reference Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1.	Advanced Engineering Mathematics	Twenty Eighth	H.K Das	S.Chand	2014
2.	Advanced Engineering Mathematics	Tenth	Erwin Kreysizg	John Wiley & Sons	2011
3.	Advanced Engineering Mathematics	Fourth	Jain and Iyengar	Narosa Publications	2014

Course (Category)	Course Name	Teach	Teaching Scheme (Hrs/week)				Credits Assigned			
Code		L	Т	P	О	E	L	Т	P	Total
		2	1	2	5	10	2	1	1	4
BSC	Engineering Physics	Examination Scheme								
		Comp		ISE		MSE		ESE	Total	
A C101		Theory			75		75	1	150	300
AS101		Laboratory			50				50	100

Pre-requis	site Course Codes, if any.	HSC level physics				
Course Ol	Course Objective: To provide the knowledge and methodology necessary for solving problems in the field engineering					
Course Or	utcomes (CO):At the End of the	course students will be able to				
AS101.1	Illustrate the knowledge of basic mechanics.	c concepts of semiconductor physics, lasers and quantum				
AS101.2	Solve the problems by applying	the basics concepts of physics.				
AS101.3	Use the Schrodinger equation to	realize the concept of discreteness and quantum tunneling.				
AS101.4	Explain the working of various	LASERs and its practical applications.				
AS101.5 To develop experimental skills and the practical abilities.						
AS101.6 To develop an ability of understanding of concepts and principles of physics.						
AS101.7	To comprehend importance of p	recision, accuracy of the experimental data.				

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AS101.1	1											
AS101.2		1										
AS101.3		1										
AS101.4	1											
AS101.5				1								
AS101.6				1								
AS101.7												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
AS101.1							
AS101.2							
AS101.3							
AS101.4							
AS101.5							
AS101.6							
AS101.7							

Remember	Understand	Apply	Analyze	Evaluate	Create
----------	------------	-------	---------	----------	--------

		Theory Component		
Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Quantum Mechanics		
	1.1	de-Broglie hypothesis; experimental verification of de Broglie hypothesis; wave packet, group velocity and phase velocity; Wave function, Physical interpretation of wave function; Heisenberg's uncertainty principle; Electron diffraction experiment; Applications of uncertainty principle		09
	1.2	Schrodinger's time dependent wave equation, time independent wave equation; Application of time-independent Schrodinger equation - Particle trapped in one dimensional box and Potential barrier (Tunnelling), Harmonic oscillator (qualitative)	1,2,3	
2	Title	Physics of Semiconductors and Semiconductor devices		
	2.1	Conduction in metals and semiconductors; Fermi-Dirac distribution function and Fermi level in a conductor, insulator and semiconductor	5	
	2.2	Intrinsic and extrinsic semiconductors; intrinsic conductivity and extrinsic conductivity; Law of mass action, charge neutrality condition; intrinsic carrier concentration, electron and hole concentration; Extrinsic carrier concentration as a function of temperature; Effect of impurity concentration and temperature on the Fermi Level; Hall Effect and its applications. Drift and Diffusion current density	5	13
	2.3	Formation of a P-N junction, depletion region and barrier potential; Energy band structure of P-N Junction (unbiased, forward-bias, reverse-bias); concept of carrier current densities in p-n junction in equilibrium, forward bias and reverse bias; Breakdown mechanism - Zener effect and avalanche	5,6	
	1.4	P-N junction devices: LED, Zener diode, photoconductors, photovoltaic solar cells and Bipolar Junction Transistors	5,6	
3	Title	LASERS		
	3.1	Processes - Absorption of light, spontaneous emission, stimulated emission; Einstein's equations, Population inversion; metastable states; pumping and pumping schemes; optical resonance cavity	3,4	06

	3.2	Ruby and Helium Neon laser, semiconductor laser; Applications of laser in industry, medicine and holography. (construction & reconstruction of holograms)	3,4	
4	Self Study	Interference of light in thin films having uniform thickness, Newton's rings, Applications of interference in anti-reflecting and highly reflecting thin films. Diffraction of light, Diffraction due to single slit, double slit and diffraction grating.		05*
		Total (*Not inc	cluded)	28

Laboratory Component

Sr. No.	Title of the Experiment*
1	Determination of energy band gap of a semiconductor
2	Study of I-V characteristics of a Zener diode
3	Determination of the type of semiconductor sample, concentration of charge carriers and its mobility using Hall Effect
4	Determination of Planck's constant using photo vacuum tube
5	Measurement of ultrasonic velocity in liquid medium using ultrasonic interferometer
6	Determination of radius of curvature using Newton's Rings
7	Determination of thickness of a thin foil or wire using the interference pattern of a wedge-shaped film
8	Determination of wavelengths of a mercury source and resolving power of a plane diffraction grating
9	Study of single slit diffraction
10	Determination of grating element of a diffraction grating using a laser source
11	Determination of the numerical aperture of an optical fibre
12	Uses of a Cathode-Ray Oscilloscope

^{*}Students will perform any 10 of the above experiments

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	A Textbook of Engineering Physics	Eleventh	Dr. M.N. Avadhanulu & Dr. P. G. Kshirsagar	S. Chand	2018
2	Engineering Physics	First	D. K. Bhttacharya & Poonam Tandon	Oxford University Press	2015

Reference Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Concepts of Modern Physics	Sixth	Arthur Beiser	McGraw Hill Education	2009
2	Modern Physics	Third	Serway, Moses and Moyer	Thomson Learning	2005
3	Fundamentals of Physics	Tenth	Halliday and Resnick	Wiley	2013
4	Solid State Physics	Eighth	S. O. Pillai	New Age International Publishers	2018
5	Solid State Electronic Devices	Seventh	Ben G. Streetman and Sanjay Kumar Banerjee	Pearson Education	2016
6	Lasers: Fundamentals and Applications	Second	Ghatak and Thyagarajan	Springer	2011

Course (Category) Code	Course Name	Teaching Scheme (Hrs/week) Credits Assigned						ned				
		L	L T P O E L T P						P	Total		
		1	0	2	2	5	1	0	2	2		
(ESC)		Examination Scheme										
	Engineering Graphics	Comp	onent		ISE		MSE	ESE Total				
A C104		The	ory		20		20		60	100		
AS104		Labor	ratory		60				40	100		

Pre-requisite	e Course Codes, if any.	Fundamentals up to 12 th science					
	Course Objective: To develop technical drawing and visualization skills using instrumental drawing and soft tool, required for design and modeling, in Engineering Applications and Solutions.						
Course Outo	Course Outcomes (CO): At the End of the course students will be able to						
CO1	Construct basic engineering curves.						
CO2	Draw projections of points a	nd lines.					
CO3	Draw projections of regular	solids inclined to both the reference planes.					
CO4	Read the 3-dimensional view	w and draw the orthographic projections.					
CO5	Read the 3-dimensional view	Read the 3-dimensional view and draw the sectional orthographic projections.					
CO6 Read the orthographic projections and draw isometric view.							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										3
CO2	3	3										3
CO3	3	3										3
CO4	3	3										3
CO5	3	3										3
CO6	3	3										3

member Understand Apply √	Analyze E	Evaluate	Create
---------------------------	-----------	----------	--------

Theory Component								
Module No.	Unit No.	Topics	Ref.	Hrs				
1	Unit1	Introduction to Engineering Drawing						
	1.1	Introduction to Drawing Instruments, Types of Lines, Dimensioning Systems and Scaling as per IS conventions. First angle method of projection only		4				
	1.2	Basic construction of Cycloid and Involutes.						
2	Unit2	Projections of Points and Lines	1	4				
	2.1	Projection of points in all four quadrants						
	2.2	Projection of lines parallel to one principal reference plane.						
	2.3	Lines inclined to both the Reference Planes (Excluding Traces of lines).						
3	Unit3	Projections of solids (Regular solids like Prism, Pyramid, Cylinder, Tetrahedron, Hexahedron and Cone only)	1,2	7				
	3.1	Projection of solid resting on plane (Single step projection)						
	3.2	Projection of solid such that base inclined to one reference plane (Two step projection)						
	3.3	Projection of solid such that base inclined to both reference planes (Three step projection/problem) (Exclude Spheres, Composite, Hollow solids and frustum of solids)						
4	Unit4	Orthographic Projections	1,2	Lab Sess				
	4.1	Orthographic views of a simple machine part as per the first angle method of projection recommended by I.S.		ons				
	4.2	Full Sectional views of the Simple Machine parts.						
5	Unit5	Isometric Projections and views	2	Lab Sess				
	5.1	Isometric views (Natural scale only)						

6	Self Study	 1.2 Construction of Engineering curves like ellipse, parabola, hyperbola, helix, other types of cycloid etc. by using different method of construction. 2.1 Projection of lines with traces, application-based problems on Projection of lines 3.1 Projections of cut solids with different cutting planes. 4.1 Solve more practice examples of orthographic views. Draw different views of a machine part/any object using third angle method of projection. (Axonometric view, oblique view, perspective etc.) 4.2 Half sectional orthographic views. 5.1 Development of surfaces of frustum of solid, and retaining part of the solid after cutting plane, reverse development of solid. 	1,2,	6*
Total (*N	ot includ	ed)		15

Laboratory Component (Minimum 5 sheets are expected)

Sr. No	No of Sessions	Engineering AutoCAD Laboratory
1	2	Introduction to Auto-CAD: -Basic Draw and Modify Commands. Knowledge of setting up layers, Dimensioning, Hatching, plotting, and Printing. Auto-Cad Practice sheet-1
2	1	Auto-Cad Practice sheet-2
3	2	Introduction to Orthographic projections sheet-3
4	2	Orthographic projections sheet-4
5	2	Introduction to Sectional Orthographic projections sheet-5
6	2	Sectional Orthographic projections sheet-6
7	2	Introduction to Isometric Projection/View: - Isometric View of blocks with plain and cylindrical surfaces is using plain/natural scale only. (Exclude Spherical surfaces). Isometric Projection/View sheet-7
8	2	Isometric Projection/View sheet-8
Total	15	

Text Books:

Sr. No	Title	Edition Authors F		Publisher	Year
1	Engineering Drawing	53 rd	N D Bhatt	Charotar	2016
2	Engineering Drawing	3 rd	Dhananjay A Jolhe	Tata McGraw Hill	2011

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	AutoCAD 2017		Sham Tickoo	DreamTech Press, Delhi	2017
2	Engineering Drawing and Graphics	Fifth	K Venugopal	New Age International	2011

Course	Course Name	Teach	Teaching Scheme (Hrs/week)					Credits Assigned			
(Category) Code	Course Name	L	Т	P	О	E	L	L T P			
(ESC)		3	0	2	6	11	3	0	1	4	
		Examination Scheme									
	Basic Electrical Engineering	Comp	onent		ISE		MSE	F	ESE	Total	
ET101		The	eory		75		75	1	150	300	
		Labor	ratory		50				50	100	

Pre-requisite	Course Codes, if any.	Basic concepts of electric charge, current, voltage and power				
Course Object	Course Objective: To impart a basic knowledge of electrical quantities, Circuits and components.					
Course Outcomes (CO):At the End of the course students will be able to						
ET101.1	Compute various electrical quantities of given dc circuit using circuit simplification techniques and various network theorems.					
ET101.2		ferent terms and concepts in AC Circuits at fundamental frequency of effects of harmonics in the waveforms				
ET101.3	To study the working princip	ples of electrical machines and their applications				
ET101.4	To expose the students the full Power Conversion	undamental concepts in Controllable Switch and Modulation based				
ET101.5	To study Electrical Parameter specific application	ters of the Batteries and their selection and design criteria for a				

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
ET101.1												
ET101.2												
ET101.3												
ET101.4												
ET101.5												

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
ET101.1							
ET101.2							
ET101.3							
ET101.4							
ET101.5							

Remember Understand Apply Analyze Evaluate Create

Theory Component								
Module No.	Unit No.	Topics	Ref.	Hrs				
1	Title	DC Circuits	1,2	10				
	1.1	Electrical circuit elements (R, L and C), Voltage and current sources, Equivalent resistance of circuits, Simplification using delta-star and stardelta transformation.		10				
	1.2	Kirchoff's current and voltage laws, Analysis of simple circuits with de excitation. Mesh analysis, Superposition, Thevenin, Norton and Maximum Power Transfer Theorems						
	1.3	Time-domain analysis of first-order DC Transients in RL and RC circuits.						
2	Title	AC Circuits	1,2	12				
	2.1	Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor. Harmonics, Total Harmonic Distortion, Power supplied by Harmonic voltages and currents, Power factor in case of non-sinusoidal waveforms.						
	2.2	AC Analysis of series and parallel RLC Circuits with Resonance, Concept of Bandwidth and Q-factor,						
	2.3.	Three-phase balanced circuits, voltage and current relations in star and delta connections.						
3	Title	Electromagnetic and Electro-Mechanical Energy Converters	1,2	10				
	3.1	Magnetically Coupled Coils, Self and Mutual Inductance and Dot Convention						
	3.1	Single Phase Transformer: Principle of Operation, Equivalent Circuits						
	3.2	Single Phase Transformer: Efficiency and Regulation						
	3.3	Introduction to Three-phase Transformers and Applications						
	3.4	Fundamental Principles of Rotating Machines, Characteristics of Induction motor and DC motor						
4	Title	Electric Power Converters	1,2	05				

	4.1	Fundamental Principles of Buck, Boost and buck-boost DC-DC converters and their Transfer Characteristics, Duty Ratio Control			
	4.2	Single-phase voltage source inverters and PWM			
5	Title	Batteries: Electrical Characteristics and Applications	05		
	5.1	Introduction to type of Batteries, Generalized Battery parameters such as SoC, DoD, Energy and Power Densities, Battery C-rating, etc. Comparison of Batteries, Charging and Discharging Characteristic			
	5.2	Selection and Sizing of Battery Packs for Specific Applications			
6	Self Study	Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing. Elementary calculations for energy consumption and power factor improvement.	6*		
Total (*Not Included)					

Laboratory Component (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
01	Introduction to Electrical Measuring instruments, Lamp Loads, Inductor Loads and Capacitor Bank
02	Verification of Star-Delta and Delta-star Transformation with Kirchhoff's Laws
03	Verification of Thevenin's Norton's and Maximum Power Transfer Theorem
04	Verification of DC Transient equations in RL and RC Circuits
05	Experimental study of single-phase AC circuit with R-L and R-C Load with Measurement of Power and Power factor
06	Experimental study of R-L-C series Resonance. To plot resonance curve, To compute Bandwidth and Q-factor
07	Experiment on Magnetic Circuit Fundamentals
08	Loading of a transformer: measurement of primary and secondary voltages and currents, and power. To compute efficiency and regulation.
09	Three-phase transformers: Star and Delta connections. Voltage and Current relationships (line-line voltage, phase-to-neutral voltage, line and phase currents). Phase-shifts between the primary and secondary side. Cumulative three-phase power in balanced three-phase circuits.
10	Synchronous speed of two and four-pole, three-phase induction motors. Direction reversal by change of phase-sequence of connections. Torque-Slip Characteristic of an induction motor. Generator operation of an induction machine driven at super-synchronous speed.
11	Demonstration of (a) dc-dc converters (b) dc-ac converters – PWM waveform.
12	Demonstration of V/F control of Induction motor
13	Experimental study of charge and Discharge characteristics of a Lead-acid Battery
14	Introduction to L.T. Switch gear

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Basic Electrical Engineering	Third	D.P. Kothari and I. J.	Tata McGraw Hill	2010
2	Electrical Technology	Twenty Third	B.L.Theraja	S. Chand Publications	2003

Sr. No.	Title	Edition	Author	Publisher	Year
1	Basic Electrical Engineering	Second	D.C. Kulshreshtha	McGraw Hill	2019
2	Fundamentals of Electrical Engineering	Second	L.S. Bobrow	Oxford University Press	2011
3	Electrical and Electronics Technology	Third	E. Hughes	Pearson	2010
4	Electrical Engineering Fundamentals	Second	V.D. Toro	Prentice Hall India	1989
5	Elements of Power Electronics	Second	P. T. Krein	Oxford University Press	2015
6	Power Electronics: Converters, Application and Design	Second	Ned Mohan, T.M Undelands and W P Robbins	John Wiley and Sons. Inc.	1995
7	Electric Machinery	Sixth	A. E. Fitzgerald, C. Kingsley and S. D. Umans	McGraw-Hill	2003

Course (Category)	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned				
Code		L	Т	P	О	E	L	Т	P	Total
	Problem Solving using OOP	2	0	4	3	7	2	0	4	4
(ESC)		Examination					n Scheme			
		Component		onent ISE			MSE	F	ESE	Total
CS102		Theory								
CS102		Laboratory			300			1	100	400

Pre-requisite	Course Codes, if any.	Problem Solving using Imperative Programming					
Course Object	Course Objective: To learn problem solving using Object-Oriented programming paradigm						
Course Outcomes (CO):At the End of the course students will be able to							
CS102.1	Apply concepts of object ori	Apply concepts of object oriented programming using classes and objects					
CS102.2	Apply Inheritance for a give	n scenario					
CS102.3	Apply polymorphism for so	Apply polymorphism for solving a given problem					
CS102.4	Apply abstraction and excep	Apply abstraction and exception handling to create efficient program.					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CS102.1	2	2	2									
CS102.2	2	2	2									
CS102.3	2	2	2									
CS102.4	2	2	2									

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
CS102.1	2(Comp)/ 2(IT)						
CS102.2	2(Comp)/ 2(IT)						
CS102.3	2(Comp)/ 2(IT)						
CS102.4	2(Comp)/ 2(IT)						

Remember	Understand	Apply	Analyze	Evaluate	Create
----------	------------	-------	---------	----------	--------

Theory (This course content delivery will be in C++/Java. Course Contents to be taken care accordingly)

Module No.	Unit No.	Topics	Ref.	Hrs.
		Introduction and Encapsulation		8
1	1.1	Introduction to Object Oriented Programming, Procedural verses Object Oriented Programming, Principles, Benefits and applications of Object Oriented Programming.	1,2	
	1.2	Encapsulation: Problem solving with Objects and Classes		
	1.3	static data member and methods, constructors and their types. Types of functions and keywords, Strings, Arrays		
		Inheritance		6
2	2.1	Concept of Inheritance, parent class, derived class, base class and derived class constructor	1,2	
	2.2	Types of inheritance: single, multiple, multilevel, hierarchical, hybrid		
	2.3	Aggregation and Composition		
		Polymorphism		6
3	3.1	Static Polymorphism: Method overloading and Constructor overloading		
3	3.2	Dynamic Polymorphism: Method overriding		
	3.3	Data conversion		
4		Abstraction		2
4	4.1	Abstraction: abstract class	1,2	
		Exception Handling		6
5	5.1	try, throw, and catch exceptions	1,2	
	5.2	Function exception declaration		
6	Self Study	File Handling, \$ STL, \$pointers, \$virtual functions @Multithreading, @Packages, @interface	1,2	5*
		Total		28+ 5*

\$ only for C++ @ only for Java

^{**} Language used: C++ for Etrx and Extc Branch
** Language used: C++/Java for IT and CE Branch

aboratory Component

Sr. No.	Title of the Experiment							
1	Program on Encapsulation: Write a program to demonstrate classes and objects							
2	Program on Encapsulation: Write a program to demonstrate constructor							
3	Program on Polymorphism: Implement a Program to demonstrate method overloading,							
4	Program on Polymorphism: Implement a Program to demonstrate constructor overloading							
5	Program on Polymorphism: Implement a Program to demonstrate method overriding							
6	Program on Inheritance: Implement a Program to demonstrate single, multilevel Inheritance							
7	Program on Inheritance: Implement a Program to demonstrate multiple Inheritance							
8	Program on Abstraction: Implement a Program to demonstrate Abstraction using abstract class							
9	Program on Abstraction: Implement a Program to demonstrate multithreading/ STL							
10	Program to demonstrate File Handling							

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Object Oriented Programming with C++	Sixth	E Balagurusamy	Tata McGraw Hill	2017
2	Oriented Programming in Turbo C++	Fourth	Robert Lafore	Galgotia	2001
3	Java -The Complete Reference	<u>Tenth</u>	Herbert Schildt	Tata McGraw- Hill	2017
4	Java Programming From the Ground Up	<u>First</u>	Ralph Bravaco,Shai Simoson	Tata McGraw- Hill	2009

Sr. No.	Title	Edition	Authors	Publisher	Year
1	The Compete Reference C++	Fourth	Herbert Schlitz	Tata McGraw Hill	2017
2	An introduction to Programming and Object Oriented Design using Java	Third	Jaime Nino, Frederick A. Hosch	Wiley Student Edition	2010

Course (Category)	Course Name	Teacl	(Hrs/w	Credits Assigned							
Code		L	T	P	O	E	L	T	P	Total	
	Skill Shop	0	0	2	0	02	0	0	1	1	
(SBC)		Examination Scheme									
		Component			ISE		MSE		ESE	Total	
A C10.6		Theory									
AS106		Labor		50				50	100		

Pre-requisite	Pre-requisite Course Codes, if any.								
Course Objective: To equip the students with the fundamental skills involved in the creation of simulated and physical design.									
Course Outcomes (CO):At the End of the course students will be able to									
AS106.1	Operate basic electronic equipment and instruments.								
AS106.2	Make PCB designs in simulations.								
AS106.3	Assemble, disassemble and troubleshoot computer hardware and network peripherals.								
AS106.4	Fabricate basic jobs in traditional trades.								
AS106.5	Design a 3D model and translate it to a 3D printed component.								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AS106.1												
AS106.2												
AS106.3												
AS106.4												
AS106.5												

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
AS106.1							
AS106.2							
AS106.3							
AS106.4							
AS106.5							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create

Lab Component

Trade No.	Unit No.	Topics	Ref.	Hrs.				
1	Unit 1	Electronic Components	5	4				
	1.1	Introduction to Electronic Components Exposure to usual electronic equipment/instruments such as Multimeter, Oscilloscope, Function generator, IC tester and Power supply, Information about their front panels, Demonstrations on their working, Hands-on for measurement of component values and DC voltage using multi-meter, AC mains voltage/1 KHz Square wave/any small signal from function generator on Oscilloscope, Testing of sample digital ICs using IC tester. OR Repairing of gadgets and appliances: Elementary skills of repairing juicer, mixer, grinder, etc.		*				
2	Unit 2	Unit 2 PCB Laboratory Exercises						
	2.1	, , , , , , , , , , , , , , , , , , , ,						
3	Unit 3	Hardware and Networking	7, 8	4				
	3.1	Dismantling of a Personal Computer (PC), Identification of Components of a PC such as power supply, motherboard, processor, hard disk, memory (RAM, ROM), CMOS battery, CD drive, monitor, keyboard, mouse, printer, scanner, pen drives, disk drives etc.						
	3.2	Assembling of PC, Installation of Operating System and Device drivers, Boot-up sequence. Installation of application software (at least one).						
	3.3	Basic troubleshooting and maintenance.						
	3.4 Identification of network components: LAN card, wireless card, switch, hub, router, different types of network cables (straight cables, crossover cables, rollover cables) Basic networking and crimping.							
4	Unit 4	Traditional Trades*	1, 2	4				

5	Unit 5 5.1	Carpentry Use and setting of hard tools like hacksaws, jack planes, chisels and gauges for construction of various joints, wood turning and modern wood turning methods. One carpentry job involving a joint and report on demonstration of a job involving wood turning required for successful completion of module. OR Electrical board wiring House wiring, staircase wiring, and wiring diagram for fluorescent tube light, Godown wiring and three phase wiring for electrical motors. OR Sheet Metal Practice Introduction to primary technology processes involving bending, punching and drawing various sheet metal joints, development of joints. Utility job in sheet metal required for successful completion of module. 3D Modeling and Printing Modeling approaches for ideation and creation. Developing a CAD file (iges/stap/dwg) of a 3D model and export it as an stl file for the	3, 4	4
	5.2	(.iges/.step/.dwg) of a 3D model and export it as an .stl file for the purpose of 3D printing. Importing the 3D .stl file to generate a .gcode file for 3D printing through slicing, using open source software. Introduction to 3D printing: methodologies, best practices, material and model variation. Live printing sessions of generated .gcode files in real time with optimal parameters and troubleshooting.		
				20

st Students can opt for any one of the three trades from Unit 4.

Text Books:

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Workshop Manual	Sixth	Venkat Reddy	BS Publication	2008
2	Wiring Simplified: Based on 2017 National Electrical Code	Forty Fifth	Frederic P Hartwell, Herbert P. Richter, W.C. Schwan	Park Publishing	2017

Sr. No.	Title	Edition	Authors	Publisher	Year
3	Autocad 2017	First	ShyamTikoo	Dreamtech Press	2016
4	Ultimaker 2+ reference manual	-	-	Ultimaker	2017
5	Encyclopedia of Electronic Components	First	Charles Platt	O Reilly	2012
6	Printed Circuit Boards	First	Khandpur R.S.	Tata McGraw Hill	2005
7	Troubleshooting Your PC For Dummies	Second	Gookin Dan	For Dummies	2005
8	Networking For Dummies	Eighth	Lowe Doug	For Dummies	2007

Semester-III

			Sem III						
No	Type	Code	Course	L	T	P	O	E	C
1	BSC	MA203	Probability and Statistics	3	0	0	5	08	3
1	BSC*	MA202	Foundation of Mathematics-I*	2	1	0	6	09	3
2	PC	CS201	Discrete Structures and Graph Theory	3	0	0	4	07	3
3	PC	CS202	Data Structures	3	0	2	5	10	4
4	PC	CS203	Computer Architecture and Organization	3	0	2	4	09	4
5	PC	CS204	Database Management Systems	3	0	2	5	10	4
6	ABL	SVXX/ STXX	SEVA II or III /SATVA II or III	0	0	0	3	03	1
7	HSSE	HSEX1	HSS-I	2	0	0	3	05	2
			TOTAL	17	0	6	29	52	21

^{*}Only for Lateral Entry Students

Course	Course Name	Teach	Teaching Scheme (Hrs/week)						Credits Assigned			
(Category) Code		L	T	P	O	E	L	T	P	Total		
		3	0	0	4	7	3	0	0	3		
(PC)	Discrete Structures and Graph Theory	Examination Scheme										
		Component			ISE		MSE		ESE	Total		
CS201/IT201		Theory			75		75		150	300		
CS201/11 201		Labor	atory									

Pre-requisite Co	ourse Codes, if any.						
Course Objective: To teach students how to think logically and mathematically. It provides the mathematical foundation that is used in most areas of computer science.							
Course Outcomes (CO):At the End of the course students will be able to							
CS/IT201.1	Solve problems using set the	Solve problems using set theory, logic and its various proof techniques.					
CS/IT201.2	Apply the concepts of reproblems	Apply the concepts of relations, functions, lattices and recurrence relations to solve problems					
CS/IT201.3	Apply the concepts of grap to solve problems.	ph, trees and their various types with their traversing techniques					
CS/IT201.4	Apply the basics of coding	theory and cryptography to solve real world problems.					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1
CS/IT201.1	3											
CS/IT201.2	3	2										
CS/IT201.3	3											
CS/IT201.4	3	2	2									2

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
CS/IT201.1		2(IT)	2(COMP)				
CS/IT201.2		2(IT)	2(COMP)				
CS/IT201.3		2(IT)	2(COMP)				
CS/IT201.4		2(IT)	2(COMP)				

Remember Und	derstand	Apply	Analyze	Evaluate	Create
--------------	----------	-------	---------	----------	--------

	Theory Component									
Module No.	Unit No.	Topics	Ref.	Hrs.						
1	Title	Set Theory, Logic and Proofs	1, 2							
	1.1	Finite and infinite set, Union, Intersection, Disjoint, and Difference of two sets. Power Set, Partition of Sets, Ordered Sets, De Morgan's Laws, Principle of Inclusion Exclusion		2						
	1.2	Predicates, Propositions, Conditional Propositions, Logical Connectivity, Proposition calculus, Universal and Existential Quantifiers, First order logic, Equivalence, Normal Forms, Introduction to proofs, Mathematical Induction, Strong Induction, Well-ordering principle, Logical inference		6						
2	Title	Relations, Functions and Lattices	1, 2							
	2.1	Product Sets and Partitions, Paths in relations and Diagraphs, Properties of Relations, Closure of Relation, Equivalence Relations, Operations on Relations, Warshall's Algorithm, Partially Ordered Sets, External Elements of Partially Ordered Sets, Hasse Diagram		8						
	2.2 Composition of Functions, Invertible Functions, Recursive Functions, Hashing, Pigeon hole Principle, Extended PHP									
	2.3	Lattice, Sub lattice, Isomorphic Lattices, Properties of Lattice, Special Types of Lattices		4						
	2.4	Recurrence Relations – Introduction, Linear Recurrence Relations with constant coefficients, Homogeneous solutions, Particular Solutions, Total Solutions, Solution by the method of Generating functions, solving Recurrence Relations		5						
3	Title	Graph Theory	1, 2	4						
	3.1	Concepts and terminologies, Graphs as Model (Konigsberg Bridge Problem)		-						
	3.2	Matrices, Isomorphism, Bipartite Graphs, Directed Graphs								
	3.3	Minimal Spanning Trees-Prim's Algorithm and Kruskal's Algorithm								
4	Title	Graph connectivity	1, 2	6						
	4.1 Cycles – Transport Networks, Max Flows, Matching Problems, Maximum Bipartite Matching, Perfect Matching									
	4.2	Euler Paths- Circuits, Hamiltonian Paths- Circuits								

	4.3	Coloring Graphs, Chromatic Polynomial, Planer Graphs		
5	Title	Coding Theory	1, 2	4
	5.1	Hamming Code, Minimum Distance		
	5.2	Number Theory, Modular Arithmetic and applications to cryptography; Diffie-Hellman Algorithm		
6	Self- Study	Algebraic Structures - Semi group, Monoids, Groups, Cyclic groups, Abelian groups, Normal Subgroups	1, 2	5*
		Total (*Not inc	eluded)	42

Text Books

Sr. No.	Title Edition		Authors	Publisher	Year
1	Discrete Mathematics and it's applications	Seventh	Kenneth H. Rosen	Tata McGraw- Hill	2013
2	Discrete Mathematical Structures	Sixth	Bernad Kolman, Robert Busby, Sharon Cutler Ross, Nadeem- ur-Rehman	Pearson Education	2015

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Elements of Discrete Mathematics	Fourth	C. L. Liu	Tata McGraw- Hill	2012
2	Introduction to graph Theory	Second	Douglas B. West	Pearson Education	2015
3	Discrete Mathematical Structures with Applications to Computer Science	First	Jean-Paul, Tremblay R. Manohar	Tata McGraw- Hill	1987

Course	Course Name	Teach	(Hrs/v	Credits Assigned						
(Category) Code		L	T	P	O	E	L	T	P	Total
	Foundations of Mathematics-I	2	1	0	0	3	2	1	0	3
(BSC)		Examination Scheme								
		Comp		ISE		MSE		ESE	Total	
MA202		The	ory		75		75		150	300
		Labor	atory							

Pre-requisite	Course Codes, if any.	-						
Course Object	Course Objective: To develop basic foundation of mathematical skills.							
Course Outco	Course Outcomes (CO):At the End of the course students will be able to:-							
MA202.1	Differentiate a function of one variable and partially differentiate a function of more than one variable.							
MA202.2	Apply the concept of partial	differentiation to find extreme values of a given function.						
MA202.3	Find nth order derivative of	a given function.						
MA202.4	Expand a given function as a	a power series.						
MA202.5	Perform operations on matrices and find inverses and determinants of them.							
MA202.6	Perform vector operations ar	nd compute dot products and cross products between them.						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MA202.1	2											
MA202.2	2											
MA202.3	2											
MA202.4	1											
MA202.5	1											
MA202.6	1											

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
MA202.1						
MA202.2						
MA202.3						
MA202.4						
MA202.5						
MA202.6						

Remember	Understand	Apply	Analyze	Evaluate	Create
----------	------------	-------	---------	----------	--------

		Theory Component						
Module No.	Unit No.	Topics	Ref	Hrs				
1	Title	Differential Calculus	1,2	18				
	1.1	Partial fractions. Derivatives of standard functions, product and quotient rule for differentiation.	-	04				
	1.2	Partial derivatives of first and higher order, composite differentiation		03				
1.3 Application of partial derivatives: Local Maxima and Minima of functions of two variables.								
	1.4 Successive Differentiation: Proofs of nth derivatives of standard functions. Use of partial fractions to calculate nth derivatives of given functions. Leibnitz theorem for nth derivative of product of two functions.							
	1.5	Infinite series: expansion of functions in powers of x using maclaurin series. Taylor's series.		04				
2	Title	Matrices	1,2	07				
	2.1	Addition and scalar multiplication of matrices. Matrix multiplication, types of matrices.		03				
	2.2	Elementary row transformations, finding inverses using matrices, determinants and its properties		04				
3	Title	Vectors	1,2	03				
	3.1	Vector definition, addition, scalar multiplication, dot product of two vectors, angle between two vectors, cross product.		03				
		· · · · · · · · · · · · · · · · · · ·	Total	28				

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Higher Engineering Mathematics	Forty Forth	Dr. B. S. Grewal	Khanna Publications	2020

Sr. No.		Title	Ed	ition	A	Authors			blishe	r	Year
1	Advan	ced Engineering Mathematics	Tenth	Erwin Kreysizg				John Wile	2011		
2	Advan	Twen Eight	-	H.K	H.K.Dass S. Chand Publications			ations	2014		
	urse egory)	ory) Course Name		Teaching Scheme (Hrs/week) Credits Assig				s Assig	ned		
Co	ode			T	P	0	E	L	T	P	Total
				0	0	5	8	3	0	0	3
(B	SC)		Examination Scheme								
		Probability and Statistics	Comp	onent		ISE		MSE	I	ESE	Total
NA	202			Theory		75		75		150	300
MA203	1203			atory							

Pre-requisite	Course Codes, if any.	-					
•	Course Objective: To give an exposure to the students the basic concepts of Probability and Statistical methods and their application.						
Course Outco	Course Outcomes (CO):At the End of the course students will be able to						
MA203.1	Familiarize with basic proba	bility axioms, rules and their applicability.					
MA203.2	Identify the characteristics of	f various discrete and continuous distributions.					
MA203.3	Find unbiased and efficient e	estimates using estimation theory.					
MA203.4	Test the hypothesis for mean	as and variances using 't' & F; chi-square distribution tests.					
MA203.5	Find Correlation and Regres	ssion and fit different types of curves.					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MA203.1	2											
MA203.2		2										
MA203.3		2										
MA203.4		2										
MA203.5		2										

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
MA203.1	2						
MA203.2	2						
MA203.3	2						
MA203.4	2						
MA203.5	2						

Remember Understand Apply	Analyze	Evaluate	Create
---------------------------	---------	----------	--------

		Theory Component		
Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Probability and Random Variables	1, 2	12
	1.1	Classical, relative frequency and axiomatic definitions of probability, addition rule and multiplication rule. Conditional Probability, Bayes' theorem and independence.		04
	1.2	Discrete, continuous and mixed random variables, probability mass function(PMF), Probability Density Function(PDF) and cumulative distribution function(CDF). Joint Distributions: Joint, marginal and conditional distribution.		04
	1.3	Mathematical expectation, moments, moments generating function, Chebyshev's inequality.		04
2	2 Title Probability Distributions		1, 2	12
	2.1	Standard discrete distributions: Bernoulli, Binomial, Poisson and Geometric distributions, Probability density function, Cumulative distribution function, Expectation and Variance,		06
	2.2	Standard continuous distributions – Uniform, Normal, Exponential, Joint distribution and Joint density functions		06
3	Title	Test of Hypothesis and Significance	1, 2	12
	3.1	Statistical hypothesis, Null and Alternate hypothesis, test of hypothesis and significance, Type I and Type II errors, Level of Significance, Tests involving the Normal distribution, One-Tailed and Two-Tailed tests, P value.		03
	3.2	Special tests of significance for Large samples and Small samples (F, chisquare, z, t-test), ANOVA.		09
4	Title	Correlation and Regression	1, 2	06
	4.1	Correlation, Rank correlation, Regression Analysis, Linear and Non-linear Regression, Multiple regressions, Curve fitting by method of least squares, fitting of straight lines, Polynomials, Exponential curves.		
5	Self Study	 Applicability of Bayes theorem Proofs for mean & variance for all distribution: included in module 2 Examples to test goodness of fit using Chi-square 		01* 02* 02*
			Total	42

^{*} Not included in Total 42 hrs.

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Introduction to Probability and Statistics for Engineers and Scientists	Fourth	Sheldon M. Ross	Academic Foundation	2011
2	Probability and Statistics for Engineers and Scientists	Eighth	E. Walpole, R. H. Mayers, S. L. Mayers and K. Ye	Pearson Education	2007

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Probability and Statistics in Engineering	Fifth	Douglas C. Montgomery	Wiley India	2012
2	Probability & Statistics	Third	Spiegel, M. R., Schiller, J. and Srinivasan, R. A.	Tata McGraw Hill	2010

Course	Course Name	Teach	(Hrs/v	Credits Assigned						
(Category) Code		L	Т	P	О	E	L	Т	P	Total
(PC)	Data Structures	3	0	2	5	10	3	0	1	4
		Examination Scheme								
		Component			ISE		MSE		SE	Total
CS202/IT202		Theory			75		75		150	300
		Labor		50				50	100	

Pre-requisite	Course Codes, if any.	Problem solving using imperative programming					
	Course Objective: To introduce the fundamentals and abstract concepts of Data Structures for Problem Solving.						
Course Outcomes (CO):At the End of the course students will be able to							
CS/IT202.1	Apply various operations of	Apply various operations of linear and non-linear data structures to given problems.					
CS/IT202.2	Apply the concepts of Trees	and Graphs to a given problem.					
CS/IT202.3	Apply various operations of	heap data structures.					
CS/IT202.4	Apply the concepts of hashi	ng on a given problem					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CS/IT202.1	3		3						3	3	3	
CS/IT202.2	3		3						3	3	3	
CS/IT202.3	3		3						3	3	3	
CS/IT202.4	3		3						3	3	3	

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
CS/IT202.1		1(IT)	1(CS)			1(CS)	
CS/IT202.2		1(IT)	1(CS)			1(CS)	
CS/IT202.3		1(IT)	1(CS)			1(CS)	
CS/IT202.4		1(IT)	1(CS)			1(CS)	

Remember	Understand	Apply	Analyze	Evaluate	Create
----------	------------	-------	---------	----------	--------

Theory Component									
Module No.	Unit No.	Topics	Ref.	Hrs.					
1	Title	Introduction to Data Structures							
	1.1	Concept of Linear and Non linear Data Structures	1,2	1					
	1.2 Stack: Stack as ADT, operations on stack,, Applications of Stacks								
	1.3	Queue: Queue as ADT, Operations on Queue,, Applications of Queue, Types of Queue-Circular and Priority Queue	1,2	4					
	1.4	Linked List: Linked List as ADT, Operations on Singly Linked List. Types of linked list- Linear and circular linked lists, Doubly Linked List, Circular Linked List and its operations, Generalized Linked List (GLL) concept, Applications of linked List and Generalized Linked List (GLL).	1,2	6					
2	2 Title Trees								
	2.1	Trees as ADT, General tree v/s Binary Tree Terminology, Traversal of Binary Tree, Operations on Binary tree, Binary Search Tree and its operations, Expression Tree	1,2	5					
	2.2	AVL Trees- Properties of AVL trees, Rotations, Insertion, and Deletion	1,2	4					
	2.3	Introduction to B tree- Insertion , Deletion.	1,2	3					
3	Title	Graphs							
	3.1	Graph as ADT, Introduction To Graph, Representation of Graph- Adjacency Matrix, Adjacency List, Graph Traversal Technique	1,2	3					
4	Title	Heap Structure							
	4.1	Heap as ADT, Introduction to Heap Structures, Min Heap, Max Heap, Construction of Heap	1,2	3					
	4.2	Fibonacci heaps- Structure of Fibonacci heaps, Mergeable-heap, operations, Decreasing a key and deleting a node	1,2	5					
5	Title	Hashing							
	5.1	Introduction to Hash Table, Hash functions, Collision Resolution Technique.	1,2	4					
6	Self Study	Optimal Binary Search Tree and Red-Black Trees	1,2	5*					
			Total	42					

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	Implement a given problem statement using Stack.
2	Implement a given problem statement using Queue
3	Implement a given problem statement using Linked List.
4	Implement a given problem statement using Doubly Linked List.
5	Implement a given problem statement using Binary Trees.
6	Implement insertion of node in AVL tree.
7	Implementation of expression tree
8	Implement Operations of Heap Structures.
9	Implement hash functions with different collision resolution techniques.
10	Apply Graph Traversal Technique on a given problem statement to solve the problem

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Introduction to Algorithms	Third	Thomas H. Cormen, Charles E. Leiserson, Ronald L Rivest, Clifford Stein	MIT Press	2009
2	Fundamentals of Computer Algorithms	Second	Horowitz E, Sahni S and S.Rajasekaran	Galgotia Publications	2010

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Classic Data Structures	Second	Samanta Debasis	РНІ	2009
2	Data Structures With C	First	Seymour Lipschutz	Schaum's Outline Series	2010

Course (Category)	Course Name	Teachi	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	T	P	О	E	L	Т	P	Total	
		3	0	2	4	9	3	0	1	4	
(PC)	Computer Architecture and Organization	Examination Scheme									
		Component			ISE		MSE	E	SE	Total	
CS203/IT203	_	Theory			75		75		.50	300	
		Laboratory			50				50	100	

Pre-requisite	Course Codes, if any.	Digital Circuits & Systems, Any Programming Language							
•	Course Objective: Imparting concepts of each component of computer architecture thoroughly with practical aspects including memory systems and I/O communications with interfacing								
Course Outcomes (CO): At the End of the course students will be able to									
CS/IT203.1	Explain basic computer structu	explain basic computer structure and compare computer architecture models							
CS/IT203.2	Design algorithms to solve ALU operations and memory mapping techniques								
CS/IT203.3	Comprehend processor archite analysis	ecture with various design methods of CPU with comparative							
CS/IT203.4	Illustrate memory systems with memory	n design and analysis of mapping techniques for cache and virtual							
CS/IT203.5	Analyze different parallel proc	essing and pipelining concepts with pipelining hazards							
CS/IT203.6	Comprehend different types of transfer methods and arbitratio	I/O buses, compare and contrast different types of data on techniques							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CS/IT203.1	3											
CS/IT203.2		3			3			3		3		
CS/IT203.3	3	2										
CS/IT203.4		2	1									
CS/IT203.5		2	1									
CS/IT203.6	3											

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
CS/IT203.1							
CS/IT203.2							
CS/IT203.3							
CS/IT203.4							
CS/IT203.5							
CS/IT203.6							

Remember	Understand	Apply	Analyze	Evaluate	Create	
----------	------------	-------	---------	----------	--------	--

		Theory Component		
Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title Overview of Computer Architecture and Organization			_
	1.1	Introduction of Computer Organization and Architecture, Basic organization of computer and block level description of the functional units, Evolution of x86 Computers, Von Neumann model, Harvard Model, Embedded system	1	5
	1.2	Performance Issues: Designing for performance, Amdahl's Law, Multi-core, GPGPU	1	
2	Title	Data Representation and Arithmetic Algorithms		6
	2.1	Number representation: Floating-point representation, Floating point arithmetic, IEEE 754 floating point number representation	2,3	
	2.2	Integer Data computation: Addition, Subtraction. Multiplication: Signed multiplication, Booth's algorithm.	2,3	
	2.3	Division of integers: Restoring and non-restoring division	2,3	
3	Title	Processor Organization and Control Unit		9
	3.1	CPU Architecture, Register Organization Instruction formats, basic instruction cycle. Instruction interpretation and sequencing, Case Study of 8086 architecture and Register Organization	1,2,4	
	3.2	Control Unit: Soft wired (Micro-programmed) and hardwired control unit design methods. Microinstruction sequencing and execution. Micro operations	2,4	
	3.3	RISC and CISC: Introduction to RISC and CISC architectures and design issues.	2,4	_
4	Title	Memory Organization		11
	4.1	Introduction to Memory and Memory parameters. Classifications of primary and secondary memories. Types of RAM and ROM, Allocation policies, Memory hierarchy and characteristics.	1,2	
	4.2	Cache memory: Concept, architecture (L1, L2, L3), mapping techniques. Cache Coherency, Interleaved and Associative memory.	1,2	
	4.3	Virtual Memory: Concept, Segmentation and Paging, Page replacement policies	1,2,4	
5	Title	I/O Organization and Introduction to Parallel Processing		11

	5.1	Buses: Types of Buses, Bus Arbitration, BUS standards	2	
	5.2	I/O Interface, I/O channels, I/O modules and IO processor, Types of data transfer techniques: Programmed I/O, Interrupt driven I/O and DMA.	1,2	
	5,3	Introduction to parallel processing concepts, Flynn's classifications, pipeline processing, Pipeline stages, Pipeline Hazards	1,2,4	
6	Self Study	Comparative Study of microprocessors and micro architectures with respect to their important features. 8086 instructions and assembler directives with addressing modes with memory interfacing techniques. Cache memory protocol and virtual memory concepts in Pentium processors. Vector and Array Processors with VLIW architecture.	Ref. 2,5,6	6*
		Total (* Not inc	cluded)	42

Laboratory Component (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	Implement various Arithmetic Operations through Assembly Language Programming for microprocessor 8086 (MASM)
2	Simulate the operation of COPY and PASTE in 8086 (MASM)
3	Implement various String Operations in 8086 through the utilities provided by DOS interrupts (MASM)
4	Generation of alphabetic arrangement of a given string in 8086 (MASM)
5	Design password application (generation and detection) in 8086 (MASM/C)
6	Design of Carry Look Ahead Adder
7	Implement Booth's Multiplication Algorithm
8	Implement Division Algorithm (Non-Restoring and Restoring)
9	Implement Mapping techniques of Cache memory
10	Implement Page Replacement Policies

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Computer Organization	Fifth	Carl Hamacher, Zvonko Vranesic, Safwat Zaky	Tata McGraw- Hill	2002
2	Computer Organization and Architecture: Designing for Performance	Eighth	William Stallings	Pearson	2010
3	Computer System Architecture	Third	M, Morris Mano	Pearson	2007
4	Computer Architecture & Organization	Third	John P. Hayes	McGraw-Hill	1998

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Structured Computer Organization	Sixth	Andrew S. Tanenbaum	Pearson	2013
2	Microprocessor and Interfacing: Programming & Hardware	Third	Douglas V Hall	Tata- McGraw Hill	2012
3	Computer Architecture and Organization: Design Principles and Applications	Second	B. Govindarajulu	McGraw Hill	2017
4	Programmer's reference Manual for IBM Personal Computers	First	Steven Armburst	McGraw Hill	1986
5	Pentium Processor System Architecture	Second	Don Anderson, Tom Shanley, MindShare Inc, MindShare, Inc	Addison- Wesley Professional	1995
6	Modern Processor Design: Fundamentals of Superscalar Processors	Second	John Paul Shen , Mikko H. Lipasti	Waveland Press Inc.	2013

Course (Category)	Course Name	Teach	ning Scl	heme ((Hrs/w	veek)	(Credits	s Assig	ned
Code		L	Т	P	О	E	L	Т	P	Total
		3	0	2	5	10	3	0	1	4
(PC)]	Exami	nation	Schem	e		
	Database Management systems	Comp	onent		ISE]	MSE	E	SE	Total
CS204/JT204		The	Theory		75		75		50	300
CS204/IT204		Laboratory			50				50	100

Pre-requisite	Course Codes, if any.	-				
•	Course Objective: To efficiently and effectively Design, develop, maintain and retrieve the Information from DBMS.					
Course Outco	Course Outcomes (CO):At the End of the course students will be able to					
CS/IT204.1	Demonstrate understanding of	Demonstrate understanding of given system to construct a database model.				
CS/IT204.2	Apply various Relational and S	QL commands on the populated database.				
CS/IT204.3	Examine the functional depend	encies to make a normalized database system.				
CS/IT204.4 Examine transaction processing techniques on a database.						
CS/IT204.5	Illustrate query processing and	optimization method on a database.				

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CS/IT204.1	1	2	2	2	2	1		1	2			2
CS/IT204.2	2	2	2		2							
CS/IT204.3	1	2	2		2							
CS/IT204.4	1	2			2							
CS/IT204.5	2	2										

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
CS/IT204.1					3(IT)	3(CS)	
CS/IT204.2							
CS/IT204.3							
CS/IT204.4							
CS/IT204.5						2(IT)	

Remember Understand Apply	Analyze	Evaluate	Create
---------------------------	---------	----------	--------

Module No.	Unit No.	Topics	Ref.	Hrs
1	Title	Introduction: Database Concepts and ER Modeling	1,2	00
	1.1	Introduction to basic concept of Database, Characteristics of databases, File system V/s Database system, Users of Database system, Database Administrator, Data Independence, Codd's Rule, DBMS system architecture.		09
	1.2	Introduction to ER model, Benefits of Data Modeling, Types of data Models, Phases of Database Modeling, The Entity-Relationship (ER) Model, Extended Entity-Relationship (EER) Model		
2	Title	Relational Algebra and SQL	1,2	16
	2.1	Introduction, Mapping the ER and EER Model to the Relational Model, Relational Algebra: Overview, Basic Operators, Extended Operators		
	2.2	Overview of SQL, Data Definition Commands, Data Manipulation commands, Data Control commands, Set operations, aggregate function, null values, Views in SQL, Subquery, Trigger, stored procedure		
3	Title	Normalization	1,2	06
	3.1	Design guidelines for relational schema, Functional dependencies		
	3.2	Normal Forms- 1NF, 2 NF, 3NF, BCNF and 4NF,5NF		
4	Title	Transaction Processing and Recovery	1,2	07
	4.1	Transaction concept, Transaction states, ACID properties, Implementation of atomicity and durability, Concurrent Executions, Serializability, Recoverability, Lock-based, Timestamp-based, Validation-based protocols.		
	4.2	Shadow paging, Deadlock handling.		
5	Title	Introduction to Query Processing and Query Optimization	1,2	04
	5.1	Basics of Query Processing, Measures of Query Cost		
	5.2	Query Optimization: Equivalence Rules, Pictorial representations		
6	Self Study	 Relational Calculus-Information retrieval NO SQL-Data type, Database creation, Basic command for creation, updating and querying the database, Mongo dB 	1,2	5*
	<u> </u>	Total (*Not inc	dudad)	42

Laboratory Component: Assign a case study for group of 2/3 students and each group will perform following experiments on the case study.

Exp No.	Title of the Experiment
1	Formulate a case study and create an E-R Diagram. Mapping of E-R model to Relational Model.
2	To create a database and populate using SQL commands (With constraints) • Data Definition Language- Create, Alter, Drop, Rename, Truncate • Data Manipulation Language- Insert, Update, Delete, Select • Constraints-Not Null, Unique Key, Primary Key, Foreign Key, Check, Dropping a Constraint.
3	To perform DCL, TCL commands • Data Control Language: Grant, Revoke, Roles • Transaction Control Language: Commit, Rollback, Save point
4	To perform Date, Time, Arithmetic and Set operation on database.
5	To perform Aggregate function and Group by- Having clause on database
6	To perform Join operations on database. • Equijoins, Non-Equijoins, Self Joins, Outer Join, cross Join
7	To retrieve a data using Subquery.
8	To Create a different view of database.
9	To examine integrity of database using Triggers.
10	To improve performance of system using stored procedure.

Textbooks

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Database System Concepts	Seventh	Korth, Slberchatz, Sudarshan	McGraw – Hill	2019
2	Fundamentals of Database Systems	Sixth	Elmasri and Navathe	PEARSON Education	2011

Sr. No.	Title	Title Edition Author		Publishe r	Year
1	Database Management Systems	Third	Raghu Ramkrishnan and Johannes Gehrke	ТМН	2003
2	Database Management Systems	First	G. K. Gupta	McGraw – Hill.	2018
3	SQL, PL/SQL programming language of ORACLE	Forth	Ivan Bayross	BPB	2010

Semester-IV

			Sem IV						
No	Type	Code	Course	L	T	P	O	E	C
1	BSC	MA201	Linear Algebra	2	0	2	5	09	3
1	BSC*	MA204	Foundation of Mathematics-II	3	0	0	6	09	3
2	PC	CS205	Design and Analysis of Algorithms	3	0	2	5	10	4
3	PC	CS206	Operating Systems		0	2	5	10	4
4	PC	CS207	Computer Communications and Networks		0	2	5	10	4
5	SBC	CS208	Mini Project-I	0	0	0	4	04	2
6	ABL	SVXX/STXX	SEVA II or III /SATVA II or III	0	0	0	3	01	1
7	HSSE	HSEX2	HSS-II	2	0	0	3	05	2
8	SBC	AS201	Professional Communication Skills	1	0	2	2	05	2
9	S/M	SCX1/MNX1	SCOPE-I/Minor-I						3
			TOTAL	14	0	10	32	54	22

^{*}Only for Lateral Entry Students

			Summer term for HSC students						
No	Туре	L	T	P	O	E	C		
1	MLC	AS202	Constitution of India	1	0	0	05	06	NC

		;	Summer term (For Lateral Entry Stud	lents)					
No	Type	Code	Course	L	T	P	O	E	C
1	BSC	MA201	Linear Algebra	2	0	2	5	09	3
1	BSC	MA203	Probability and Statistics	3	0	0	5	08	3
2	MLC	AS202	Constitution of India				06	06	NC

Course	Course Name	Teach	(Hrs/w	Credits Assigned						
(Category) Code		L	T	P	0	E	L	Т	P	Total
(BSC)	Linear Algebra	2	0	2	5	9	2	0	1	3
		Examination Scheme								
		Component			ISE		MSE		ESE	Total
MA201		Theory			50		50		100	200
WIAZUI		Laboratory		50					50	100

Pre-requisi	te Course Codes, if any.	Engineering Calculus/Foundation of Mathematics-I and Differential Equations and Complex Analysis/Foundation of Mathematics-II			
Course Obj	jective: To develop mathematic	cal skills for solving engineering problems.			
Course Out	tcomes (CO):At the End of the	course students will be able to:			
MA201.1 Solve a homogeneous and non-homogeneous system of linear equations using rank of a matrix					
MA201.2	Solve system of linear equation	ons by Numerical Methods.			
MA201.3	Solve equations in real life primatrices.	roblems and to encode and decode messages using the concept of			
MA201.4	Identify whether given structu	ares are vector spaces and subspaces and construct a basis for them.			
MA201.5	Show if a given matrix is diag	conalisable or not.			
MA201.6	11 5	s and eigenvectors to calculate functions of a square matrix, google stems of differential equations using diagonalisation of matrices.			

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MA201.1	3											
MA201.2	3											
MA201.3	3	1										
MA201.4	3											
MA201.5	3											
MA201.6	3	1										

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
MA201.1							
MA201.2							
MA201.3							
MA201.4							
MA201.5							
MA201.6							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

		Theory Component	· · · · · · · · · · · · · · · · · · ·	
Aodule No.	Unit No.	Topics	Ref	Hrs
1	Title	Basics of matrices	3,5	03
	1.1	Revision of basic matrices and types of matrices.		01
	1.2	Row echelon form, Reduced Row Echelon form, Rank of a matrix.		02
2	Title	Linear equations & its solutions	1,2,3,5	07
	2.1	Consistency and solution of simultaneous linear homogeneous and non-homogeneous equations.		02
	2.2	Application of solving systems of equations in traffic control.		0
	2.3	Solution of system of linear algebraic equations, by (1) Gauss Elimination Method (2) Gauss Jordan method (3) Gauss Jacobi Iteration method (4) Gauss Seidel Method. (5) LU Decomposition -Crout's method		04
3	Title	Vector spaces (over field of real numbers)	1,2,5	0
	3.1	Vector space, subspace, span, linear dependence and independence of vectors, basis, dimension, orthogonal projection & gram-Schmidt process. Null space, row space, column space, Rank-Nullity theorem (only statement). Least square method.		08
4	Title	Encoding & decoding using Matrices.	4	02
	4.1	Application of matrices to Coding and Decoding		02
5	Title	Eigenvalues and Eigenvectors	1,2,3,5	0
	5.1	Eigenvalues, Eigenvectors and its properties. Cayley Hamilton theorem and its applications. Diagonalisation of matrices. Derogatory and Non-derogatory matrices.		04
	5.2	Application to find google page rank. Functions of a square matrix. Solving system of differential equations using diagonalisation.		04
6	Self Study	 1.2 Normal form. 2.2 Forming equations using KVL for circuits and solving them using matrices. 3.1 Singular Value Decomposition. 5.1 Additional properties with proofs of eigenvalues and eigenvectors. 	1,2,3,5	0:
	<u> </u>	<u>I</u>	Total	28

^{*}Total of 28 hours does not include the self-study hours.

Laboratory Component (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment						
1	Introduction to Scilab (getting started) and its benefits to use as a mathematics tool.						
2	Basic commands of Scilab and vectors & matrix operations.						
3	Conditional branching and iterations using Scilab.						
4	Solution of linear equations using row-echelon and inverse of a matrix.						
5	Solutions of linear equations using Gauss Elimination method.						
6	Solutions of linear equations using Gauss Jordan method.						
7	Solutions of linear equations using Gauss-Jacobi method.						
8	Solutions of linear equations using Gauss-Seidel method.						
9	Solutions of linear equations using Crout's method.						
10	To find Eigenvalues and Eigenvectors using Scilab						

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Linear Algebra and its applications	Fourth	Gilbert Strang	Cengage	2014
2	Higher Engineering Mathematics	Forty Fourth	Dr. B. S. Grewal	Khanna Publications	2020

Sr. No.		Title			Editio	on	on Authors		s	Pub	Year		
1	Linear Algebra and its applications			Th	ird		Dav	id. C. I	ay	Pearson Education		2006	
2	Elementary Linear Algebra Application Version			Six	xth		H A Cro	nton an	ıd	John W and So		2010	
3	Adva	anced Engineering Mathemati	ics	Tv	venty E	ighth	H.K	Das		S.Char	ıd	2014	
4	Hill Ciphers			Fin	rst		Ionaki B Canoch			At Right Angles		2015	
5	Advanced Engineering Mathematics			Те	nth		Erwin Kreysizg			John Wiley & Sons		2011	
Cour				Teaching Scheme (Hrs			Hrs/v	Hrs/week)			Credits Assigned		
(Catego Cod		Course Name	I	,	T	P	О	E	L	Т	P	Total	
			2 1 0			0	0	3	2	1	0	3	
(BSC	C)		Examination Scheme										
		Foundations of Mathematics-II	Component ISE MSE ESI			ESE	Total						
MA2	04		Theory			75 75		75		150	300		
WIAZ	U4		La	bor	ratory								

Pre-requis	ite Course Codes, if any.	Foundations of Mathematics-I					
Course Ob	Course Objective: To develop basic foundation of mathematical skills.						
Course Ou	Course Outcomes (CO):At the End of the course students will be able to: -						
MA204.1	Integrate a function of one vari	able using various techniques					
MA204.2	Sketch basic curves and solve double and triple integrals.						
MA204.3	Solve basic problems using pro	perties of complex numbers.					
MA204.4	Solve differential equations of f	first order.					
MA204.5	Apply the techniques of solving first order differential equations to electrical engineering problems.						
MA204.6	Solve differential equations of higher order						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MA204.1	1											
MA204.2	1											
MA204.3	1											
MA204.4	2											
MA204.5	1	1										
MA204.6	2											

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
MA204.1						
MA204.2						
MA204.3						
MA204.4						
MA204.5						
MA204.6						

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create	
----------	------------	-------	---------	----------	--------	--

Theory Component

Module No.	Unit No.	Topics	Ref	Hrs.				
1	Title	Integral Calculus		13				
	1.1	Formulae for integral of standard functions, integration by parts, integration by method of substitution.		04				
	1.2 Gamma functions, Beta functions. Differentiation under Integral sign with constant limits and one parameter.							
	1.3 Standard curves (lines, circles, parabolas, ellipses). Concept of double integration. Evaluation of double and triple integrals.							
2	Title Complex Numbers			03				
	2.1	Operations on complex numbers, polar form of a complex number, properties of a complex number.	1,2	03				
3	Title	Differential Equations		12				
	3.1	Exact differential equations. Linear differential equations of the first order and equations reducible to linear.	1.2	04				
	3.2	Solving differential equations of first order in electrical networks.	1,2	01				
	3.3 Linear differential equations with constant coefficients: complementary function and particular integral.							
	Total							

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Higher Engineering Mathematics	Forty Fourth	Dr. B. S. Grewal	Khanna Publications	2020

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Advanced Engineering Mathematics	Tenth	Erwin Kreysizg	John Wiley & Sons	2011
2	Advanced Engineering Mathematics	Twenty Eighth	H.K.Dass	S.Chand	2014

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	T	P	o	E	L	Т	P	Total
		3	0	2	5	10	3	0	1	4
(PC)		Examination Scheme								
	Design and Analysis of Algorithms	Component ISE				MSE	E	ESE	Total	
CCANE II TANE		Theory			75		75		150	300
CS205/IT205		Laboratory			50				50	100

Pre-requisite Course Codes, if any.	Advanced Data Structures
-------------------------------------	--------------------------

Course Objective: 1. To teach paradigms and approaches used to analyze and design algorithms and to appreciate the impact of algorithm design in practice.

2. To make students understand how the worst-case time complexity of an algorithm is defined, how asymptotic notation is used to provide a classification of algorithms.

Course Outcomes (CO):At the End of the course students will be able to

CS/IT205.1	Analyze time and space complexity of an algorithm.
CS/IT205.2	Apply divide and conquer strategy to solve problems.
CS/IT205.3	Apply the concept of dynamic programming and greedy approach to solve problems.
CS/IT205.4	Apply the idea of backtracking, branch and bound strategy to solve problems.
CS/IT205.5	Apply various string matching algorithms.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CS/IT205.1	3	2						1		1		1
CS/IT205.2	3	2	2	1				1	1	1		1
CS/IT205.3	3	2	2	1				1	1	1		1
CS/IT205.4	3	2	2	1				1	1	1		1
CS/IT205.5	3	2	2					1	1	1		1

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
CS/IT205.1							
CS/IT205.2	1(CS)	1(IT)	1(CS)		1(IT)	1(CS)	
CS/IT205.3	1(CS)	1(IT)	1(CS)		1(IT)	1(CS)	
CS/IT205.4	1(CS)	1(IT)	1(CS)		1(IT)	1(CS)	
CS/IT205.5	1(CS)	1(IT)	1(CS)		1(IT)	1(CS)	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Und	nderstand App	ply An	nalyze	Evaluate	Create	
--------------	---------------	--------	--------	----------	--------	--

		Theory Component				
Module No.	Unit No.	Topics	Ref.	Hrs.		
1	Title	Introduction to Analysis of algorithm				
	1.1	Role of Algorithms in Computing, Performance analysis-space and time complexity, Growth of Functions: Asymptotic Notation, Standard Notation and Common Functions, Analysis of sorting algorithms Such as Selection sort and insertion sort.	1,2			
	1.2	Divide and Conquer Approach – General Method, Analysis of Merge Sort, Analysis of Quick sort, Analysis of Binary search, Finding the maximum and minimum, Strassen's matrix multiplication.	1,2	12		
	1.3	Recurrences: The substitution method, Recursion tree method, Master method and Proof.	1			
2	Title	Dynamic Programming and Amortized Analysis				
	2.1	Dynamic Programming: Assembly-line scheduling, Matrix Chain Multiplication, Longest common subsequence.	1	12		
	2.2	Amortized analysis- Aggregate analysis, accounting and Potential Method, Dynamic Table.	1			
3	Title	Greedy Approach				
	3.1	Greedy Approach: Basic strategy, application to job sequencing with deadlines problem, single source shortest path-Dijkstra's algorithm.	1,2	5		
	3.2	Knapsack problem, Minimum cost spanning trees-Kruskal and prim's algorithm.	1,2			
4	Title	Backtracking and Branch-and-bound				
	4.1	Backtracking: General method, 8 queen problem (N-queen problem), Sum of subsets, Graph coloring.	2	5		
	4.2	Branch and Bound: 0/1 knapsack problem, Travelling salesman problem, 15 puzzle problem.	2			
5	Title	Approximation and String Matching algorithms				
	5.1	Approximation algorithms: The vertex-cover problem, The traveling-salesman problem, The set covering problem	1	8		

	5.2	String Matching algorithms: The naïve string matching Algorithms, The Rabin Karp algorithm, String matching with finite automata, The Knuth-Morris-Pratt algorithm	1	
6	Self Study	NP-complete problems: Basic concepts, Non-deterministic Algorithms, NP-hard and NP-complete, Cook's Theorem, NP-Hard graph and scheduling Problems. NP-completeness and reducibility, decision and optimization problems, polynomial reduction	1,2	5*
		Total		42

Laboratory Component (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	Experiment on finding the running time of an algorithm.
2	Experiment based on divide and conquers approach.
3	Experiment on Recurrence relation.
4	Experiment using dynamic programming approach
5	Experiment based on greedy approach
6	Experiment based on graph Algorithms
7	Experiment using Backtracking strategy
8	Experiment using branch and bound strategy
9	Experiment based on Approximation Algorithms
10	Experiment on string matching algorithms.

Text Book(s):

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Introduction to Algorithms	Third	Thomas H. Cormen, Charles E. Leiserson, Ronald L Rivest, Clifford Stein	MIT Press	2009
2	Fundamentals of Computer Algorithms	Second	Horowitz E, Sahni S and S. Rajasekaran	Galgotia Publications	2010

Sr. No.	Title		Edition	ion A			Authors			Publisher		Year	
1	The Design and analysis of algorithms		First	E. H	Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman					earson ducatio	2006		
Course (Category) Course		Course Nan	ne	Teach	ning Scl	cheme (Hrs/week)				Credit	ned		
	Code			L	T	P	О	E	L	Т	P	Total	
				3	0	2	5	10	3	0	1	4	
	(PC)			Examination S					Scher	heme			
		Operating Syst	ems	Comp	Component		ISE		MSE		ESE	Total	
ggag				The	eory		75		75	1	150	300	
CS206/IT206		TT206		Laboratory		50			,	50	100		

Pre-requisite	Course Codes, if any.	Computer Architecture and Organization						
Course Object	Course Objective: To understand structure of OS, process synchronization ,memory management and file system.							
Course Outcomes (CO):At the End of the course students will be able to								
CS/IT206.1	Comprehend the primitive of functionality.	Comprehend the primitive concepts of Operating System services and System Programming unctionality.						
CS/IT206.2	Articulate process schedulin	g algorithms in effective execution of processes.						
CS/IT206.3	Acquaint with efficient process	ess synchronization techniques in effective execution of programs.						
CS/IT206.4	Analyze virtual memory mar	nagement algorithms in effective allocation of main memory usage.						
CS/IT206.5	Evaluates various algorithm criterion.	s of File Storage & I/O management for performance and quality						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CS/IT206.1	1											1
CS/IT206.2	2	2	2	2					2			2
CS/IT206.3	2	2	2	2					2			2
CS/IT206.4	2	2	2	2					2			2
CS/IT206.5	2	2	2	2					2			2

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
CS/IT206.1							
CS/IT206.2							
CS/IT206.3						2(CS)	
CS/IT206.4							
CS/IT206.5							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understand	Apply	Analyze	Evaluate	Create
---------------------	-------	---------	----------	--------

		Theory Component		
Module No.	Unit No.	Topics	Ref.	Hrs.
	Title	Introduction to System Software and Operating Systems		
1	1.1	System Software – Introduction, Goal, Systems Programs and Systems Programming, Views of Systems Software. Linkers and Loader – Relocation and Linking Concepts, Design of Linker, Self-Relocating Programs, Linking of Overlay Structured Programs, Dynamic Linking, Loaders.	1	8
	1.2	Operating Systems – Introduction, Structure and Principles of Operations of Operating Systems, Classes of Operating Systems, Batch Processing Systems, Multi programming Systems, Time Sharing Systems, Real Time Operating Systems.	1	
	Title	Process Management		
2	2.1	Processes and Threads – Process Concept, Process Scheduling, Operations on Processes, Multi core Programming, Multi threading Models, Thread Libraries, Implicit Threading, Threading Issues, Operating-System Examples	2	8
	2.2	UNIX Process and Threads – Process Abstraction, Process Creation using fork and exec, invoking new process, process termination, awaiting process termination, User and Kernel Threads.	3	
	Title	Process Coordination		
	3.1	Process Synchronization - Critical-Section Problem, Peterson's Solution, Synchronization Hardware, Mutex Locks, Semaphores, Classic Problems of Synchronization, Monitors, Synchronization Examples	2	
3	3.2	CPU Scheduling - Scheduling Criteria, Scheduling Algorithms, Real- Time CPU Scheduling, Operating-System Examples. Deadlock - Characterization, Methods for Handling Deadlocks, Detection, Prevention, Avoidance, Recovery methods for Deadlock.	2	12
	3.3	UNIX IPC – Universal IPC Facilities, System V IPC, Message, Ports, Message Passing, Port Operations.	3	
	Title	Memory management		
4	4.1	Memory Management Strategies - Swapping, Contiguous Memory Allocation, Segmentation, Paging, Structure of the Page Table.	2	6
	Thrashing, Memo	Virtual Memory Management - Demand Paging, Allocation of Frames, Thrashing, Memory-Mapped Files, Allocating Kernel Memory, Operating-System Examples.	2	
5	Title	File Management		8

	5.1	Storage Management - Disk Structure, Disk Scheduling, Disk Management	2					
	5.2	File-System Implementation - File-System Structure, File-System Implementation, Directory Implementation, Allocation Methods, Free-Space Management	2					
	5.3	UNIX Internal File Representation - Inodes, Structure of Regular File, Directories, Path Name to Inode Conversion, Super Block, Inode Assignment, Allocation of Disk blocks, Other File Types.	4					
6	Self Study	 Explore Features, characteristics and CPU scheduling of Real-Time Operating System along an example Explore the requirements of Kernel, CPU Scheduling, Disk Scheduling for Multimedia Systems Explore all UNIX System Calls for File System. 	2,4	5*				
	Total (*Not included)							

List of Experiments for Operating System Laboratory

Sr. No.	Title of the Experiment
1	Installation of Linux OS on Virtual Machine.
2	Write a program for creating a static/dynamic link library for complex number operations and then test this library through linuxld linker.
3	Write a program which creates exactly 16 copies of itself by calling fork() only twice within a loop. The program should also print a tree of the pids.
4	Write a program to simulate the following non-preemptive CPU scheduling algorithms to find turnaround time and waiting time. a) FCFS b) SJF c) Round Robin d) Priority
5	The program r.c initializes <i>n</i> number of semaphores. It first assign count equal -1, which is then used by process p and q. This count is protected by semaphore. It also allocates shared memory of size 40 ints. It waits for process p and q to enter all n1 and n2 elements through different terminals. This program r.c sorts shared data in ascending order. It waits to finish p and q. At end, The program r.c detaches and deletes <i>n</i> semaphores and print the sorted list.
6	Write a multithreaded program for preventing race conditions and deadlock avoidance for the banker's algorithm as follows. Several customers' request and release resources from the bank. The banker will grant a request only if it leaves the system in a safe state. A request that leaves the system in an unsafe state will be denied.
7	Write a program which acts as a chat application between two users on the same computer using shared memory.
8	Assume that a system has a 32-bit virtual address with a 4-KB page size. Write a C program that is passed a virtual address (in decimal) on the command line and have it output the page number and offset for the given address. As an example, your program would run as follows: ./a.out 19986 Your program would output: The address 19986 contains: page number = 4 offset = 3602 Writing this program will require using the appropriate data type to store 32 bits. We encourage you to use unsigned data types as well.
9	Write a program to simulate disk scheduling algorithms a) FCFS b) SCAN c) C-SCAN
10	Write a program to prevent destructive update of files by locking as follows: Suppose the inode contains a new permission setting such that it allows only one process at a time to open the file for writing, but many processes can open the file for reading.

Note – Implement all programs in C language under Linux OS environment

Text Books

Sr. No.	Title Editi		Authors	Publisher	Year
1	System Programming	First	D M Dhamdhere	Tata McGraw- Hill Education	2011
2	Operating System Concepts Ninth		Abraham Silberschatz, Peter B Galvin, Greg Gagne	Wiley	2012
3	UNIX Internals: The New Frontiers	First	UreshVahalia	Prentice Hall	1995
4	Design of the UNIX Operating Systems	First	Maurice J. Bach	Prentice-Hall	1990

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Operating Systems: Internals and Design Principles	Eighth	William Stallings	Pearson	2014
2	Modern Operating Systems	Fourth	Andrew S. Tanenbaum, Herbert Bos	Pearson	2014

Course (Category) Code	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned				
		L	T	P	О	E	L	Т	P	Total	
	Computer Communications and Networks	3	0	2	5	10	3	0	1	4	
(PC)		Examination S					Schem	Scheme			
		Component			ISE		MSE		ESE	Total	
CS207/IT207		Theory			50		50		100	200	
		Laboratory			50				50	100	

Pre-requisite	Course Codes, if any.					
Course Object	Course Objective: Understand the state-of-the-art in network protocols, architectures and applications.					
Course Outco	omes (CO):At the End of the course students will be able to					
CS/IT207.1	Describe the fundamental concepts of Data Communication.					
CS/IT207.2	Distinguish the different layers of the OSI model and TCP/IP.					
CS/IT207.3	Identify the different types of protocols and their functions within a network.					
CS/IT207.4	Apply the knowledge of sub netting, routing mechanisms and Software Defined Networking.					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CS/IT207.1	2	1						1	1			2
CS/IT207.2	2	2						1	1			2
CS/IT207.3	2	2						1	1			2
CS/IT207.4	2	2						1	1			2

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
CS/IT207.1	3(CS)/2(IT)				1(IT)		
CS/IT207.2	3(CS)/2(IT)				1(IT)		
CS/IT207.3	3(CS)/2(IT)				1(IT)		
CS/IT207.4	3(CS)/2(IT)				1(IT)		

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
----------	------------	-------	---------	----------	--------

		Theory Component		
Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Computer Communication and The Internet	1,2	10
	1.1	Internet: A Nut and Bolts Description, A Services Description, Protocol. The Network Edge: Access Network, The Network Core: Packet Switching, Circuit Switching, A Network of Networks	1,2	
	1.2	Delay, Loss, Throughput in Packet Switched Networks: Overview of Delay in Packet Switched Networks, Queuing Delay and Packet Loss, End to End Delay, Throughput in Computer Networks.	1,2	
	1.3	Protocol Layers and their Service Models: Layered Architecture and their Encapsulation.	1,2	
	1.4	Data and Signals: Analog and Digital, Periodic analog signals, Digital signals, Transmission impairment.	2	
	1.5	Digital Transmission: Digital-to-Digital conversion, Analog-to-Digital conversion. Transmission modes, Analog Transmission: Digital-to-Analog conversion, Analog-to-Analog conversion.	2	
2	Title	Application Layer	1,2	6
	2.1	Principles of Network Applications: Network Applications Architecture, Processes Communicating, Transport Services Available to Applications, Transport Services Provided by the Internet, Application Layer Protocols.	1,2	
	2.2	The Web and HTTP: Overview of HTTP, Non Persistent and Persistent Connections, HTTP Message Format, User Server Interaction: Cookies, Web Catching, The Conditional Get.	1,2	
	2.3	File Transfer Ftp: Ftp Commands and Replies. FTP, SMTP, Mail Access Protocol (IMAP, POP), DNS	1,2	
3	Title	Transport Layer	1,2	8
	3.1	Introduction and Transport-Layer Services: Relationship Between Transport and Network Layers, Overview of the Transport Layer in the Internet	1,2	
	3.2	Multiplexing and Demultiplexing	1,2	
	3.3	Connection less Transport - UDP: UDP Segment Structure, UDP Checksum	1,2	
	3.4	Principles of Reliable Data Transfer: Building a Reliable Data Transfer Protocol, Pipelined Reliable Data Transfer Protocols, Go-Back-N (GBN), Selective Repeat (SR),	1,2	

	6.5	Network Function Virtualization	R3	
	6.4	Routing in the Internet: Intra-AS Routing in the Internet: RIP, Intra-AS Routing in the Internet: OSPF, Inter-AS Routing: BGP	1,2	
	6.3	Multicast routing and Broadcast routing	1,2	
	6.2	ARP and RARP usage	1,2	
	6.1	Transmission Media: Guided media, Unguided media: Wireless	1,2	
6*	Title	Self Study Topic	1,2	5*
	5.3	Multiple Access Links and Protocols: Channel Partitioning Protocols, Random Access Protocols, Taking-Turns Protocols.	1,2	
	5.2	Error-Detection and Correction Techniques: Parity Checks, Check summing Methods, Cyclic Redundancy Check (CRC)	1,2	
	5.1	Introduction to the Link Layer: The Services Provided by the Link Layer, Implementation of the Link Layer	1,2	
5	Title	The Link Layer: Links, Access Networks, and LANs	1,2	8
	4.6	Software Defined Networking: Introduction and Overview	R3	
	4.5	Routing Algorithms: The Link-State (LS) Routing Algorithm, The Distance-Vector (DV) Routing Algorithm, Hierarchical Routing	1,2	
	4.4	The Internet Protocol (IP): Forwarding and Addressing in the Internet, Datagram Format, IPv4 Addressing, Internet Control Message Protocol (ICMP), IPv6	1,2	
	4.3	Router: Input Processing, Switching, Output Processing, Queuing, The Routing Control Plane.	1,2	
	4.2	Virtual Circuit and Datagram Networks: Virtual-Circuit Networks, Datagram Networks, Origins of VC and Datagram Networks.	1,2	
	4.1	Introduction: Forwarding and Routing, Network Service Models.	1,2	
4	Title	The Network Layer	1,2	10
	3.6	Principles of Congestion Control: The Causes and the Costs of Congestion, Approaches to Congestion Control.	1,2	
	3.5	Connection-Oriented Transport - TCP: The TCP Connection, TCP Segment Structure, Round-Trip Time Estimation and Timeout, Reliable Data Transfer, Flow Control, TCP Connection Management	1,2	

^{*}This module hrs. not included in Total 42 hrs

Laboratory Component (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment						
1	Use and interpret basic Networking Utilities						
2	Describe various Network Topology and Networking Hardware						
3	Experiment with Packet Tracers/Analyzers						
4	Implement Web server and DHCP server for given scenario						
5	Implement TELNET and FTP server for given scenario						
6	Implement SMTP server for given scenario						
7	Implement DNS server for given scenario						
8	Develop client-server model using Socket Programming for given scenario						
9	Illustrate basic Mininet operations for Software Defined Networking						
10	Implement in Mininet to control switch manually						

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Computer Networking: Top Down Approach	Sixth	James Kurose and Kieth Ross	Pearson	2013
2	Data Communication and Networking	Second	Behrouz Forouzan	McGraw Hill	2000

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Computer Networks	Fifth	Andrew Tanenbaum	Pearson	2013
2	Computer Networks	Third	Larry L. Peterson and Bruce Davie	Morgon Huffman	2003
3	SDN and NFV Simplified	First	Jim Doherty	Addison Wesley	2016

Course (Category) Code	Course Name	Teach	Teaching Scheme (Hrs/week) Credits						s Assig	gned
		L	Т	P	О	E	L	Т	P	Total
(SBC)		1	0	2	2	5	1	0	1	2
(350)		Examination Scheme							•	
	Professional Communication Skills	Comp	onent		ISE		MSE	E	ESE	Total
AS201		The	eory							
		Laboratory		200					-	200

Pre-requisite Course Codes, if any.									
Course Objective: To demonstrate the desired spoken and written communication skills required in early professional life, with focus on job placements.									
Course Outco	omes (CO):At the End of the course students will be able to								
AS201.1	Demonstrate the spoken and written skills for job placements.								
AS201.2	AS201.2 Draft professional documents.								
AS201.3	Design written communication for social media.								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AS201.1										2		
AS201.2										2		
AS201.3										2		

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
AS201.1							
AS201.2							
AS201.3							

BLOOM'S Levels Targeted (Pl. appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
----------	------------	-------	---------	----------	--------

Theory Component

Module No.	Unit No.	Topics Ref.		L Hrs.	P Hrs
1.	Title	Placement Skills		6	12
	1.1	Resume Writing & Cover Letter			
	1.2				
	1.3				
	1.4	Team Building Skills/Work			
	1.5	Interview Skills			
2	Title	Corporate Communication		6	12
	2.1	Presentation Skills			
	2.2	Meeting: Notice, Agenda, Minutes			
	2.3	Proposal Writing			
	2.4	Report Writing: Informative, Analytical report			
3	Title	Research Writing		2	4
	3.1	Sourcing information through digital media			
	3.2	Written communication using social media: Blog			
4	Self Study	Research Paper, News Analysis			6*
			Total	42]	hrs

^{*}Not included in the total

List of ISEs

Sr. No.	Title of the Experiment
1	Resume
2	Cover Letter
3	GD
4	Mock Interview
5	Presentation
6	Blog Writing
7	Team Building Activity
8	Minutes of the Meeting/Notice & Agenda
9	Proposal Writing
10	Report Writing

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Interpersonal Skills at Work	2002	John Hayes	McGraw Hill Education	2002
2	Campus Placement: A Comprehensive Guide	2016	Ankur Malhotra	McGraw Hill Education	2016

Sr. No.		Title		Editio	n	A	uthors		Pu	blishe	er	Year
1	If I Understood Look on My Fa Art and Science Communicating	FIRS	Γ	Alan Alda			Random House			2017		
2	Handbook for V	Handbook for Writing Proposals					. Hamp gh	er,		Fraw Fration	Hill	2010
3	Effective Comm Scientific and T	2000)	Harry C	hamber	'S		erback c Bool		2000		
4	The Art Of Wri		2008		William Issac			Crown Business			2008	
5	Communication		2011		Meenak Sangeeta	Oxford, India			2011			
	Course	G N	Tea	Teaching Scheme (Hrs/week)				Credits Assign				ed
((Category) Code	Course Name	L	Т	P	0	E	L	T	P	o	Total
			0	0	0	4	4	0	0	0	2	2
	(SBC)					Exai	ninatio	n Sch	eme			
		Mini Project-I	C	Compone	ent	ISE		MSE		E	SE	Total
CS208/IT208				Theory	,							
	.5200/11200		L	aborato	ry	1	00			10	00	200

Pre-requisite	Course Codes, if any.								
Course Objective: To develop the skills of Planning and Designing the working model for solving the real world Problem.									
Course Outcomes (CO):At the End of the course students will be able to									
CS/IT208.1	Discover potential research area	scover potential research areas for addressing societal issues							
CS/IT208.2	Conduct a survey of basic and o	Conduct a survey of basic and contemporary literature in the preferred field of study.							
CS/IT208.3	Formulate and propose a plan for	or creating a solution for the research plan identified.							
CS/IT208.4	Exercise the team building, con projects.	nmunication and management for design and implementation of							
CS/IT208.5	Compare and contrast the sever	ral existing solutions for research challenge							
CS/IT208.6	Report and present the findings	of the study conducted in the preferred domain.							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CS/IT208.1	2	2				2		3	3	3		2
CS/IT208.2	2	2				2		3	3	3		2
CS/IT208.3	2	3					2	3	3	3		2
CS/IT208.4	2		3	1	2			3	3	3	3	2
CS/IT208.5	2	2		2				3	3	3		2
CS/IT208.6	2	2						3	3	3		2

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
CS/IT208.1	2(IT)/2(CS)	2(IT)/2(CS)	2(IT)/2(CS)	2(IT)	2(IT)	2(IT)/2(CS)	2(IT)
CS/IT208.2	2(IT)/2(CS)	2(IT)/2(CS)	2(IT)/2(CS)	2(IT)	2(IT)	2(IT)/2(CS)	2(IT)
CS/IT208.3	2(IT)/2(CS)	2(IT)/2(CS)	2(IT)/2(CS)	2(IT)	2(IT)	2(IT)/2(CS)	2(IT)
CS/IT208.4	2(IT)/2(CS)	2(IT)/2(CS)	2(IT)/2(CS)	2(IT)	3(IT)	2(IT)/2(CS)	2(IT)
CS/IT208.5	2(IT)/2(CS)	2(IT)/2(CS)	2(IT)/2(CS)	2(IT)	2(IT)	2(IT)/2(CS)	2(IT)
CS/IT208.6	2(IT)/2(CS)	2(IT)/2(CS)	2(IT)/2(CS)	2(IT)	2(IT)	2(IT)/2(CS)	2(IT)

BLOOM'S Levels Targeted (Pl. appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
----------	------------	-------	---------	----------	--------

Mini-project is an opportunity to make a difference in the experience of education in its own way. It is an attempt of scientific study of the problem in surrounding in order to guide, correct and evaluate the actions and decisions about it. It is based on a small project correlating scientific knowledge and day to day experience which encourages development of scientific attitude to solve real life problems among students.

The Objectives of Action Research are:

- ✓ To make students sensitive towards societal issues
- ✓ To learn scientific principles from day-to-day experiences
- ✓ To develop psycho-technological skills through observation, classification, statement of hypothesis etc.
- ✓ Development of communication, organizational skills and maturity through discussion, presentation etc.
- ✓ To develop ability to correlate science, technology and society
- √ To apply engineering knowledge and propose innovative, sustainable solutions to the real-life challenges

Steps for Implementation (ISE: 2 Phases) and ESE

- ✓ Keen observation of the surrounding/society
- ✓ Identification of the problem
- ✓ Analysis of the problem
- ✓ Collection of relevant information by formulating research questions
- ✓ Suggesting plan of action
- ✓ Conducting experiments
- ✓ To draw conclusion
- \checkmark To find the possible solution to rectify the problem
- ✓ To execute experiments and remedial measures wherever possible

Students can seek guidance from teachers, other experts and make effective use of other sources of information available around them. Students must ensure that problem to be solved in manageable in one semester.

Criteria of a good project:

- ✓ Appropriate idea, clear understanding, and proper presentation of the concept
- **✓** Quality of work
- ✓ Project plan and its execution
- ✓ Credibility of the work
- ✓ Probable impact of the work on the attitude of students and society
- ✓ Scientific attitude, creativity and novelty reflected in project work and analysis of the situation
- ✓ Utility and innovation of the remedial measures
- ✓ Desirability, Feasibility and Viability in real life

The H/W and S/W resources required to complete the Mini-Project-I may be beyond the scope of curriculum of courses taken or may be based on the courses but thrust should be on

- Learning additional skills
- Development of ability to define and design the problem and lead to its accomplishment with proper planning
- Learn the behavioral discipline by working in a team. The team may be maximum three (03) students.

Evaluation:

Project report should contain project title, student details, certificate and acknowledgements. Other sections of the report shall be decided by the department based on projects. But it must have introduction,

necessity of project, objectives, hypothesis, plan, observations, analysis of results, conclusion and references along with other sections related to technology. The ISE and ESE evaluation will be carried out based on the rubrics framed by the Department. The ESE marks will be based on final demonstration of the project and viva based on it and report/poster/technical paper of the project in the standard format provided by the Department.

Semester V

			Sem V						
No	Type	Code	Course	L	Т	P	O	6 9 5 10 5 10 5 10 5 08 3 05	
1	PC	AI301	Theory of Computation	3	0	0	6	9	3
2	PC	AI302	Fundamentals of signal & Image Processing	3	0	2	5	10	4
3	PC	AI 303	Fundamentals of AI		0	2	5	10	4
4	PC	AI304	Neural Network & Fuzzy Logic		0	2	5	10	4
5	SBC	AI 305	Internet Technology Lab	1	0	2	5	08	2
7	HSSE	HSEX3	HSS-III	2	0	0	3	05	2
8	ABL	SVXX/STXX	SEVA II or III /SATVA II or III	0	0	0	3	3	1
9	S/M	SCX2/MNX2	SCOPE-II/Minor-II						3
		7	TOTAL	15	0	8	29	52	20

Course	Course Name	Teach	ing Sc	heme	(Hrs/v	Credits Assigned					
(Category) Code		L	T	P	o	E	L	T	P	Total	
	Theory of Computation	3	0	0	6	9	3	0	0	3	
(PC)		Examination Scheme									
		Comp		ISE		MSE		ESE	Total		
AI301		Theory			75		75		150	300	
		Laboratory									

Pre-requis	ite Course Codes, if any.	CS201/IT201: Discrete Structures and Graph Theory						
Course Objective: To give an overview of the theoretical foundations of computer science from the perspective of formal languages which provides the mathematical foundation of formal models of computation, and fundamentals of formal grammars and languages that is used in most areas of computer science.								
Course Outcomes (CO): At the end of the course students will be able to								
AI301.1	Design finite automaton for a re	egular expressions and languages.						
AI301.2	Apply the properties of regular	languages.						
AI301.3	Construct the grammar for a lar	Construct the grammar for a language and convert it into normal forms.						
AI301.4	Design and Evaluate Pushdown Automata and Turing Machine for a language.							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AI301 1	3	3	2		1				1	1		
AI301.2	3	2							1	1		
AI301.3	2	3			1				1	1		
AI301.4	2	2	2		1				1	1		

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
AI301.1							
AI301.2							
AI301.3							
AI301.4							

Remember	Understand	Apply	Analyze	Evaluate	Create
			✓		

		Theory Component		
Modu le No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Sets, Relations and Languages	1,5	3
	1.1	Relations and functions		
	1.2	Alphabets and languages		
	1.3	Types of proof		
2	Title	Finite Automata	1,3,5	7
	2.1	Regular languages and regular expressions		
	2.2	Finite Automata, Nondeterministic Finite Automata, Nondeterministic Finite Automata with ϵ -transitions		
	2.3	Kleene's theorem		
	2.4	NFA to DFA Conversion		
	2.5	Finite Automata with output (Moore and Mealy Machine)		
3	Title	Regular Languages	1,4	6
	3.1	The pumping lemma for regular languages, Applications of the pumping lemma		
	3.2	Closure properties for regular languages		
	3.3	Equivalence and minimization of automata: Testing equivalence of states, Minimization of DFA's		
4	Title	Context-Free Grammars and Languages	1,5	5
	4.1	Context free grammars: Definition of context free grammars, Derivations using a grammar, The language of a grammar, Sentential forms		
	4.2	Parse trees: Constructing parse trees, From inferences to trees, From trees to derivations, From derivations to recursive inferences		
	4.3	Ambiguity in grammars and languages: Ambiguous grammars, Removing ambiguity from grammars		
5	Title	Pushdown Automata	1,2	6
	5.1	Definition of the pushdown automaton: The formal definition of pushdown automata, A graphical notation for PDA's, Instantaneous descriptions of a PDA		

	5.2	The languages of a PDA: Acceptance by final state, Acceptance by empty stack, From empty stack to final state, From final state to empty stack		
	5.3	Equivalence of PDA's and CFG's: From grammars to pushdown automata, From PDA's to Grammar		
	5.4	Deterministic pushdown automata: Definition of a deterministic PDA, Regular languages and deterministic PDA's, DPDA's and context free languages		
6	Title	Properties of Context-Free Languages	1,2,3	5
	6.1	Eliminating useless symbols, Computing the generating and reachable symbols, Chomsky normal form, Greibach normal form		
	6.2	The Pumping lemma for context free languages: Applications of the pumping lemma for CFL's		
7	Title	Introduction to Turing Machines	1,2,	6
	7.1	Turing machines: Formal definition of a Turing machine, Examples of Turing machines		
	7.2	Halting Problem, Post Correspondence Problem (PCP)		
	7.3	Variants of Turing machines: Multitape Turing Machines		
	7.4	Church-Turing hypothesis		
8	Title	Recursively Enumerable Languages	3	
	8.1	Recursively Enumerable and recursive		4
	8.2	Enumerating a language		
	8.3	Context sensitive languages and the Chomsky hierarchy		
	Self Study	Tractable and Intractable Problems: Tractable and Possibly Intractable Problems: P and NP, Polynomial-Time Reductions and NP-Completeness, Cook's Theorem	3	5*
		Total (*Not included)	•	42

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Introduction to Automata Theory, Languages, and Computation	Third	John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman	Pearson	2008
2	Introduction to the Theory of computation	Third	Michael Sipser	Cengage	2013

Sr. No	Title	Edition	Authors	Publisher	Year
3	Introduction to Languages and the Theory of Computation	Fourth	John C. Martin	McGraw-Hill	2010
4	Elements of the Theory of Computation	Second	Harry R. Lewis, Christos H. Papadimitriou	Pearson	2015
5	Automata and Computability		Dexter C. Kozen	Springer	1997

Course	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
(Category) Code		L	Т	P	O	E	L	T	P	Total
(PC)	Fundamentals of Signal & Image Processing	3	0	2	5	10	3	0	1	4
		Examination Scheme								
		Comp		ISE		MSE	E	ESE	Total	
AI302			Theory		50		50		100	200
		Laboratory			50				50	100
Pre-requisite	Course Codes, if any.					•		ı		

Course Objective:

Course Outcomes (CO): At the End of the course students will be able to

AI302.1	Interpret DT signal and perform signal manipulation in Time Domain.
AI302.2	Evaluate the techniques for enhancing and segmenting Images.
AI302.3	Categorize various compression techniques and standards for Images.
AI302.4	Apply signal and image processing algorithms in practical applications.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO 1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AI302.1	2	2										
AI302.2			3									
AI302.3			3									
AI302.4		2										

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
AI302.1				3			
AI302.2				3	3		
AI302.3				3	3		
AI302.4				3			

Remember Understand Apply	Analyze ✓ Evaluate ✓ Create
---------------------------	-----------------------------

		Theory Component		
Module No.	Unit No.	Topics	Ref.	Hrs
1	Title	Discrete-Time Signal	T1,T2	10
	1.1	Introduction: Signals, Systems, and Signal, Continuous Time signal, Discrete - Time signal and representation, Digital signal, The Sampling theorem, Some elementary discrete time signals, Classification of Discrete - Time Signals, Modifications of Discrete - Time Signals.	T1,T2	-
	1.2	Operations on Discrete - Time Signals: Linear Convolution, Circular Convolution, Matrix Representation of Circular Convolution, Linear Convolution using Circular Convolution, Auto and Cross Correlation.	T1,T2	
	1.3	Discrete - Time systems: Static and dynamic, time variant and time invariant, linear and nonlinear, causal and non causal. Representation of system using impulse response, Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) system, Response of the FIR system using convolution.	T1,T2	
2	Title	Discrete Fourier Transform	T1,T2	10
	2.1	Introduction to DTFT, Relation between DFT and DTFT, DFT of DT signal, Inverse DFT. Properties of DFT, Computations in DFT	T1,T2	-
	2.2	Fast Fourier Transform (FFT): Need of FFT, Radix-2 DIT-FFT algorithm, Flow graph for N=4 and 8 using Radix-2 DIT-FFT, Inverse FFT algorithm, Computations in FFT, Linear FIR filtering using Overlap Add Algorithm and Overlap Save Algorithm and implementation using FFT.	T1,T2	
3	Title	Image Enhancement and Segmentation		10
	3.1	Point Processing, Histogram processing, Smoothing and Sharpening Filters.	T4	
	3.2	Detection of discontinuities, Edge linking and Boundary detection, Hough transform, Thresholding, Region oriented segmentation	T4	-
4	Title	Morphological Image Processing		06
	4.1	Image Morphology: Structuring Element, Erosion & Dilation, Opening & Closing, Hit and Miss Transform, Region filling.	T4	-
5	Title	Image Compression		06

	5.1	Redundancies, Lossy and Lossless Compression	T4	
	5.2	RLE, Huffman Coding, Arithmetic Coding, LZW, Predictive Coding and JPEG		
6	Self Study*	Multi-rate Signal Processing: Up sampling and Down sampling, Carl Correlation Coefficient for measurement of degree of similarity between two signals. Object Representation and Object Detection, Object Recognition, Applications of Image Processing		06
			Total	42

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment	Marks
1	Signal Operations	5
2	Discrete Convolution	5
3	Discrete Correlation	5
4	Discrete Fourier Transform	5
5	Image Enhancement using Point Processing Operations.	5
6	Smoothing and Sharpening of Images.	5
7	To enhance Image using Histogram equalization.	5
8	To segment Image using Image Segmentation.	5
9	To perform morphological operations on Image	5
10	To implement compression of the Image.	5

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Digital Signal Processing: Principles, Algorithms and Applications	Fourth edition	Proakis Manolakis	Pearson Education, ISBN 81-317-1000-9	2007
2	Digital Signal Processing	First edition	S. Salivahanan, A. Vallavaraj, C. Gnanapriya	TataMcgraw Hill ISBN 978-0-07-066924-6	2010
3	Digital Signal Processing: A Computer Science Perspective	First Edition published on 25th Sept, 2000	Jonathan (Y) Stein	Copyright © 2000 John Wiley & Sons, Inc Print ISBN:9780471295464 Online ISBN:9780471200598 DOI:10.1002/047120059X	2000
4	Digital Image Processing	3rd	Rafael C. Gonzalez and Richard E. Woods	Pearson Education	2010

Sr. No	Title	Edition	Authors	Publisher	Year
1	Digital Signal Processing: A Practical Approach		Emmanuel C. Ifeachor, Barrie W. Jervis	Pearson Education ISBN 0-201- 59619- 9	2001
2	Digital Signal Processing	Sixth Edition	P. Ramesh Babu	Scitech Publication	2014
3	Handbook on Image and Video Processing		A.I.Bovik	Academic Press	2009

Course (Category)	Course		Teaching Scheme (Hrs/week)					Credits Assigned			
Code	Name	L	Т	P	О	E	L	Т	P	Total	
(DC)		3	0	2	5	10	3	0	1	4	
(PC)	Fundament als of AI	Examination Scheme									
		Component		ISE		MS	E	I	ESE	Total	
AI303		Theory		50		50			100	200	
		Laboratory		50					50	100	

Pre-requisit	Pre-requisite Course Codes, if any.								
Course Out	Course Outcomes (CO): At the End of the course students will be able to								
AI303.1	Illustrate the building blocks of AI as presented in terms of intelligent agents								
AI303.2	Analyze the real-time problem as per appropriate search method in AI								
AI303.3	Choose an appropriate problem-solving method and knowledge-representation scheme for a given problem to solve								
AI303.4	Develop simple intelligent systems or classical toy problems using different AI techniques								

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO 2	PO3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO11	PO1 2
AI303.1	2	3			2						2	
AI303.2	2	3	2	2							2	
AI303.3	2	3	2	2						1	2	
AI303.4	2	3	2	2	2					2	2	2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
AI303.1							
AI303.2							
AI303.3							
AI303.4							

Remember	Understand	Apply	Analyze	Evaluate	Create

	_			1
Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Introduction to Artificial Intelligence	T1, T2	4
	1.1	Definition of AI, History, and Future of AI, Problem-solving Approach to Typical AI Problem.		
	1.2	Intelligent Agents and Environment the structure of an agent, Types of Agents, Environments and Its Properties, PEAS Representation for an Agent		
2	Title	Problem-Solving using Searching		
2	2.1	Uninformed search techniques: Depth First Search, Breadth First Search, Uniform Cost Search,	T1, T2	12
	2.2	Depth Limited Search, Iterative Deepening, Bidirectional Search, Comparing Different Techniques		
	2.3	Informed Search Methods: Heuristic functions, Best First Search, A*, IDA*, SMA*, Hill Climbing, Simulated Annealing, Genetic Search	T1, T2	
	2.4	Adversarial Search: Game playing, Min-max search procedure, Alpha-beta pruning, Waiting for Quiescence		
	2.5	Crypto Arithmetic Problems, Backtracking for Constraint Satisfaction Problem, Performance Evaluation		
3	Title	Knowledge Representation and Reasoning	T1	10
	3.1	Knowledge-based agents, Wumpus world. Propositional Logic: Representation, Inference, Reasoning Patterns, The resolution, Forward and Backward Chaining.		
	3.2	First-order Logic: Representation, Inference, Reasoning Patterns, Resolution, Forward and Backward Chaining.		
	3.3	Basics of PROLOG: Representation, Structure, Backtracking. Expert System: A case study of Expert System in PROLOG		
4	Title	Learning & Planning	T1	08

	4.1	What is Learning, Types of Learning (Rote, Direct instruction Analogy, Induction, Deduction),		
	4.2	Planning: Block world, strips, Implementation using goal stack,		
	4.3	Non-linear planning with goal stacks, Hierarchical planning, and Least commitment strategy.		
5	Title	Uncertain Knowledge and Reasoning	T1	08
	5.1	Quantifying Uncertainty, Representing Knowledge in an Uncertain Domain		
	5.2	Conditional Probability, Joint Probability		
	5.3	Bayes Theorem, Belief Networks, Simple Inference in Belief Networks		
6	Self Stud y	Case study on Applications of AI like Digital Biology, Cognitive Robotics, Natural Language Processing, Biometrics, Cyber Security,		05
Total	1	I .		42

Laboratory Components, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Problem formulation and implementation of an Intelligent Agent.
2	Implement a given problem using the Uninformed searching technique
3	Implement a given problem using the Informed searching technique
4	Implement hill climbing algorithm to solve 8 puzzle problems
5	Implement Simulated Annealing
6	Implement any 2 Player game using Game playing algorithms
7	To design and implement an intelligent system, incorporating the matching algorithm and the rule language. 1. It should provide a fact base updating function. 2. It should provide a function that checks the rules' LHS and returns which rules were matched. 3. It should support firing RHS according to matches. Using SWISH Prolog or Java or Python or any other open-source tool
8	Implement an Expert system using Prolog
9	Implement constraint satisfaction problem
10	Implement inference using Bayes theorem

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Artificial Intelligence: A Modern Approach	4th Edition	Stuart Russell and Peter Norvig	Prentice- Hall	2009
2	Artificial Intelligence	3rd Edition	Elaine Rich and Kerin Knight	McGraw Hill.	2008

Sr. No	Title	Edition	Authors	Publisher	Year
1	The Sciences of the Artificial	3rd Edition	Herbert A. Simon	MIT Press	1998
2	Artificial Intelligence: Structures and Strategies for Complex Problem Solving	4th Editio n	George F Luger	Pearso n Edu.	2011

Course	C N	Teaching Scheme (Hrs/week)					Credits Assigned			
(Category) Code	Course Name	L	T	P	O	E	L	Т	P	Total
		3	0	2	5	10	2	0	1	4
(PC)	Neural Network and Fuzzy Logic	Examination Scheme								
		Component			ISE		MSE		ESE	Total
AI304		Theory			50		50		100	200
		Laboratory			50				50	100

Pre-requisite Course Codes, if any. Mathematics

Course Objective: This course introduces fundamental concepts of Neural networks and Fuzzy Logic. Students will be able to understand the design of an expert system using neural networks and Fuzzy logic system for implementation of real-world applications.

Course Outcomes (CO): At the End of the course students will be able to

AI304.1	Identify the various characteristics of Neural Network techniques in building intelligent machines
AI304.2	Apply the supervised and unsupervised Neural Network Learning algorithm to solve real world engineering problems.
AI304.3	Design an associative memory network for real world problems
AI304.4	Design Fuzzy Logic Controller System
AI304.5	Analysis Working of NN-FL Hybrid System

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AI304.1	2	2		2								
AI304.2	2	2	2	2	2				1	1		
AI304.3	2	2	2	2	2				1	1		
AI304.4		2	2	2	2							
AI304.5		2	2	2	2							

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
AI304. 1							
AI304.2							
AI304.3							
AI304.4							
AI304.5							

Remember	Understand	Apply	Analyze	Evaluate	Create

Theory Component

Mod ule No.	Unit No.	Topics	Ref.	Hrs.		
1	Title	Neural Networks	T1,	10		
	1.1	Basics of Neural Networks: Introduction to Neural Networks, Biological Neural Networks, Models of ANN, terminologies in ANN, Activation functions and its types	T2 T3, R1	12		
	1.2	McCulloch Pitt model, Linear separability, Hebb Network				
	1.3	Supervised Learning algorithms: Perceptron (Single Layer, Multi layer),, Adaline, Delta learning rule, Back Propagation algorithm.				
	1.4 Un-Supervised Learning algorithms: Hebbian Learning, Winner take all, Self-Organizing Maps KSOFMN, Learning Vector Quantization.					
2	Title	Associative Memory Networks	TT2	6		
	2.1	Autoassociative and Heteroassociative Memory Network, BAM, Hopfield network.	T2, T3,T4			
3	Title	Fuzzy Logic, Classical Set and Fuzzy Relations	T-2	12		
	3.1	Introduction to Fuzzy Logic, Classical and Fuzzy Sets, Membership Functions, Classical and Fuzzy set operations, and properties of classical and Fuzzy sets.	T2, T3,T4, R1, R3			
	3.2	Classical and Fuzzy Relations: Cartesian product of relation, Fuzzy Max-Min and Max-Product Composition, Fuzzy extension principle				
4	Title	Fuzzy control system design	T2,	8		
	4.1	Fuzzy Inference System(FIS), Types of FIS, Fuzzy Systems-fuzzification, defuzzification methods, and design of fuzzy controllers.	T3 T4			
5	Title	Neuro-Fuzzy Hybrid model	T2,	4		
	5.1	Introduction of Neuro-Fuzzy Systems, Architecture of Neuro-Fuzzy Networks(ANFIS and CANFIS)	R2			
6	Self Study	Adaptive Resonance Theory, Genetic, CNN. Transfer Learning	-	5		
			Total	42		

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	To implement Transfer/Activation Functions for a given problem statement. i) A symmetric hard limit transfer function. ii) A Binary step activation function. iii) A Bipolar step activation function. iv) A saturating linear transfer function. v) A hyperbolic tangent sigmoid (tansig) transfer function. vi) A log-sigmoid transfer function
2	To design ANN to implement logic gates.
3	To implement Hebb Network for a given problem statement.
4	To design and implement ANN for a given problem statement: 1. Design a perceptron using Joone Editor. 2. Write a program using Single Layer perceptron
5	To implement the Supervised Learning algorithm.
6	To implement the Unsupervised Learning algorithm
7	To implement Associative Memory Network for a given problem statement
8	To implement Fuzzy Sets and Fuzzy Relations for a given problem statement
9	To design and implement Fuzzy Logic controller for a given problem statement
10	To design and implement ANFIS model for a given problem statement

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
T1	Introduction to Artificial Neural Systems	1st	Jacek M. Zurada	Jaico Publisher	1994
T2	Principles of Soft Computing	3rd	Sivanandan and Deepa	Pearson Edition	2019
Т3	Fuzzy logic with engineering applications	3rd	Ross, Timothy	John Wiley & Sons	2011
T4	Neural Networks, Fuzzy Logic and Genetic Algorithms	Kindle	S.Rajasekaran and G.A.Vijayalak shmiPai	PHI Learning	2013

Sr. No	Title	Edition	Authors	Publisher	Year
R1			Hagan, CENGAGE 20 Demuth, Beale Learning		2014
R2	Neuro-Fuzzy and Soft Computing	1st	JS.R.Jang .	Pearson	1996
R3	Introduction to Soft Computing	1st	Sameer Roy	Pearson	2013

Course	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
(Category) Code		L	T	P	O	E	L	T	P	Total
	Internet Technology Lab	1	0	2	6	8	1	0	1	2
(SBC)		Examination Scheme								
		Component			ISE		MSE		ESE	Total
Al305		Theory								
		Laboratory			100				100	200

Pre-requisite	Course Codes, if any.	CS208			
Course Objective:					
Course Outcomes (CO): At the End of the course students will be able to					
AI305.1	Develop a sophisticated web	Develop a sophisticated web UX			
AI30.25	Create, integrate and test RE	Create, integrate and test REST based web services			
AI305.3	Design secured web applicat	Design secured web application/ web services			
AI305.4	Demonstrate behavior of we	Demonstrate behavior of web crawlers and testing of web application			

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AI305.1					3							
AI30.25					3							
AI305.3					3							
AI305.4					3							

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
AI305.1							
AI30.25							
AI305.3							
AI305.4							

Remember	Understand	Apply	Analyze	Evaluate	Create 🗆

Module No.	Unit No.	Topics				
1		Designing UI		_		
	1.1	Fundamentals of UX Design, Defining UX Solutions, Design Communication and Visualizing Ideas	1	2		
2		Web content management system		1		
	2.1	Introduction to Web CMS, different types of Web CMS	2			
3	Web services			2		
	3.1	Introduction to web service, REST architecture 3				
4	4 Web mashups			1		
	4.1 Introduction to web mashups, server side mashups, client side mashup		2			
5	5 Secured Web application			2		
	5.1	Introduction to Web Tokens, Auth2.0, OAuth, Access token	2			
6		Integration of web services		2		
	6.1	Introduction to Mule ESB, Introduction to Anypoint studio, Integrating Web Services using Any point studio	4			
7		Web crawlers		2		
	7.1	Introduction to web crawler, role of crawler in the internet, concept of page ranking	3			
8		Testing web applications		2		
	8.1	Introduction to different types of testing, manual testing, automated testing, performance testing and functional testing, open source tools used for testing	2			
Total				14		

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Design web pages using HTML, CSS and javascript
2	Create a website using web CMS (Node Js/Angular Js/React Js/Flask/Django/Wordpress/Joomla etc.)
3	Design UX for a given problem definition by using open source UX tools
4	Create a Restful webservice to demonstrate different HTTP methods
5	Testing of restful web service using Postman/ARC
6	Create a web mashup of web services using open source framework
7	Design secured Web application using web token
8	Integration of web services using open source integration tools like Mulesoft
9	Demonstrate the behavior of Web Crawlers/ spiders (use XPATH,CSS PATH),extract information and store it in the database.
10	Test the web application using open source testing tools like Selenium, Test runner and Junit

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Sketching the User experiences	2nd edition	Bill Buxton	Diane Cerra	2010
2	Rich Internet Application AJAX and Beyond	3rd edition	Dana Moore, Raymond Budd, Edward Benson	WROX Publisher	2017
3	Web Technology	2nd Edition	Srinivasan	Pearson	2014
4	API Recipes with Mulesoft(r) Anypoint Platform	1st Edition	WHISHWORKS Editorial Board	White falcon	2017

Sr. No	Title	Edition	Authors	uthors Publisher Y	
1	https://nodejs.org				
2	https://angularjs.org/				
3	https://reactjs.org/				
4	Internet Technology And Web Design	1st edition	R. K. JAIN	Khanna Book Publishing Company	2015
5	Understanding the Internet: A Clear Guide to Internet Technologies	1st edition	Keith Sutherland	A Butterworth- Heinemann Title	2016
6	RESTful Web APIs: Services for a Changing World	3rd edition	Leonard Richardson, Mike Amundsen, Sam Ruby	O'REILLY	2013

Semester VI

	Sem VI (Cat 1- For Students who have NOT preferred semester long internship)									
No	Type	Code	Course		T	P	О	E	C	
1	OE	OEXXX	Open Elective-I	2	0	2	4	8	3	
2	PC	AI306	Distributed Computing	3	0	2	5	10	4	
3	PC	AI307	Machine Learning	3	0	2	5	10	4	
4	PE	AI3X1	PE-I		0	2	4	8	3	
5	PE	AI3X2	PE-II	2	0	2	4	8	3	
6	SBC	AI308	Main Project-Stage-I	0	0	0	8	8	3	
7	ABL	SVXX/STXX	SEVA II or III /SATVA II or III	0	0	0	3	3	1	
8	S/M	SCX3/MNX3 SCOPE-III/Minor-III							3	
		12	0	10	33	55	21			

	Sem VI (Cat 2-For Students who have preferred semester long internship)									
No	Type	Code	Course	L	Т	P	О	E	C	
1	PE*	AI3X1	PE-I	2	0	2	4	8	3	
2	PE*	AI3X2	PE-II	2	0	2	4	8	3	
4	SBC	AI309	Research Internship	0	0	0	40	40	15	
5	S/M*	SCXX/MNXX	SCOPE-III/Minor-III						3	
		4	0	4	48	56	21			
	*To be completed online mode or allied courses from MOOCs									

Course	G. N	Teach	(Hrs/v	Credits Assigned						
(Category) Code	Course Name	L	Т	P	O	E	L	Т	P	Total
	Distributed Computing	3	0	2	5	10	3	0	1	4
PC		Examination Scheme								
		Component			ISE		MSE		ESE	Total
A 1204		Theory			75		75		150	300
AI306		Laboratory			50				50	100

Pre-requisite Cou	rrse Codes, if any.	DS206 /AI202 : Operating Systems DS207/ AI203:Computer Networks and Communications					
Course Objective: To familiarize students with the fundamental concepts, techniques and design of Distributed Systems and use of distributed computing applications domains.							
Course Outcomes (CO): At the End of the course students will be able to							
AI306.1	Understand the prince	Understand the principles and desired properties of distributed systems.					
A1300.1	Apply the various con	Apply the various communication techniques for distributed communication.					
AI306.2		Apply the concepts of process, naming, consistency, replication and faults tolerance in a distributed environment.					
AI306.3	11 0	Apply the algorithms such as clock synchronization, election, and mutual exclusion in distributed applications.					
AI306.4	Identify the challenge	Identify the challenges in developing distributed applications.					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO 2	PO3	PO 4	PO 5	PO6	PO 7	PO8	PO 9	PO10	PO11	PO12
AI306.1	2	1	-	-	-	-	-	-	-	-	-	2
AI306.2	2	2	2	1	-	-	-	2	2	1	-	2
AI306.3	2	2	2	1	-	-	-	2	2	1	-	2
AI306.4	2	2	2	1	-	-	-	1	2	1	-	2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PE04	PSO1	PSO2	PS03
AI306.1							
AI306.2							
AI306.3							
AI306.4							

Remember	Understand	Apply	Analyze	Evaluate	Create
			✓		

		Theory Component		
Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Introduction to Distributed Systems		
	1.1	Definition, Type, Goals, Distributed Computing Models, Issues in Distributed Systems.	T1, T2	08
	1.2	Hardware Concepts, Software Concepts, The Client-Server Model, Positioning Middleware, Models of Middleware, Services offered by Middleware, models of Distributed Algorithms and some fundamental problems.	T1, T2	
2	Title	Communication In Distributed Systems		12
	2.1	Introduction to Message Passing, Desirable Features of a Good Message-Passing System, Issues in IPC by Message Passing, Synchronization, Buffering, Multi-datagram Messages, Group Communication, persistence and synchronicity in communication, Message Oriented Transient and Persistent Communications	T1, T2, R1	
	2.2	Remote Procedure Call (RPC): Basic RPC Operations, Parameter Passing, Extended RPC Models. Remote Object Invocation: Distributed Objects, Binding a Client to an Object, Static Vs Dynamic RMI	T1, T2	
3	Title	Process in Distributed Systems		6
	3.1	Introduction to Threads, Threads in Distributed Systems, Clients, Server	T1, T2	
	3.2	Code Migration: Approaches to Code Migration, Models, Migration and Local Resources, Migration in Heterogeneous Systems	T1, T2	
4	Title	Synchronization in Distributed Systems		10
	4.1	Clock Synchronization: Physical Clocks, Global Positioning System, Clock Synchronization Algorithms; Logical Clocks: Lamport's Logical Clocks, Vector Clocks	T1, T2	
	4.2	Election Algorithms: Bully and Ring; Mutual Exclusion: Centralized Algorithm, Decentralized Algorithm, Distributed Algorithm, Token Ring Algorithm, Comparison of Algorithms; Load Balancing: Goals, Types, Strategies.	T1, T2,	
5	Title	Consistency and Replication		6
	5.1	Reasons for Replication, Object Replication, Replication as Scaling Technique Data Replication in Distributed Systems, Goals, Types, Schemes,	T1	
	5.2	Data-Centric Consistency Models, Client Centric Consistency Models Continuous Consistency, Consistent Ordering of Operations	T1	

6	Self Study	Naming Entities, Locating Mobile Entities, Distribution Protocols, Consistency Protocols, Faults Tolerance: Process Resilience, Distributed Commit, Recovery		8				
Total								

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiments
1	Implementation of Client Server Communication using RPC.
2	Implementation of Client Server Communication using RMI.
3	Implementation of Clock Synchronization (logical/physical).
4	Implementation of Election algorithm.
5	Implementation of Mutual Exclusion algorithm.
6	Implementation of a Client Server based program to check data consistency.
7	Implement Load Balancing Algorithms.
8	Implement small application using data replication
9.	Implementation of Client Server based program to check data consistency.
10.	Implement Load Balancing Algorithms

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Distributed Systems— Principles and Paradigms.	Second Edition	Andrew S. Tanenbaum, Maarten Van Steen	РНІ	2016
2	Distributed Operating Systems Concepts and Design	Second Edition	P. K. Sinha	PHI	2010

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Distributed Systems – Concept and Design	Fourth Edition	George Coulouris, Jean Dollimore, Tim Kindberg & Gordon Blair	Pearson	2010
2	Distributed VOD Systems	First Edition	Sudhir D. & Bandu B.M	Research India Publication	2011

Course	C N	Teaching Scheme (Hrs/week)					Credits Assigned			
(Category) Code	Course Name	L	T	P	o	E	L	T	P	Total
		3	0	2	4	8	2	0	1	4
(PC)	Machine Learning	Examination Scheme								
		Component		ISE			MSE		ESE	Total
AI307		Theory			50		50		100	200
		Laboratory		50					50	100

Pre-requisite Course Codes, if any.							
Course Objective: To learn methodology and tools to apply machine learning algorithms to real data and evaluate their performance.							
Course Outcomes (CO): At the End of the course students will be able to							
AI307.1	Discuss the fundamentals of Machine Learning.						
AI307.2	Solve regression and classification techniques suitable for a given problem						
AI307.3	Apply the problems using clustering and dimensionality reduction techniques.						
AI307.4	Design an application of different concepts and algorithms covered in the course.						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AI307.1	2	2							2	2	2	2
AI307.2	2	2	2		2				2	2	2	2
AI307.3	2	2	2		2				2	2	2	2
AI307.4	2	2	2	2	2				2	2	2	2

Remember Understand	Apply 🗸	Analyze	Evaluate	Create	
---------------------	---------	---------	----------	--------	--

Modula	I Imil4	Theory Component		
Module No.	Unit No.	Topics	Ref.	Hrs
1	Title	Introduction to Machine Learning		06
	1.1	What is machine learning, Why Machine learning, Broad categories of machine learning algorithms- supervised and unsupervised learning.	T1,T2	
	1.2	Supervised learning- classification and regression, unsupervised learning-clustering. Real world applications of supervised and unsupervised algorithms.	T1,T2	
	1.3	Parametric Vs. non Parametric Models, Curse of dimensionality, model selection, No free lunch theorem, Bias-variance trade off	T1,T2	
2	Title	Regression		06
	2.1	Simple Linear Regression, Ordinary Least square, Multiple Regression,	T1,T2	
	2.2	Logistic Regression for binary classification	T1	
3	Title	Learning with Trees and Classification		14
	3.1	Decision Trees, Constructing Decision Trees using Gini Index (Regression), Classification and Regression Trees (CART)	T1,T2	
	3.2	k-Nearest Neighbors Algorithm, Naïve Bayesian Classifier, Support Vector Machine, Kernels in SVM	T2	
	3.3	Testing Machine Learning Algorithms, Overfitting, Training, Testing, and Validation Sets, The Confusion Matrix, Accuracy Metrics, Unbalanced Datasets, Measurement Precision	T1	
4	Title	Ensemble Learning		06
	4.1	Boosting, Stumping, AdaBoost,	T1,T2	
	4.2	Bagging, Subagging, Random Forest, Comparison with Boosting	T1	
5	Title	Learning with Clustering and Dimensionality Reduction		10
	5.1	Introduction Measuring (dis)similarity, Evaluating the output of clustering methods. K-means algorithm, Agglomerative Algorithms.	T1,T2	
	5.1	Dimensionality Reduction Techniques, Principal Component Analysis, Linear Discriminant Analysis, Singular Valued Decomposition.	T1, T2, T3	
		Reinforcement Learning	T1, T2	5*

6	Self Study	Elements of Reinforcement Learning, Q Learning, Non deterministic rewards and actions, Temporal Difference Learning, Generalization		
			Total	42

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Implement Simple Linear Regression
2	Implement Multiple Linear Regression
3	Implement Logistic Regression
4	Implement Decision Tree algorithm
5	Implement K-Nearest Neighbors / Naive Bayes algorithm
6	Implement Random forest algorithm
7	Implement Clustering algorithm
8	Implement Principle Component Analysis/ Singular Valued Decomposition for Dimensionality Reduction
9	Implement Research paper 1
10	Implement Research paper 2

Text Books

S.N.	Title	Edition	Authors	Publisher	Year
1	Machine Learning: A probabilistic perspective	2 nd edition	Kevin Murphy	MIT Press	2012
2	Machine Learning An Algorithmic Perspective	2 nd Edition	Stephen Marsland	CRC Press	2014
3	Machine Learning In Action	1st	Peter Harrington	Dream Tech Press	2001

S.N.	Title	Edition	Authors	Publisher	Year
1	Data Mining - Concepts and Techniques	3rd Edition	Jiawei Han, Micheline Kamber, Jian Pei	Morgan Kaufmann Publishers	2012
2	Pattern Recognition and Machine Learning,	1st Edition	C. M. Bishop	Springer	2013
3	Machine Learning	1st Edition	Tom Mitchell	Mc-Grawhill	1997
4	Introduction to Machine Learning	3rd	Ethem Alpaydın	MIT , PRESS	2012
5	Elements of Statistical Learning	2 nd Edition	Trevor Hastie Robert Tibshirani Jerome Friedman	Springer	2001

Usefu	Useful Digital Links							
1	Data sets for Machine Learning algorithms: https://www.kaggle.com/datasets							
2	Machine Learning repository- https://archive.ics.uci.edu/ml/index.php							
3	Machine Learning from Coursera							
4	https://towardsdatascience.com/machine-learning/home							
5	https://onlinecourses.nptel.ac.in/noc21_cs85/preview							

Course	C N	Teaching Scheme (Hrs/week)					Credits Assigned			
(Category) Code	Course Name	L	Т	P	О	E	L	Т	P	Total
		2	0	2	5	9	2	0	1	3
(PE)		Examination Scheme								
	Computer Vision	Comp	onent		ISE		MSE	E	ESE	Total
1T11		The	ory		50		50	1	100	200
		Labor	atory		50				50	100

Pre-requisite	Course Codes, if any.							
Course Object	Course Objective:							
Course Outco	omes (CO): At the End of the course students will be able to							
1T11.1	Understand the basics of 2D and 3D Computer Vision							
1T11.2	Describe various geometric techniques in computer vision							
1T11.3	Perform shape analysis and extract features from Images and do analysis of Images.							
1T11.4	Explore the diverse applications of computer vision.							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1T11.1	2	2	2		3							1
1T11.2	3	2	3		3							1
1T11.3	3	2	3	1	3							1
1T11.4	3	3	3	1	3				3	2	2	2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
1T11.1							
1T11.2							
1T11.3							
1T11.4							

Remember	Understand	Apply	Analyze	Evaluate	Create
Remember	Understand	Apply	Analyze	Evaluate	Create

		Theory Component	l	ı
Module No.	Unit No.	Topics	Ref.	Hrs
1	Title	Introduction to Computer Vision and Camera Geometry		
	1.1	Image Processing, Computer Vision and Computer Graphics,		4
		What is Computer Vision - Low-level, Mid-level, High-level,		
	1.2	Camera Models and 3D Computer Vision, Camera Calibration,		
		Stereo Vision, Depth from Stereo, Generating 3D images from 2D		
		views, Camera Projections, Camera Calibration		
2	Title	Digital Image Processing		5
	2.1	Image Formation, Image Filtering, Edge Detection, Principal Component Analysis,		
	2.2	Corner Detection, SIFT, Feature Extraction from images : Histogram of Gradient (LoG), Local Binary Patterns, Interest points . Harris detector, Hessian detector,		
3	Title	Binary Machine Vision		6
	3.1	Thresholding, Connected Components Labeling: An iterative Algorithm, The Classical Algorithm, A Space Efficient Two Pass Algorithm, Digital Signature,		
	3.2	Feature point tracking: Kanade-Lucas-Kanade tracker, Applications of feature point tracking: mosaicing, video stabilization		
4	Title	Shape Representation and Segmentation:		7
_	4.1	Shape Representation and Segmentation: Contour based representation, Region based representation, De-formable curves and surfaces,		
	4.2	Snakes and active contours, Level set representations, Fourier, and wavelet descriptors, Medial representations, Multi-resolution analysis.		
5	Title	Computer Vision Applications		6
	5.1	Object Detection, Object Recognition, Object Classification, Real Time Monitoring, Human Motion Recognition and Tracking.		
	5.2	3D shape models of faces Application: Surveillance – foreground-background separation –human gait analysis Application: Invehicle vision system: locating roadway – road markings – identifying road signs – locating pedestrians		
6	Self- Study	Machine learning in computer Vision: Introduction to Machine Learning, Image Classification, Semantic Segmentation		4
			Total	28

Laboratory Component, if any. (Minimum 10 Laboratory experiments are

	- Daniel Component of Component								
1	Perform basic Image Handling and Processing operations on the image.								
2	Geometric Transformation								
3	Compute Homographic Matrix								
4	Perspective Transformation								
5	Edge Detection, Line Detection and Corner detection								
6	Camera Calibration								
7	IFT Feature descriptor ,SURF HOG descriptor SIFT Feature discriptor								
8	SURF and HOG feature descriptor								
9	Object detection and Recognition								
10	Project based on Computer Vision Applications								

Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No					
1.	Computer Vision A	-	D. Forsyth and	Prentice Hall	-
	modern approach		J. Ponce		
2.	Computer Vision:	-	Richard	Springer,	2010
	Algorithms and		Szeliski		
	Applications				

Sr.	Title	Editio	Authors	Publisher	Year
No		n			
1.	Introductory Techniques for 3-D Computer Vision	-	Emanuele Trucco, Ales sandro Verri	Prentice Hal	Jan 1998

Course	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
(Category) Code		L	T	P	O	E	L	Т	P	Total
		2	0	2	4	8	2	0	1	3
(PE)	Explainable Artificial Intelligence	Examination Scheme								
		Comp		ISE		MSE		ESE	Total	
1T21		Theory			50		50		100	200
		Labor	atory		50				50	100

Pre-requisite Course Codes, if any.	AI303, AI304
-------------------------------------	--------------

Course Objective: This course is designed to provide fundamental concepts of explainable AI. The students should be able to grasp the basic concepts of explainable AI, including its definition, importance, and the challenges involved in developing an AI system that is explainable. The students will be able to understand interpretability, explainability and attribution methods for AI models.

Course Outcomes (CO): At the End of the course students will be able to 1T21.1 Understand the concept and importance of XAI and its applications in various domains. 1T21.2 To explore the various XAI techniques and tools used for tabular, image and text dataset. 1T21.3 To gain practical experience with XAI frameworks.. 1T21.4 To evaluate the trade-offs between explainability and accuracy. 1T21.5 To Understand ethical and legal aspects of XAI

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1T21.1												
1T21.2												
1T21.3												
1T21.4												
1T21.5												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
1T21.1							
1T21.2							
1T21.3							
1T21.4							
1T21.5							

Remember	Understand	Apply	Analyze	Evaluate	Create
1 tomomber	Chacistana	1-PP-J	1111th J ZC	Z / tilditte	Create

Theory Component

Modul e No.	Unit No.	Topics	Ref.	Hrs			
1	Title	Introduction to Explainable Artificial Intelligence					
	1.1	Why Explainable AI?, What Is Explainable AI?, Who Needs Explainability?, Challenges in Explainability, Types of explanation,	T1-T3, R1,R2	4			
2	Title	Explainability for Tabular Data					
	2.1	Permutation Feature Importance: Permutation Feature Importance from Scratch, Permutation Feature Importance in scikit-learn	T1-T3 R1-R5	8			
	2.2	Shapley Values: SHAP (Shapley Additive exPlanations), Visualizing Local Feature Attributions, Visualizing Global Feature Attributions, Interpreting Feature Attributions from Shapley Values, Managed Shapley Values					
	2.3	Explaining Tree-Based Models: From Decision Trees to Tree Ensembles, SHAP's TreeExplainer					
	2.4	Partial Dependence Plots and Related Plots: Partial Dependence Plots (PDPs), Individual Conditional Expectation Plots (ICEs)					
3	Title	le Explainability for Image Data					
	3.1	Integrated Gradients (IG), Choosing a Baseline, Accumulating Gradients, Improvements on Integrated Gradients, (Extremal regions with attributions importance) XRAI, How XRAI Works, Implementing XRAI, Grad-CAM, How Grad-CAM Works, Implementing Grad-CAM	T1-T3 R1,R2				
	3.2	LIME: How LIME Works, Implementing LIME, Guided Backpropagation and Guided Grad-CAM, Guided Backprop and DeConvNets, Guided Grad-CAM					
4	Title	Explainability for Text Data		8			
	4.1	Overview of Building Models with Text: Tokenization, Word Embeddings and Pretrained Embeddings, LIME, How LIME Works with Text, Gradient x Input, Intuition from Linear Models From Linear to Nonlinear and Text Models	T1-T3, R1,R5				
	4.2	Layer Integrated Gradients: A Variation on Integrated Gradients, Layer-Wise Relevance Propagation (LRP), How LRP Works, Deriving Explanations from Attention, Which Method to Use?, Language Interpretability Tool					
6	Self Study	Building with Explainability in Mind, The ML Life Cycle AI Regulations and Explainability, What to Look Forward To in Explainable AI, Natural and Semantic Explanations, Interrogative Explanations, Targeted Explanations		4			
			Total	28			

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

No	Title of the Experiment
1	To implement a simple decision tree model. Note: students could implement decision trees using a dataset, visualize the decision tree, and explain the results
2	Feature Importance: To implement SHAP algorithm to calculate the feature importance on a given data set. Note:students could analyze a dataset and calculate the feature importance using an algorithm such as permutation importance or SHAP (SHapley Additive exPlanations), and explain the results.
3	Non linear relationship between features and predicted model: Interpretation and explanation of ML models [marginal effect of a single feature on the predicted outcome while holding all other features constant] To implement PDP(partial dependance plot) to calculate the feature importance on a given data set. Note: students could perform sensitivity analysis on a trained model to understand how the output varies with changes in the input features.
4	Non linear relationship between features and predicted model: Interpretation and explanation of ML models To implement ICE (Individual Conditional Expectation Plots) to calculate the feature importance on a given data set.[conditional effect of a single feature on the predicted outcome for each individual sample in a dataset] Note: students could perform sensitivity analysis on a trained model to understand how the output varies with changes in the input features.
5	To implement an IG algorithm for attributions analysis for a given problem statement.
6	To implement the XRAI algorithm for attributions analysis for a given problem statement.
7	To implement a grad-CAM method to generate class activation maps for a given problem statement.
8	Local Interpretable Model-agnostic methods: To implement LIME to explain the predictions of a given problem statement. Note: students could use model-agnostic methods such as LIME (Local Interpretable Model-Agnostic Explanations) or Anchors to explain the predictions of a machine learning model
9	To implement LIME to analyze text data, such as social media posts or customer reviews, and classify them into different categories.
10	To study LRP and demonstrate LIT by Google for interactive visualization, interpretation and understanding NLP models.

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1.	Explainable AI for Practitioners: Designing and Implementing Explainable ML Solutions	1st Edition	Michael Munn, David Pitman	OReilly Media, Inc	2022
2.	Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning	1st Edition	Uday Kamath , JohnLiu	Springer Link	2021
3.	Explainable AI: Interpreting, Explaining and Visualizing Deep Learning	1st Edition	Wojciech Samek,, Grégoire Montavon, , Andrea Vedaldi, , Lars Kai Hansen, Klaus-Robert Müller	Springer Link	2019

Ittici					
Sr. No	Title	Edition	Authors	Publisher	Year
1.	Interpretable Machine Learning: A Guide for Making Black Box Models Explainable	1st Edition	Christoph Molnar, published	Springer	2019
2.	Explainable AI: Interpreting, Explaining and Visualizing Deep Learning	1st Edition	Konstantinos G. Margaritis and Evangelos N. Daskalakis, published	Wiley	2020
3.	Explainable AI in Healthcare: An Interdisciplinary Approach	1st Edition	Kristin H. Jarman and Julia A. Lane	Springer	2021
4.	XAI - Explainable Artificial Intelligence: Foundations, Methods, and Applications	1st Edition	Fatma Bouali and Sihem Mesnager	Springer	2020
5.	Explainable AI: Interpreting, Explaining and Visualizing Deep Learning	1st Edition	Kalyan Veeramachaneni, published by	O'Reilly Media	2021

Course		C	3 . T		Teac	hing Sc	heme (Hrs/v	week)		Credi	ts Assig	ned	
(Category) Code		Cour	se Name	;	L	T	P	0	E]	L T	P	Total	
					2	0	2	4	8		2 0	1	3	
(PE)						Examination Scheme								
		Big Data Analytics			Comp	onent	1	SE		MS	E]	ESE		
IT12	IT12				The	eory		75		75		150	300	
					Labo	ratory		50				50	100	
Pre-requisite	Pre-requisite Course Codes, if any.				Data E	Base Ma	nageme	ent Sy	/stem(CS20	4)	1		
Course Obje	ective	:												
Course Outo	comes	s (CO): A	At the En	id of t	he course	student	ts will b	e abl	e to					
1T12.1	Un	derstand	the build	ding b	locks of B	ig Data	Analyt	ics.						
1T12.2	Ch	oose app	ropriate	storag	e structure	es to ma	ke sens	e out	of big	g data.				
1T12.3	Ap	ply scala	ible algor	rithms	based on	Hadoop	and M	ap R	educe	to per	form Big	Data An	alytics.	
1T12.4					tives of bi		ınalytic	s in v	arious	s appli	cations lil	ke, recon	nmender	
CO-PO Cor					lications e 2-Modera		eak Co	orrela	ation)					
	PO1	PO2	PO3	PO4		PO6	PO7		08	PO9	PO10	PO11	PO12	
1T12.1		102	103	104	103	100	107	1		10)	1010	1011	1012	
1T12.2														
1T12.3														
1T12.4														
CO-PEO/PS	SO Co	 orrelatio	 n Matrix	x (3-S	trong, 2-N	Modera	 te, 1-W	eak (Corre	lation	<u> </u> 1)			
	PEC)1	PEO2		PEO3	PE	CO4	P	SO1		PSO2	PS	03	
1T12.1														
1T12.2														
1T12.3														
1T12.4														
BLOOM'S	Level	s Target	ed (Pl. T	ick a	ppropriat	e)						1		
Remember		Underst	tand	App	nlv	An	alyze	7	F	valuat		Create		

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Introduction to Big data		
	1.1	Big Data characteristics, types of Big Data, Traditional vs. Big Data, Big data challenges	1	2
2	Title	Memory-efficient data structures		
	2.1	Introduction to data streams, problems related to handling data stream, Mining Data Streams using DGIM algorithm, Need of dimensionality reduction - PCA, SVD - Singular Value Decomposition	3	6
	2.2	Hash functions, universal / perfect hash families, Bloom filters, Sketches for distinct count, Flajolet Martin Sketch, Majority Algorithm, Misra-Gries sketch, Count-Min Sketch, Count Sketch, LSH, MinHash, SimHash	2	
3	Title	Scaling with Big Data using Hadoop		
	3.1	HDFS - Data in Hadoop, MapReduce: The Map Tasks, Grouping by Key, The Reduce Tasks, Combiners, Details of MapReduce Execution, Coping With Node Failures	1	8
	3.2	Hadoop Ecosystem architecture Hive - Architecture, various data operations using Hive HBase - Architecture, General Commands Pig - What is Pig, advantages	1	
4	Title	Frequent Itemsets And Clustering		
	4.1	Handling Larger Data sets in Main Memory Algorithm - Park, Chen and Yu Algorithm, The Multi stage Algorithm, The Multihash Algorithm. The SON Algorithm, BFR clustering algorithm, CURE algorithm	1	5
5	Title	Big Data Analytics Applications		
	5.1	Clustering of Social-Network Graphs - Clique Percolation Method, counting triangles, PageRank, Efficient Computation of PageRank, Topic-Sensitive PageRank, Link Spam, Hubs and Authorities	1	7
	5.2	Recommendation Systems: Introduction, A Model for Recommendation Systems, Content based Recommendation System, Collaborative-Filtering System: Nearest Neighbour Technique		
7	Self Study	Scaling with Big Data using Apache SPARK SPARK Ecosystem, SPARK streaming, Distributed Batch Processing with Spark	4	5*
		Total		28

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Installation of Hadoop and execution of HDFS commands
2	Study of any latest research paper on memory efficient data structure for big data.
3	Demonstrate use of modern tools like Matlab for Exploratory Data Analysis.
4	Implement algorithms in Map-Reduce on Strings and integers
5	Implement algorithms in Map-reduce on Relational Algebra
6	Download a real world dataset and find insights using map reduce. For e.g for a movie dataset list all the movies and the number of ratings, list all the Movie IDs which have been rated (Movie Id with at least one user rating it), list all the Users who have rated the movies (Users who have rated at least one movie), list of all the User with the max, min, average ratings they have given against any movie
7	To use Apache Hbase and implement CRUD operations on database inside HDFS.
8	Extract facts in real world dataset using Hive
9	Extract sessions in real world dataset using Pig
10	Implement wordcount using Apache Spark.

Text Books

Sr. No	Title	Editi on	Authors	Publisher	Year
1	Mining of Massive Datasets	3rd	Anand Raja Raman and Jeff Ullman	Cambridge University	2019
2	Algorithms and models of computation	1st	Jeff Erickson	University of Illinois	2015
3	Introducing Data Science	3rd	Davy Cielen, Meysman Mohamed Ali	Dreamtech Press	2014
4	Learning Apache Spark 2	2nd	Muhammad Asif Abba	Packt Publishing	2017

Sr. No	Title	Edition	Authors	Publisher	Year
1	Data streams :Algorithms and applications.	2nd	Muthukrishnan. S	now publishers In	2005
2	Introducing Data Science	3rd	Davy Cielen, Meysman, Mohamed Ali	Dreamtech Press	2015
3	Hadoop, the Definitive Guide	3rd	Tom White	O'Reilly	2013

Course		Teach	ning Sc	heme	(Hrs/v	veek)		Credit	s Assig	ned
(Category) Code	Course Name	L	T	P	О	E	L	Т	P	Total
		2	0	2	5	10	2	0	1	3
(PE)					Exam	inatio	n Schen	ne		
	Blockchain Technology and Applications	Comp	onent		ISE		MSE	I	ESE	Total
1T22	• • • • • • • • • • • • • • • • • • • •	The	eory		50		50		100	200
		Labor	Laboratory		50		-		50	100
Pre-requisite	Course Codes, if any.	CSS								
Course Object	ctive: To apply and analyze	different	crypto	graphy	y and s	ystem	security	protoc	cols/tec	hniques
Course Outco	omes (CO): At the End of th	ie cours	e stude	nts wi	ll be al	ble to				
1T22.1	Describe the basic concept	s of bloc	kchain	techn	ology,	Bitcoir	n, and E	thereu	m.	
1T22.2	Apply and implement a sm	art conti	ract on	the Et	hereun	n test n	etwork			
1T22.3	Build a Decentralized App	lication	running	g on a	decent	ralized	peer-to-	-peer n	network	
1T22.4	Evaluate and propose use of	cases for	a new	blocko	chain a	nd/or c	ryptocu	rrency		

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO) 6	PO7	PO8	PO9	PO10	PO1	PO12
1T22.1	2												
1T22.2			2										
1T22.3					2								
1T22.4		2	2		3	2							
	PEC)1	PEO2		PEO3		PE	04	PSO	1	PSO2	P	eSO3
1T22.1	2		-		-		-		-		2	-	
1T22.2	2		-		-		-		-		2	-	
1T22.3	2		-		-		-		-		2	-	
1T22.4	2		-		-		-		-		2	-	

Remember	Understand	Apply	Analyze	Evaluate	Create	

Theory C	_	Ent		
Module No.	Unit No.	Topics	Ref.	Hrs
1	1.1	Introduction to Blockchain Technology		08
		Blockchain Basic, Four Core building blocks of blockchain, the Life cycle of Blockchain, Blockchain working, Difference between blockchain and databases, Centralized, Decentralized and Distributed system, Distributed Ledger Technology, Blockchain ecosystem and structure, Features of Blockchain, Advantages of Blockchain. Blockchain Primitives-Cryptography, PKI, Hash functions, properties of Hash Functions, Merkle Tree, Zero Knowledge Proof (ZKP), ZK-SNARK	1,2	
	1.2	Distributed Consensus: The consensus problem - Asynchronous Byzantine Agreement - AAP protocol and its analysis - Nakamoto Consensus on the permissionless, Proof of Work (PoW) as a random oracle - formal treatment of consistency, liveness, and fairness - Proof of Stake (PoS) based Chains - Hybrid models (PoW + PoS).	2	
2	2.1	Cryptocurrencies- Bitcoin and Ethereum		08
		History of Cryptocurrency, Bitcoin, Monetary Policy, The Halving, Block Frequency, Bitcoin Ecosystem, Bitcoin Network, Bitcoin Mining, Mining Pool, Mining Systems-CPU, GPU, FPGA and ASIC, Nonce range, Timestamp, Wallet, UTXOs, SegWit, Wallet Address, Bitcoin Network Payment and API, Bitcoin-core, bitcoind, bitcoin-cli, bitcoin-qt, Bitcoin Improvement Proposal (BIP)	1,2,3,4	
	2.2	Introduction to Ethereum: Ethereum Technology Stack, Ethereum Characteristics, Types of Ethereum, Ethereum Virtual Machine (EVM) Ethereum Network, Nodes, Smart contract, Solidity, Consensus, Gas, Gas Price, Gas Limit, Out of Gas, Mining, DApps, EVM, ICOs, DAOs, DAO Attack, Forking, Hard and Soft Fork, Sharding, Ethereum 2.0, Enterprise use cases Alternative coins- Ethereum and Smart contracts Alternative coins- Ethereum continued, IOTA, Solana vs Ethereum Advantages and Drawbacks of ethereum, Smart Contract, Wallets for Ethereum, Solidity Smart Contracts - some attacks on smart contracts.	1,2,3,4	

	2.3	Non-Fungible Tokens (NFTs) and Decentralized Finance (DeFi): Tokenization of Assets, Types of Tokens, Non-fungible Tokens(NFTs), Properties of NFTs, ERC20 and ERC721 Ethereum Standards, NFT Market Place Decentralized Finance Ecosystem, Traditional Finance vs DeFi, Building DeFi system, Concerns of DeFi, NFTs vs DeFi	1,2	
3	3.1	Digital Ledger Technologies (DLT) and Hyperledger		06
		Digital Ledger Technology(DLT), Hyperledger Project, IBM, Linux Foundation, HF Framework, Libraries, Tools, Business Critical Applications, Consortium, HF Architecture, HF Components, HFC Client, Fabric-CA, Membership Services, Endorser, Orderer, Commiter, Ledger, Chaincode, Notifications, Secure Channel, transaction flow-Life cycle, SOLO, Apache Kafka Hyperledger Fabric Network Setup, Hyperledger Composer – Application Development. Hyperledger Composer - Network Administration	2	
4	4.1	Applications Blockchain Technology		06
		Uses of Blockchain in E-Governance, Land Registration, Medical Information Systems, and smart cities, innovative industries, Cybersecurity, FinTech, Security Standards, and Compliances, European Union (EU) Data Privacy- Fundamental Right, Emergence Blockchain and Personal Data Privacy Act- GDPR	1,2,3,4	
5	Self Stud y	Smart-contract vulnerabilities Scaling the blockchain: payment channels and state channels Scaling the blockchain using optimism and using SNARK Privacy in the public blockchain	online resour ces	04*
				28

Text Books:

Sr. No	Title	Edition	Authors	Publisher	Year
1	Blockchain in Action	First Edition	Bina Ramamurthy	Manning Publications	2020
2	Mastering Blockchain	Third Edition	Imran Bashir	Packt Publications	2021
3	Building Ethereum Dapps	First Edition	Roberto Infante	Manning Publications	2019
4	Blockchain by Example	First Edition	Bellaj Badr Richard Horrocks	Packt Publications	2018

Reference Books:

Sr. No	Title	Edition	Authors	Publisher	Year
1	Bitcoin and Cryptocurrency Technologies- A Comprehensive Introduction	First Edition	Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller,	Princeton University	2019
2.	Beginning Ethereum Smart Contracts Programming: With Examples in Python, Solidity, and JavaScript	First Edition	Wei-Meng Lee	Apress	2019

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Cryptosystems - I
2	Cryptosystems - II
3	Merkle Tree and Genesis block
4	Ethereum Blockchain Setup
5	Smart contract-Solidity Programming Language (Remix IDE, Metamask Wallet, Truffle Suite)
6	Develop Blockchain applications for Cybersecurity (Two-Factor Authentication)
7	Building DApp for Auction- full stack development (Front-end, Back-end, Business Logic-Web3.0 and Blockchain)
8	Hypeledger fabric for Supply Chain Management (SCM)
9	Development of NFTs
10	Bitcoin
11	Development of the DeFi application
12	Multichain

Course	Course Name	Teach	(Hrs/v	Credits Assigned						
(Category) Code		L	Т	P	O	E	L	Т	P	Total
Program Elective		3	0	2	5	10	3	0	1	4
	Software Engineering	Examination Scheme								
		Component			ISE		MSE		ESE	Total
1X		Theory			50		50	1	100	200
IX		Laboratory			50				50	100
Pre-requisite Cour	CS102: Object-oriented programming language IT204: Database Management Systems									

Course Objective: To understand the best practices in software engineering and gain knowledge to analyze, design, implement and test software project.

Course Outcomes (CO): At the End of the course students will be able to

1X.1	Analyze software requirements.
1X.2	Apply UML models for a project.
1X.3	Evaluate system architecture and develop detailed task schedule from the overall estimates and planning.
1X.4	Illustrate different coding principles with unit test process.
1X.5	Understand the need for DevOps.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1X.1	-	3	-	-	-	-	-	-	2	2	-	-
1X.2	-	2	1	-	2	1	1	1	2	2	1	ı
1X.3	-	3	2	1	2	-	-	-	2	2	2	-
1X.4	-	-	3	-	2	-	-	-	2	-	-	-
1X.5	-	1	1	-	-	-	-	-	-	-	-	1

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
1X.1	3	-	-	-	-	-	-
1X.2	3	2	-	-	-	-	-
1X.3	3	2	-	-	2	-	-
1X.4	3	-	-	-	2	-	-
1X.5	1	2	1	-	-		1

Remember	Understand	Apply	Analyze	Evaluate ✓	Create
				•	

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Introduction		07
	1.1	Software Development Challenges, Software Scope, The Human Side of Software Development	T1,T2	
	1.2	Software Methodologies and Related Process Models with applications, Traditional Life Cycle Models, Waterfall, Incremental, Iterative models, Agile Software Engineering Process Models, SCRUM, Extreme Programming, Test Driven Development (TDD)	T1,T2	
2	Title	Requirements Management and Project Planning		10
	2.1	Requirements Development Methodology, Specifying Requirements, Eliciting Accurate Requirements, Documenting Business Requirements, SRS, Defining User Requirements, Validating Requirements, Achieving Requirements Traceability, Managing Changing Requirements, Agile Requirements Engineering	T1,T2	
	2.2	Scheduling, Work Breakdown Structure, Gantt Chart, Pert Chart, Critical Path, Earned Value Analysis, Schedule and Cost slippage, Estimation, Decomposition techniques, Empirical estimation models, Software Risk Management: Risk Identification, Risk Projection, Risk Refinement, RMMM Plan	T1,T2	
3	Title	Software Analysis		08
	3.1	Difference between Structured and Object-Oriented analysis, Data Flow Diagrams	R2,R3	
	3.2	Object Oriented Analysis, Uses Case, Class diagram, Interaction diagrams, Activity diagram, State Chart diagram, Component and Deployment diagram	R2,R3	
4	Title	Software Design & Development		07
	4.1	Software Architecture, Architectural and Pattern-Based Design, Model Driven Architectures	T1,T2	
	4.2	DevOps, Continuous Integration, Continuous Deployment, System Provisioning and Configuration Management	R1	
	4.4	Software Change Management, Change Control, Version Control	T1,T2	
5	Title	Software Quality & Testing		10
	5.1	Software Quality Concepts, Quality Assurance, Quality Control, Formal Technical Reviews	T1,T2	
	5.2	Software Metrics, Product Metrics – McCall's Quality Factor, Metrics for Analysis Model and Design Model	T1,T2	

	5.3	Software Testing, Unit Testing, Integration Testing, System Testing	T1,T2					
6	Title	Advance Topic in software Engineering		5*				
	Self Stud y	Design Pattern						
	Total							

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	Gather requirements and write a project proposal for case study. Prepare SRS document. (Use IEEE template)
2	Design UML diagram -Use Case, Class diagram
3	Design UML diagram -Interaction diagrams
4	Design Data flow diagram (level 0 and 1) for the case study.
5	Create work breakdown structure and schedule the activities
6	Develop Risk Mitigation, Monitoring and Management Plan for the case study.
7	Create versions of software using version control tool.
8	Implement any one Module from chosen case study.
9	Prepare test cases and perform Unit Testing (test scenario, test cases, test data)
10	Study on continuous Integration using DevOp

Text Books

Sr. No.	r. No. Title		Edition Authors		Year
1	Software Engineering: A Practitioner's Approach	Ninth Edition	Roger S. Pressman and Bruce Maxim	McGraw-Hill	2019
2	Fundamentals of Software Engineering	Fifth Edition	Rajib Mall	PHI Learning	2018

Sr. No.	Title	Edition	Authors	Publisher	Year
1	The DevOps Handbook: How to Create World-Class Agility, Reliability, and Security in Technology Organizations		Gene Kin, Patrick Debois, John Willis, Jez Humble and John Allspaw	IT Revolution Press	2016
2	UML for Java Programmers		Robert C. Martin	Pearson	2006
3	UML Distilled: A Brief Guide to the Standard Object Modeling Language	Third Edition	Martin Fowler	Addition Wesley	2003

Course(C	ategory)	C	N T	Te	aching	Scher	ne ((Hrs/w	eek)	Credits Assigned				
Co			Course Name			L 7	Γ :	P	0	E	L	Т	P	Total	
					2	2)	2	4	8	2	0	1	3	
Program Elective							•	Examination Scheme							
Lice	iive	Inf		on System	C	Component			ISE		MSE		ESE	Total	
11)		and Se	curity					50		50		100	200	
					L	aborato	ry	50					50	100	
Pre-requis	ite Cou	rse Cod	es, if an	y.											
Course Ob	jective:														
Course Ou	itcomes	(CO):A	t the En	d of the c	ourse s	students	will b	e a	ble to						
1P.1	Provi	de the ba	sic result	s of compu	ıter seci	urity and	its lim	itat	ions.						
1P.2	Contr	ast the d	ifferent ty	pes of sec	urity po	licies, st	andard	s an	nd pract	ices.					
1P.3	Contr	ast the d	ifferent c	ryptograph	ic algor	rithms an	d typic	al a	applicat	ions.					
1P.4	Enfor	ce securi	ty policie	es, standard	ds and p	ractices	to a sy	sten	n.						
CO-PO Co	orrelatio	n Matr	ix (3-St	rong, 2-M	Iodera	te, 1-W	eak C	orr	elatior	1)					
	PO1	PO2	PO3	PO4	PO5	PO6	PO'	7	PO8	POS	P)10	PO11	PO12	
1D 1	2									†					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1P.1	2											
1P.2	2	2			3			2				2
1P.3	2	2		1	3							2
1P.4	2	2	1		3	2	1	2	1			2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
1P.1							
1P.2							
1P.3							
1P.4							

Remember	Understand	Apply	Analyze	Evaluate	Create	
						l

Module No.	Unit No.	Topics	Ref.	Hrs.			
1	Title	Overview of Information Security					
	1.1	1.1 Introduction - Basic Components, Threats, Policy and Mechanism, Assumptions and Trust, Assurance, Operational and Human Issues					
	1.2	Foundation Results - Protection State, Access Control Matrix Model, General Security Question, Take-Grant Protection Model	1	5			
2	Title	Security Policies					
	2.1	Security Policy Basics - Types, Role of Trust, Types of Access Control, Policy Languages. Confidentiality Policies - Goals, Bell-LaPadula Model	1	1 6			
	2.2	Integrity Policies – Goals, Biba Integrity Model, Lipner's Integrity Matrix Model, Availability Policies – Goals, Deadlock, Denial of Service Models. Hybrid Policies - Chinese Wall Model, Role-Based Access Control.	1				
3	Title	Cryptosystems					
	3.1	Symmetric Cryptosystems -Substitution cipher-Monoalphabetic , polyalphabetic, Playfair, hill cipher, transportation cipher-keyless and keyed transposition cipher, Stream and Block Cipher.	2	6			
	3.2	Asymmetric Cryptosystems -RSA and diffie hellman, Cryptographic hash functions-SHA, checksum -HMAC.	2				
4	Title	Secure Protocols					
	4.1	Digital Signatures-DSS and RSA, Digital Certificates, X.509 Directory Services.	1,2	5			
	4.2	Symmetric key distribution, public key distribution, PKI, Needham Schroeder, Kerberos.					
5	Title	Network Security					
	5.1	Network security basics, TCP/IP vulnerabilities. Internet Security Protocols: SSL, TLS, IPSEC, Secure Email and S/MIME.	1.0	6			
	5.2	Firewalls, Intrusion Detection Systems: Host-Based and Network-Based IDS.	1,2				
6	Self Study	 a) Study the assurance in requirement definition and analysis. b) Study the assurance during system and software design. c) Study the assurance in implementation and integration. d) Mathematics of cryptography e) Study of a cryptographic function - Md5 f) Study of steganography techniques 		*5			

List of Experiment

Sr. No	Title of the Experiment
1	Experiment on Access Control Matrix Model
2	Experiment on Take-Grant Protection Model
3	Experiment on Policy Language
4	Experiment on Role-Based Access Control
5	Demonstration of Symmetric Key Cryptography
6	Demonstration of public key cryptography
7	Implementation of cryptographic hash function
8	Implementing the firewall using iptables
9	Implementing HIDS and NIDS
10	Implementation of PKI using OpenSSL

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Computer Security: Art and Science	SECOND	Matt Bishop, Elisabeth Sullivan & Michelle Ruppel	Addison-Wesley Professional	2018
2	Cryptography and Network Security	SECOND	Behrouz A. Forouzan, Debdeep Mukhopadhyay	McGraw-Hill Education	2010

Sr. No	Title	Edition	Authors	Publisher	Year
1	Computer Security: Principles and Practice	FOURTH	William Stallings & Lawrie Brown	Pearson Education	2018
2	Cryptography and Network Security Principles and Practices FOUR		William Stallings	Addison-Wesley Professional	2005
3	Introduction to Computer Security	FIRST	Matt Bishop	Addison-Wesley Professional	2005

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned				
Code		L	Т	P	0	E	L	T	P	Total	
	User Experience Design	2	0	2	4	8	2	0	1	3	
Program Elective		Examination Scheme									
		Component			ISE		MSE		SE	Total	
1Y		Theory			50		50		.00	200	
		Laboratory			50				50	100	

Pre-requisite	e Course C	Codes	Software Engineering						
Course Objectives	day-to-da Design. I guideline experime	his course provides an opportunity to learn and apply User experience design principles in ay-to-day life. Learners will understand and identify the steps in the life cycle template of UX lesign. Learners will be able to design a UI prototype of an application with UX design uidelines. This course covers the discussion of various UX design concepts. The laboratory experiments are designed to practice the concepts and to adopt the systematic approach for aining user experience via interface design using various UX tools.							
At the End of	f the course	students will b	e able to						
	PE1Y.1	Analyze the U	X design life cycle and its process for users.						
C	PE1Y.2	Apply the UX	design process for the given scenario						
Course Outcomes	PE1Y.3	Create real-lif practices.	e applications with an end-to-end understanding of User experience						
	PE1Y.4	Evaluate the U	JX design process for the best experience.						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1Y.1												
1Y.2												
1Y.3												
1Y.4												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
1Y.1							
1Y.2							
1Y.3							
1Y.4							

Evaluate Create ✓	Analyze	Apply	Understand	Remember
--------------------------	---------	-------	------------	----------

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.	
		UX Design and Life Cycle			
1	1.1	What is UX (User Experience), Ubiquitous interaction, A UX process lifecycle template, The system complexity space, Meet the user interface team	1,2	4	
		The UX Design Process – Understand Users			
	2.1	Contextual Inquiry: Introduction, the system concept statement, User work activity gathering, Abridged contextual inquiry process			
2	2.2	Contextual analysis: Introduction, Creating and managing work activity notes, Constructing your WAAD (Work Activity Affinity Diagram)	1	8	
2	2.3	Extracting Design Interaction requirements: Formal Requirements Extraction, Abridged method for requirement extraction		-	
	2.4	Model.			
		The UX Design Process-Design Thinking, Ideation and Sketching			
3	3.1	Design Paradigm, Design thinking, Design perspective, User personas, Ideation, Sketching		8	
	3.2	Mental Models and Conceptual Design			
	3.3	Storyboards, Wireframes			
		The UX Design Process- Prototyping, Evaluation and Agile development			
	4.1	Fidelity of Prototype, To make effective paper prototype,			
4	4.2	UX Evaluation and Improve UX Goals, Metrics and Targets	1,3,5	8	
	4.3	UX Evaluation Techniques- Formative vs Summative			
	4.4	UX Method for Agile Development: Introduction, Basics of agile SE methods, drawbacks of agile SE methods from UX perceptive.			
~		Self-Learning		4	
5	5.1 Affordance, Integration of UX into agile SE methods			4	
			Total	28	

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	To Study of open source UX tools (Justinmind Prototype, Pidoco, Marvel Prototype) and create UX design for a given problem definition.
2	Design Mobile/Web UI for your own Travelling agent considering adding map and localization features along with descriptions if required. (e.g, Make my Trip,Tripadvisor,thrillophilia etc.)
3	Design a Map-based UI(Web User) for Mumbai Dabbawalas with localization feature.
4	Pick a website/app that you use on a daily basis (eg. facebook, gmail, whatsapp, zomato, etc). Evaluate the product based on user experience principles and give suggestions for improvement. Explain the usability testing process for the same.
5	Analyze and redesign the (IRCTC/IndianRail) website for a better User Experience and create the heuristic report using Nielsen's Heuristic
6	Design UI for students to teach mathematics in rural areas/ to sell the products of farmers directly to consumers.
7	Design UI for students to sell the products of farmers directly to consumers.
8	Design UI/UX Mobile App along with making a logo for the same for your own newly opened restaurant. (Consider all the UX Parameters while designing).
9	Design UI for any differently-abled users.
10	Design UI for analysis of the number of children suffering from juvenile diabetic children in India. The design aims at providing solutions for improving quality treatment and making the treatment affordable.

Note: All the experiments need to be tested for usability. The problem statement for any experiment can be changed by the instructor during the laboratory with different examples.

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	The UX Book	1 st	Rex Hartson and Pardha Pyla	MK Publication	2012
2	A Project Guide to UX Design: For user experience designers in the field or in the making.	2 nd	Russ Unger and Carolyn Chandler	O'reilly, Series Editor	2012
3	UI Design:Key to captivate user understanding	1st	Jain, Kalbande,	SybGen Publications	2021

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
4	Smashing UX Design	1 st	Jesmond Allen and James Chudley	John Wiley & Sons	2012
5	Agile Experience Design	1 st	Brian Fling	, O'Reilly Media Inc.,	2009.

Online Web Resources for conceptualizing and practicing the UX tools as:

- [w1] https://www.sketch.com/
- [w2] https://www.figma.com/ [w3] https://www.adobe.com/in/products/illustrator.html
- [w4] https://pencil.evolus.vn/
 [w5] https://www.lucidchart.com/pages/
- [w6] https://www.invisionapp.com/
- [w7] https://xtensio.com/
- [w8] https://miro.com/ [w9] https://uxpressia.com/

Semester VII

			Sem VII						
No	Type	Code	Course	L	Т	P	О	E	C
1	PC	AI401	Natural Language Processing	2	0	2	4	8	3
1	OE	OEXXX	OE-II	2	0	2	4	8	3
2	OE	OEXXX	OE-III*	2	0	2	4	8	3
3	PE	AI4X3	PE-III	2	0	2	4	8	3
4	PE	AI4X4	PE-IV	2	0	2	4	8	3
5	SBC	AI402	Main Project Stage-I/ Main Project Stage- II	0	0	0	6	6	3
6	ABL	SVXX/STXX	SEVA-IV/SATVA-IV	0	0	0	4	4	1
7	S/M/H	SCX4/MNX4 /HOXX	SCOPE-IV/Minor-IV/Honors-I						3
	TOTAL								19
*OF	-III must	he from Basic S	Science Flective or Engineering Sci	ence F	Electi	VA.			

*OE-III must be from Basic Science Elective or Engineering Science Elective

Course	Course Name	Teach	Teaching Scheme (Hrs/week)					Credits Assigned			
(Category) Code		L	T	P	O	E	L	T	P	Total	
	Natural Language Processing	2	0	2	2	6	2	0	1	3	
(PC)		Examination Scheme									
		Component			ISE		MSE		ESE	Total	
Al401		The	Theory		50		50		100	200	
		Laboratory			50				50	100	

Pre-requisite Course Codes, if any.	Artificial Intelligence and Machine Learning, Basic knowledge
	of Python

Course Objective: To provide the students the techniques and tools to devise and develop Natural Language Processing (NLP) components and applications. The course will cover the foundations, building blocks and applications of NLP, with an emphasis on the necessary linguistic intuitions as well as a broad coverage of statistical and deep learning models that can be used for language tasks. NLP is an important topic in Artificial Intelligence with a wide range of applications, from sentiment analysis to machine translation. Modern NLP is primarily based on statistical methods and machine learning algorithms, where linguistic information is provided by instances of uses of language. For most NLP tasks, state of the art approaches are based on neural models, which will be at the core of this module. However, significant attention will be given to the linguistic principles that underpin the field.

Course Outcomes (CO): At the End of the course students will be able to

AI401.1	Identify the language processing tasks.
AI401.2	Devise and evaluate solutions for a range of natural language components using existing algorithms, techniques and frameworks, including part-of-speech tagging, language modeling, parsing and semantic role labeling.
AI401.3	Devise, implement and evaluate algorithms for single and multi-class classification problems.
AI401.4	Apply existing statistical and deep learning techniques to language applications such as machine translation.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AI401.1	3		2									
AI401.2			2									
AI401.3	3		2									
AI401.4	3				2				2			3

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
AI401.1	2						
AI401.2	2	2					
AI401.3	2						
AI401.4	2	2	2		2	2	

Remember	Understand	Apply	Analyze	Evaluate ✓	Create

		Theory Component		
Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Introducing to NLP	1,2	7
	1.1	A brief history of natural language processing, language challenges, applications, classical vs statistical vs deep learning-based, Basic concepts in linguistic data Structure: Morphology, syntax, semantics, pragmatics, Tokenized text and pattern matching-Recognizing names, Stemming, Tagging Parts of speech-identify parts of speech, Constituent structure, NLP pipeline		
	1.2	Regular Expression, Words, Corpora, Text Normalization, Minimum Edit Distance, Words and Vectors, Cosine Similarity, TF-IDF, Word2Vec, Bag of words, CBOW, Word Sense Disambiguation		
2	Title	Computational tools for text analysis	1,2	5
	2.1	Natural Language Toolkit (NLTK): Corpora and other data resources, Uses of corpora: Lexicography, Grammar and syntax, Stylistics, Training and evaluation, Basic corpus analysis: Frequency distribution building and analyzing a corpus.		
	2.2	Data structures: strings and sequences, Tokenization in the NLTK, Tokenizing text, Stemming: Comparing stemmers, Tagging: RE tagging, Trained taggers and backoff, Transformation-based tagging.		
3	Title	Statistically based techniques for text analysis	1,2	10
	3.1	Fundamentals of machine learning: Naive Bayes classifiers, Hidden Markov models; Viterbi decoding, Information and entropy; Decision trees and maximum entropy classifiers, Unigram, Bigram, Trigram, N-gram language models, Advance smoothing for language model, Neural language models (RNNs, LSTMs, GRUs, Bert Model)		
	3.2	Machine learning in action: document classification, Information extraction: Types of information extraction, Regular expressions for personal names, Information extraction as sequential classification: chunking and Named Entity Recognition (NER)		
4	Title	Analyzing sentences: Syntax and Parsing	1,2	6
	4.1	Grammars and parsing, Context Free Grammar (CFG), parsing with CFG, Building feature based grammar: Grammatical features; Processing feature structures and extracting feature-based grammar. Rules-based and probabilistic parsing: Neural models for parsing; Semantic role labeling; Sequence to sequence modelling - machine translation (SMT, NMT, Attention).		
	4.2	Application of NLP:Auto Correct, Summarizing, Text extraction		
6	Self Study	Chunking and chinking with NLTK, Text generation, Translation Large language models: GPT-3, ChatGPT		2*
			Total	28

^{*}Not included in Total Hours

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Install NLTK and perform basic Corpus analysis using NLTK such as (i) frequency distribution (ii) learn about morphological features of a word by analysing it.
2	(i) Generate word forms from root and suffix information. (ii) Understanding the morphology of a word by the use of Add-Delete table
3	(i) Calculate bigrams from a given corpus and calculate probability of a sentence. (ii) to apply add-one smoothing on sparse bigram table
4	Classification using suitable classification model (NB)
5	Calculate emission and transition matrix which will be helpful for tagging Parts of Speech using Hidden Markov Model.
6	Find POS tags of words in a sentence using Viterbi decoding
7	Implement an application of NLP: Auto Correct/ Summarizing/ Text extraction/ Intent detection/Question answering
8	Capture linguistic patterns and grammatical constructions with feature-based grammars
9	Without using any library Perform Text summarization
10	Perform Text summarization using library.

Text Books

Sr. No	Title	Editi on	Authors	Publisher	Year
1	Natural Language Processing with Python	1st	Steven Bird, Ewan Klein & Edward Loper	O'Reilly Media, Inc. ISBN: 9780596516499	2009
2	Natural Language Processing with PyTorch	1st	Delip Rao & Brian McMahan	O'Reilly Media, Inc. ISBN: 9781491978238	2019
3	Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition	2nd	Jurafsky / Martin	Pearson	2013

	Sr. No	Title	Edition	Authors	Publisher	Year
1		Neural Network Methods for Natural Language Processing	1 st	Yoav Goldberg	Morgan and Claypool	2017
2	į	Linguistic Fundamentals for Natural Language Processing	1 st	Emily M. Bender	Morgan and Claypool	2013

Course	Course Nome	Teaching Scheme (Hrs/week)					Credits Assigned			
(Category) Code	Course Name	L	Т	P	O	E	L	T	P	Total
(PE-III)	Deep Learning	2	0	2	4	8	2	0	1	3
		Examination Scheme								
		Component			ISE		MSE		ESE	Total
15710		The	Theory		50		50		100	200
1T13		Labor	ratory		50				50	100

Pre-requis	ite Course Codes, if any.	AI304/DS302					
Course Objective: To introduce the fundamental concepts of Deep learning with primary focus on the architectures and applications as appropriate to real world problems							
Course Ou	Course Outcomes (CO):At the End of the course students will be able to						
1T13.1	Interpret the mathematical foun	dations of Deep Learning architectures.					
1T13.2	Construct deep neural networks	s for a given problem.					
1T13.3	Analyze deep learning models for a given scenario.						
1T13.4	Develop real-world application	s using various deep learning techniques.					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	CO-1 O Correlation Matrix (5-5trong, 2-Moderate, 1- Weak Correlation)											Ι
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1T13.1	2	2	2		3							1
1T13.2	3	2	3		3							1
1T13.3	3	2	3	2	3							1
1T13.4	3	3	3	2	3				3	3	2	2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
1T13.1							
1T13.2							
1T13.3							
1T13.4							

|--|

Theory Component

Modul e No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Introduction to Deep Learning	T1,T2	6
	1.1	Linear Algebra Primer, Vector Calculus Review		
	1.2	Revision of Learning Algorithms Concepts: Capacity, Overfitting and Underfitting, Hyperparameters and Validation Sets, Stochastic Gradient Descent, Challenges Motivating Deep Learning,		
	1.3	Deep Feedforward Networks		
2	Title	Convolutional Neural Networks	T1,T2,R	6
	2.1	The Convolution Operation, Motivation,		
	2.2	Pooling, Convolution and Pooling as an Infinitely Strong Prior		
	2.3	Variants of the Basic Convolution Function, Structured Outputs, Data Types, Efficient Convolution Algorithms, Random or Unsupervised Features, Fully Connected CNN		
3	Title	Autoencoders	T1,	6
	3.1	Architecture of Autoencoder,	T2,R1,R 3	
	3.2	Undercomplete v/s Overcomplete Autoencoder, Regularized Autoencoders,		
	3.3	Representational Power, Layer Size and Depth, Applications of Autoencoders		
4	Title	Sequence Modeling	T1,T2,T	6
	4.1	Recurrent Neural Networks (RNNs), Bidirectional RNNs, Gated Recurrent Units (GRUs)	3, R1, R2, R3	
	4.2	Long short term memory (LSTM)		
	4.3	Encoder-Decoder sequence to sequence architecture		
	4.4	Deep Recurrent Network		
5	Self Study	Generative Adversarial Networks, Large-Scale Deep Learning (LLMs: BERT/GPT etc.) and their applications in Computer Vision, Speech Recognition, Natural Language Processing		4*
			Total	28

Laboratory Component:** Lab experiments may be performed using any open-source, freely available deep learning frameworks.

Sr. No	Title of the Experiment
1	To implement a deep feed-forward network for a given problem
2	To implement a CNN for a given problem.
3	To use pre-trained CNN models like ResNet/VGG16 for a given problem
4	To implement basic autoencoders for a given problem.
5	To implement and compare autoencoder variants of undercomplete/overcomplete/regularized for a given problem.
6	To implement RNN for a given problem.
7	To implement LSTM networks for a given problem
8	To implement encoder-decoder architectures for a given problem.
9	To implement deep recurrent networks for a given problem
10	To use pre-trained recurrent architectures like BERT/GPT/T5 for a given problem.

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Deep Learning	1 st edition	Ian Goodfellow, Yoshua Bengio, Aaron Courvile	An MIT Press book	2016
2	Fundamentals of Deep Learning	1 st edition	Nikhil Buduma	O'Reilly	2017
3	Deep Learning using Python	1 st edition	Dr. S Lovelyn Rose, Dr. L Ashok Kumar, Dr. D Karthika Renuka	Wiley	2019

Sr. No	Title	Edition	Authors	Publisher	Year
1	Deep Learning: Methods and Applications	1 st edition	Deng & Yu	Now Publishers	2013
2	Generative Deep Learning	1st edition	David Foster	O'Reilly	2019
3	Deep Learning CookBook	1 st edition	Douwe Osinga	O'Reilly	2017

Course	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
(Category) Code		L	T	P	O	E	L	T	P	Total
		2	0	2	4	8	2	0	1	3
(PE-III)	Data Driven Internet of Things	Examination Scheme								
		Component		ISE			MSE		ESE	Total
1T23		Theory			50		50		100	200
		Labor	atory		50				50	100

Pre-requisite Course Codes, if any.							
Course Objective:							
Course Outcomes (CO): At the End of the course students will be able to							
1T23.1	Analyze various protocols for IoT.						
1T23.2	Apply data driven approaches in IoT.						
1T23.3	Analyze and visualize the data from IoT devices.						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1T23.1	2											
1T23.2	2				2							
1T23.3	2				2							
1T23.1	1	•			1		•			1		
1T23.2	1											
1T23.3	1											

Remember	Understand	Apply	Analyze	Evaluate	Create

		Theory Component					
Module No.	Unit No.	Tonics					
1	Title	Introduction to IoT		_			
	1.1	The Internet Of Things (IoT), IoT Application Domains IoT Reference Model, Performance Evaluation And Modeling Of IoT Systems Machine Learning And Statistical Techniques For IoT	1	5			
	1.2	The situation, Defining IoT analytics, Defining analytics, Defining the Internet of Things, The concept of constrained, IoT analytics challenges, The data volume, Problems with time, Problems with space, Data quality, Analytics challenge	2				
2	Title	IoT Devices and Networking Protocols		7			
	2.1 IoT devices, The wild world of IoT devices: Healthcare,5 Manufacturing Transportation and logistics, Retail, Oil and gas, Home automation of monitoring, Wearables, Sensor types		2				
	2.2	IoT networking data messaging protocols: Message Queue Telemetry Transport (MQTT), Hyper-Text Transport Protocol (HTTP), Constrained Application Protocol (CoAP), Data Distribution Service (DDS)	2				
3	Title	IoT Analytics for the Cloud		9			
	3.1	Exploring the Data Analysis (EDA), and Visualizing data, attributes study for predictive modeling, industry-specific problem analysis	2				
	3.2	Building elastic analytic, Elastic analytics concepts, Designing for Scale, Cloud security and analytics, Apache Hadoop, Apache Spark	2				
	3.3	The AWS overview, Designing data processing for analytics, Applying big data technology to storage, Apache Spark for data processing					
4	Title	Security in IoT		6			
	4.1	Vulnerabilities of IOT, Security requirements, Challenges for a secure Internet of Things, Threat modeling, Threat analysis, Use cases and misuse cases, Activity modeling of threats, Security Architecture, Security Model, Attacks Modeling, Security attacks, Key Elements of IOT Security	2				
	4.2	Security Engineering for IOT Development: Building Security into design and Development, Secure Design, safety and security design, process and agreement, Technology Selection IOT Security Life Cycle: Implementation and integration, IOT security CONOPS document, Network and security integration, Operations and Maintenance, Managing identities, roles and attributes, security monitoring	4				

6	Self Study	i. Solving industry-specific analysis problems: Manufacturing, Healthcare, Retail. Autonomous vehicles, Supply chain management, Smart Agriculture, Smart City., tracking and monitoring livestock ii. Power saving and Unique identification & authenticity.	2	4
			Γotal	28

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Programming the Arduino/Raspberry Pi, Basic electronic components such as LED, resistors, battery.
2	Interfacing IoT device with Cloud using mobile phone demonstrating MQTT protocol
3	Detecting Human Stress by Sleep cycle tracked by sensors. Human Stress Detection in and through Sleep Kaggle
4	Analyze Maternal Health from IoT Sensors data at hospitals. Classification Maternal Health 5 Algorithms ML Kaggle
5	Analyze and visualize weather information for Smart Home. Smart Home Dataset with weather Information Kaggle
6	Analyze and visualize data from Temperature Sensors for a given scenario. Temperature Readings : IOT Devices Kaggle
7	Analyze Room Occupancy using IoT Sensor dataset Room Occupency IOT Data Kaggle
8	Detecting IoT botnet. N-BaIoT Dataset to Detect IoT Botnet Attacks Kaggle
9	Detecting the smoke from IoT Sensors data. Smoke Detection Dataset Kaggle
10	Analyze and visualize data from Smart City IoT Sensors. Smart Cities Index Datasets Kaggle

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	An Introduction to IoT Analytics	First	Harry G. Perros	CRC Press	2021
2	Analytics for the Internet of Things (IoT)	-	Andrew Minteer	Packt Publishing	July 2017

Sr. No	Title	Edition	Authors	Publisher	Year
1	Internet of Things-A Hands-On Approach	First	Arshdeep Bahga, Vijay Madisetti	University Press	2015
2	Practical Internet of Things Security	First	Brian Russel and Drew Van Duren	Packt Publication	2016

Course	G V	Teacl	(Hrs/v	Credits Assigned						
(Category) Code	Course Name	L	Т	P	О	E	L	Т	P	Total
		2	0	2	5	8	2	0	1	3
(PE-IV)					Exan	ninatio	n Schen	ne		
	Data Warehousing and Business Intelligence	Comp	onent		ISE		MSE		ESE	Total
1T14		Theory			50		50		100	200
			ratory		50				50	100
Pre-requisite	Course Codes, if any.	DS204: Database Management Systems								
Course Object	ctive:									
Course Outco	omes (CO): At the End of the	e course	studen	ts will	be abl	e to				
1T14.1	Demonstrate data warehous	e princip	les and	l its wo	orking.					
1T14.2	Analyze data warehouse cha	aracterist	ics to p	erforn	n OLA	P and I	ROLAP	operati	ions	
1T14.3	Apply data models on a give	en scena	rio							
1T14.4	1T14.4 Design Business Intelligence strategy for an enterprise									

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1T14.1	2											2
1T14.2		2										2
1T14.3					2							2
1T14.4				2			2			2	2	2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
1T14.1							
1T14.2							
1T14.3							
1T14.4							

Remember	Understand	Apply √	Analyze	Evaluate	Create	
						l

		Theory Component		
Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Data Warehousing Concepts		_
	1.1	History of Data Warehousing, What is OLAP & Decision Support Systems	1	5
	1.2	Business Vs Data Requirements, Reasons to Build a Data Warehouse, The Technology Solution	1	
	1.3	Characteristics of a Data Warehouse, Identifying Business Data Flow & Processes, Data sources	1	
	1.4	The Data Extraction process, Transformation process, Assuring Data Quality, Transportation process, Maintaining Warehouse Data, Metadata	1	
2	Title	Data Warehouse Architecture and Models		6
	2.1	Warehouse architecture, Identifying Warehouse Data: Fact data, Dimension data, Hierarchies, Summaries (roll-ups)	1	
	2.2	OLAP versus OLTP systems. Data analysis, extraction, transformation, and data loading methods. Data quality. Data warehouse: building, maintenance, and accessing techniques.	1	
	2.3	Data Warehouse models: star, snowflake, fact constellation schema, Modelling the Data Warehouse	1	
3	Title	Accessing a Data Warehouse		6
	3.1	User query requirements and User query progression, OLAP Access, OLAP Cube, Relational OLAP (ROLAP) Access, Multidimensional OLAP (MOLAP), HOLAP, OLAP Query Techniques	1	
	3.2	DBMS Schemas for Decision Support, reporting using Excel, Query tools and Applications	1	
4	Title	Business Intelligence		5
	4.1	Use of Business Intelligence, Effective and timely decisions; Data, information, and knowledge; The role of mathematical models.	2	
	4.2	Business intelligence architectures; Enabling factors in business intelligence project; Development of a business intelligence system; Ethics and business intelligence	2	
	4.3	Business intelligence Technologies: Data Mining, Big Data Analytics, Augmented Analytics, Web Analytics	2	
5	Title	Decision Making and Decision Support Systems		6
	5.1	Representation of the decision-making process; Evolution of information systems, Definition of decision support system; Development of a decision support system.	2	
	5.2	Data Visualization and Dashboard Design, Business Performance Management cycle, key performance indicators (KPIs), role of visual and business analytics (BA), Handling Unstructured Data, The Business Intelligence Project Plan: Planning the Plan, Resources and Roles, Risk Management, Data Migration Issues	2	

	5.3	Business Intelligence Applications in marketing, sales, finance, operations. How to improve Business Intelligence to make company a leader, BI strategies used in companies like Sabre Airline Solutions, New York Shipping Exchange, Netflix, Grow, Stitch Fix, Target, Payless Shoes, TikTok, Uber etc.	2	
6	Self Study	Use Cases: Prominent Companies Business Intelligence Strategies, Data Mart	1, 2	
			Total	28

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	To identify, install and experiment Data Warehousing tools.
2	To perform data cube operations on a multidimensional model i.e implement OLAP operation (Rollup, slice, dice, and pivot).
3	Implement OLAP for multidimensional data
4	Design star schema and implement it for a scenario.
5	Design snowflake schema and implement it for a scenario.
6	Design fact constellation schema and implement it for a scenario.
7	Implement various Data Visualization techniques on a given data.
8	Design a Dashboard for an enterprise.
9	Phase-I: Implementation of a Project on Business Intelligence.
10	Phase II: Implementation of a Project on Business Intelligence.

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1.	Data Mining- Concepts and Techniques	2 Edition	Jiawei Han, Micheline Kamber, Morgan Kaufmann	Elsevier	2006
2.	Successful Business Intelligence	2 Edition	Cindi Howson	McGraw-Hill	2013

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1.	Business Transformation: A Roadmap for Maximizing Organizational Insights	1st Edition.	Aiman Zeid, Jim Davis	Wiley	2014
2.	Business Intelligence A Comprehensive Approach to Information Needs, Technologies and Culture	1 Edition	Rimvydas Skyrius	Springer	2021

Course (Category) Code	Course Name	Teac	Hrs/w	Credits Assigned						
		L	Т	P	О	E	L	Т	P	Total
		2	0	2	4	8	2	0	1	3
PE-IV	AI for Healthcare Analytics	Examination Scheme								
		Comp	onent		ISE		MSE	I	ESE	Total
IT24		The	eory		50		50		100	200
		Labor	ratory		50				50	100
sPre-requisite	Course Codes, if any.	-								

Course Objective: This course provides an introduction to the principles, techniques, and applications of Artificial Intelligence (AI) in healthcare. Understand how Artificial Intelligence (AI) and Machine learning (ML) can be used for implementing applications in healthcare and to analyze the healthcare data and process it using data analysis and statistical tools.

Course Outcomes (CO): At the End of the course students will be able to

IT24.1	To study the fundamental tools within modern artificial intelligence (AI) with a focus on intelligent agents and systems for healthcare analytics
IT24.2	To analyze the healthcare data for prediction and future use
IT24.3	To explore the applications of AI and ML with respect to the healthcare domain

CO-PO

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
IT24.1												
IT24.2												
IT24.3												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
IT24.1							
IT24.2							
IT24.3							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze √	Evaluate	Create

Theory Component

Modul e No.	Unit No.	Topics	Ref.	Hrs.
1	Mo	AI for Healthcare		2
	1.1	Introduction to Artificial Intelligence (AI) and Machine learning (ML) Importance and Applications of AI and ML in Healthcare	1,2	
2	2 Title Statistics for AI in Healthcare Analytics in Excel			4
	2.1	Linear Algebra and Multivariable Calculus and statistics (Hypothesis testing, ANOVA, ChiSqaure etc.)	4	
3	Title	Types of Machine Learning for Healthcare Analytics		8
	3.1	Introduction to supervised, unsupervised, and reinforcement learning for Data Analytics in Healthcare	1,3, 6	
	3.2	Decision Tree, Bayesian Classifier, K-NN and Regression for Data Analytics in Healthcare	4, 5	
4	Title	Data Representation and Analytics		5
	4.1	Introduction to data, data frames, Data standardization, Dealing with noise and missing values and Transforming and normalizing data	1, 7,	
	4.2	Overview of tools like R, Python and Statistical and Visualization tools like Power BI and Tableau		
5	Title	Healthcare Data Analysis:		9
	5.1	Sources of the healthcare data, Pre-processing of the healthcare data, Handling of the healthcare data and Creation of analysis-ready datasets	3, 5,8	
	5.2	Case studies - Future trends in AI Healthcare		
6	Self Study	Reinforcement Learning, conversational AI methods, Various Chatbot, statistical software tools for various healthcare domain like TB analysis from X-ray images, identifying tumors, root canal of tooth by dentist, cardiologist for heart risk analysis etc		4
		1	Total	28

Laboratory Component:

Sr. No	Title of the Experiment
1	To implement the regression for healthcare datasets
2	To implement the decision Tree for healthcare datasets
3	To implement the K-NN for healthcare datasets
4	Hypothesis Testing in Excel for healthcare datasets - ANOVA and Chi Square
5	Data Transformation and preparation for analysis of healthcare data
6	Healthcare data analysis using Python/ R Programming
7	Healthcare data analysis using Power BI
8	Healthcare data analysis using Tableau
9	To implement KERAS or tensorflow model for automatic detection of abnormalities
10	To implement NLTK, spaCY (NLP libraries in Python) to extract important information like patient diagnosis, medications and lab results.

Text Books

Sr.	Title	Edition	Authors	Publisher	Year	
No						
1	Artificial Intelligence: A Modern Approach	4th	Russell, S. and Norvig,	Pearson	2022	
2	Healthcare Data Analytics	1st	Chanda Reddy, Charu Aggarwal	CRC Press	2020	
3	Artificial Intelligence in Healthcare	1st	Parag Mahajan	Parag Mahajan	2022	
4	The Elements of Statistical Learning	2nd	Hastie, T., Tibshirani, R. and Friedman, J.	Springer	2017	
5	Machine Learning for Healthcare Analytics - Projects	1st	Eduonix Academic Solutions	PackT	2018	
6	Artificial Intelligence Fundamentals and Applications	1st	Cherry Bhargava, Pradeep Kumar	CRC Press	2021	
7	Hands on Healthcare Data	1st	Andrew Neugen	Shroff Publications	2015	
8	Artificial Intelligence in Healthcare: Review and Prediction Case Studies	NA	Guoguang Rong, Arnaldo Mendez, Elie Bou Assi, Bo Zhao, Mohamad Sawan	www.science direct.com	2020	

Course	Course Name	Tea	ching So	cheme (l	Hrs/we	ek)	Credits Assigned					
(Category) Code		L	Т	P	0	E	L	Т	P	Total		
(PE)	Advanced Algorithm and	2	0	2	4	8	2	0	1	3		
	Complexity		Examination Scheme									
		Component ISE				MSE	I	ESE	Total			
1Q		Theory			50		50		50 100		100	
		Laboratory			50				50	100		
Pre-requisite (Course Codes, if any.	Data St	tructures	, Design	and Ar	nalysis of	Algorithm	ns				
successful deve	ive: This course provides the theoloper/programmer. The goal of this sses of advanced algorithms.											
Course Outcomes (CO): At the End of the course students will be able to												
1Q.1	1Q.1 Analyze the asymptotic performance of algorithms.											
10.0												

1Q.1	Analyze the asymptotic performance of algorithms.
1Q.2	Apply Graph Algorithms for a real-life problem
1Q.3	Apply Geometrical algorithms to solve the engineering problems.
1Q.4	Apply Randomized algorithms to solve the engineering problems.
1Q.5	Classify P, NP, and NP-Completeness

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1Q.1	2	2	1					2	2	2		2
1Q.2	2	2	2					2	2	2		2
1Q.3	3	2	2					2	2	2		2
1Q.4	2	2	2					2	2	2		2
1Q.5	2	2	2					2	2	2		2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
1Q.1							
1Q.2							
1Q.3							
1Q.4							
1Q.5							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze √	Evaluate	Create

Theory Component Mod Unit **Topics** Ref. Hrs. ule No. No. 1 Title Formal introduction to algorithmic paradigms: 4 1 1.1 Divide and conquer, recursion, dynamic programming, greedy, branch and bound, 1.2 Advanced data structures: Fibonacci heap, union-find, splay trees. 1 5 2 Title **Graph Algorithms** Network flow: Definition, applications, Ford–Fulkerson, Edmonds–Karp, 1 2.1 and push-relabel algorithms. 2.2 Weighted Bipartite Matching (Hungarian Algorithm) Stable Matching: Gale-1 Shaply algorithm 3 **Title Geometric Algorithms** 6 3.1 Representation of points, lines, segments, and polygons. Basic calculations. 1,2 3.2 Convex hulls: Definition, lower bound, naive algorithms, Jarvis' march, Graham's 1.2 scan, Preparata-Hong algorithm. Sweep paradigm: Line-segment intersection, visibility polygon. 3.3 1,2 3.4 Voronoi diagrams: Definition, applications, size, naive algorithm, Fortune's line-1,2 sweep algorithm. 4 6 Title **NP-completeness** 4.1 Complexity classes P and NP, nondeterministic algorithms 1 4.2 polynomial-time verifiability, polynomial-time reduction. 1 1 4.3 NP-hard and NP-complete problems, SAT, CNFSAT. 4.4 Examples: 3CNFSAT, DHamPath, Vertex-Cover, Clique, TSP, Longest-Path, 1 Independent-Set 4.5 1 The class NP-Hard 7 5 Title **Randomized Algorithms** Monte Carlo algorithms: Fermat and Miller-Rabin primality tests, Karger and 1 5.1 Karger-Stein algorithms for minimum cut. Las Vegas algorithms: Randomized quicksort, graph coloring, bit-vector search 1 5.2

5.3	Relation between Monte Carlo and Las Vegas algorithms Randomized data structures: Bloom filters	1	
Self Study	Approximation Algorithms: Basic concepts, approximation ratio, minimum vertex cover. Minimum set cover. Euclidean TSP. Inapproximability. Use of linear programming. Polynomial-time approximation schemes.		*5
	Total (* Not inclu	ıded)	28

Laboratory Component:

Sr. No	Title of the Experiment
1	Implement Advanced Data structures
2	Implementation of Graph Algorithm .
3	Implementation of Convex hulls: naive algorithms
4	Implementation of Graham's scan Algorithm
5	Implementation of Preparata–Hong algorithm
6	Implementation of Jarvis' march
7	Implementation of Voronoi diagram: naive algorithm.
8	Implementation of Fortune's line-sweep algorithm.
9	Implementation of Karger and Karger–Stein algorithms
10	Implementation of Las Vegas algorithms: Randomized quicksort

Text Books:

Sr. No	Title	Edition	Authors	Publisher	Year
1	Introduction to Algorithms	Third Edition	Thomas H. Cormen, Charles E. Leiserson, Ronald L Rivest, Clifford Stein	MIT Press	2009
2	Algorithmics for Hard Problems Introduction to Combinatorial Optimization, Randomization, Approximation, and Heuristics	Second Edition	Juraj Hromkovič	Springer- Verlag	2004

Reference Books:

Sr. No	Title	Edition	Authors	Publisher	Year
3	Fundamentals of Computer Algorithms	Second Edition	Horowitz E, Sahni S and S.Rajasekaran	Galgotia Publications	2010
4	Operations Research	7 th Edition	P K Gupta, D S Hira	Sultan Chand & Sons	2018

Semester VIII

	Sem VIII (Option A: Cat1/Cat2)										
No	Type	Code	Course	L	Т	P	О	E	C		
1	PC	AI403	Human Machine Interaction	2	0	2	4	8	3		
2	OE *	OEHXX	OE-IV	2	0	2	4	8	3		
3	PE	AI4X5	PE-V	2	0	2	4	8	3		
4	PE	AI4X6	PE-VI	2	0	2	4	8	3		
5	SBC	AI404	Main Project Stage-II	0	0	0	6	6	3		
6	Н	HOXX	Honors-II						3		
	*May b	e taken from MO	OOCs, Essentially Humanities, Mana	ageme	ent re	lated					
		Т	OTAL						15		

	Sem VIII (Option B: Only for Cat1 students)									
No	Type	Code	Course	L	T	P	O	Е	C	
1	SBC	AI405	Industry Internship/ Major Project	0	0	0	36	36	15	
3	Н	HOXX	Honors-II						3	
	*May b	e taken from MO	OOCs, Essentially Humanities, Man	ageme	ent re	lated				
	TOTAL							40	15	

The 'Major Project' in the "Option B" must be completed from an institute of national interest. If a student wishes to complete a Major Project under the mentorship of SPIT faculty, approval from the Dean Academics and Research is required.

Course	G V	Teaching Scheme (Hrs/week)					Credits Assigned				
(Category) Code	Course Name	L	T	P	O	E	L	L T 2 0 cheme SE ESS	P	Total	
	HMI (Human Machine Interaction)	2	0	2	4	8	2	0	1	3	
PC		Examination Scheme									
		Component ISE			MSE		ESE	Total			
AI403		The	ory	50			50		100	200	
		Labor	atory		50				50	100	

Pre-requisite Course Codes, if any.	AI305
-------------------------------------	-------

Course Objective: This course provides an opportunity to learn and apply the design principles of Human Machine Interaction. Learners will learn the basic human psychology of everyday actions and will be able to design an UI prototype of an application. This course covers the discussion on various interaction design concepts. The laboratory experiments are designed to practice the concepts and to adopt the systematic approach for interface design using various UX tools.

Course Outcomes (CO): At the End of the course students will be able to

AI403.1	Identify the various design principles used for interacting between human and machine.
AI403.2	Apply human psychology of everyday actions and UI design processes for real world applications.
AI403.3	Implement mobile, windows, and web-based application
AI403.4	Evaluate and justify UI design
AI403.5	Create an application for a social and technical task.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO5
AI403.1	2	-	2	-
AI403.2	2	-	2	-
AI403.3	2	3	-	2
AI403.4	2	-	2	-
AI403.5	2	3	-	-

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2
AI403.1					
AI403.2					
AI403.3					
AI403.4					
AI403.5					

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply ✓	Analyze	Evaluate	Create

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.	
1	Title	Introduction	T1-T4	0.6	
	1.1	Introduction to Human Machine Interface, Hardware, software and operating environment to use HMI in various fields.		06	
	1.2	The psychopathology of everyday things – complexity of modern devices; human-centered design; fundamental principles of interaction;			
	1.3	Psychology of everyday actions- how people do things; the seven stages of action and three levels of processing; human error;			
2	Title	Graphical User Interface and Web Interface	T2,T4	04	
	2.1	2.1 The Graphical User Interface: Popularity of graphics, the concept of direct manipulation, characteristics of GUI,			
	2.2	Web user Interface: Interface popularity, characteristics. Principles of user interface design.			
3	Title Understanding Goal-Directed Design				
	3.1 Goal-directed design; Implementation models and mental models; Beginners, experts, and intermediates — designing for different experience levels				
	3.2	Understanding users; Modeling users – personas and goals.			
4	Title Design Guidelines		T1-T4	06	
	4.1 perception, Gestalt principles, visual structure, reading is unnatural, color, vision, memory, six behavioral patterns, recognition and recall, learning, factors affecting learning, and time.				
5	Title	Interaction Styles and Communication:	T2,T4	06	
	5.1 Interaction Styles: Menus, Windows, Device-based and Screen-based Controls.				
	5.2	Communication: Text messages, Feedback, and Guidance, Icons, Multimedia, and colors.			
	Self Study	UX tools: Figma, Just In Mind, and any open-source tool for prototype designing Mobile Ecosystem: Platforms, Application frameworks: Types of Mobile Applications: Widgets, Applications.		04	
	•		Total	28	

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	To Study of open-source UX tools (Just in mind Prototype, Pidoco, Marvel ,Figma Prototype) and create a simple design for a given problem definition.
2	 Know your client. a. Design an app that can teach mathematics to children of 4-5 years age in schools in Rural Sector. b. Design an app that can teach mathematics to children of 4-5 years age in schools in Urban Sector. c. Design a site that can help people to sell their handmade products in metro cities. d. Design a site that can connect housewives and keep them engaged. Note: Students should be able to do the following for any given problem statement i. Analysis of user's/client's behavior eg their preferences, interests etc ii. What kind of interfaces will they like and why? iii. Existing apps - analyze and rate them. iv. What will be your choice of screen elements? v. How will your app/web design be better than the existing one?
3	Goal-oriented design - Design an experience for passengers whose flight /train is delayed.
4	Design Principles - Understand principles of good UI design by heuristic evaluation. Design UI for a given problem statement.
5	Menus & Navigation – Redesign of a user interface (Suggest and implement changes in Existing User Interface) for a given problem statement.
6	 Windows & Screen controls – Design UI for a given problem statement. a. Design a navigator for a student new in your Institute. b. Design a navigator for a person new in tourist city/ village. c. Motor paralysis for differently able people. d. Vaccination App design with localization
7	Icons - Design appropriate icons pertaining to a given domain. (Eg. Greeting cards, Travelling, restaurants, Education, Medical, security at Airport, Malls etc)
8	Colors – Design a personal website for any socio-technical problem. Use color guidelines with statistical graphics for better visualization.
9	Design a Map-based UI(Web User) for the given problem statement. Example: Mumbai Dabbawallas with localization feature. Pet Care New Visitors to Hospital
10	To calculate the screen complexity of the existing Graphical User Interface and redesign the interface to minimize the screen complexity.

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Human Computer Interaction	3 rd	Alan Dix, J. E. Finlay, G. D. Abowd, R. Beale	Peason,Prentice Hall	2003
2	The Essential Guide to User Interface Design	3 rd	Wilbert O. Galitz,	Wiley publication	2007
3	Design of everyday things	2 nd	Donald A. Normann	Basic Books; Reprint edition	2013
4	Galitz's Human Machine Interaction	1st	Kalbande,Kanade,Iyer	Wiley Publications	2015

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Interaction Design: Beyond Human Computer Interaction	5th	Rogers Sharp Preece	Wiley publications	2019
2	Mobile Design and Development	1 st	Brian Fling	, O'Reilly Media Inc.,	2009.