

Bharatiya Vidya Bhavan's Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

B. Tech. (Electronics Engineering)

Syllabus

(Semester V-VI)

2020 Iteration (w.e.f. 2021-22)

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

2020 ITERATION: ELECTRONICS DOMAIN

Nomenclature of the Courses

BSC	Basic Science Course	PC	Program Core
BSE	Basic Science Elective	PE	Program Elective
ESC	Engineering Science Course	MLC	Mandatory Learning Course
ESE	Engineering Science Elective	SCOPE	Skill Certification for Outcome based Professional Education
SBC	Skilled Based Course	OE	Open Elective
ABL-SATVA	Self- Accomplishment Through Various Activities	HSSE	Humanities and Social Science Elective
ABL-SEVA	Social Empowerment Through	Various Acti	vities

Abbreviations

L	Lecture Hour	0	Other Work (Self Study)
Т	Tutorial Hour	Е	Total Engagement in Hours
Р	Laboratory Hour	С	Credit Assigned

	Semester V										
No.	Туре	Code	Course	L	Т	Р	0	Ε	С		
1	PC	ET301	Analog and Digital Communication	3	0	2	6	11	4		
2	PC	ET302	Control Systems	11	4						
3	PC	ET303	Digital Signal Processing	3	0	2	5	10	4		
4	PC	ET304	Electromagnetic Waves	3	0	2	5	10	4		
5	SBC	ET305	Java Programming Lab	0	1	2	2	05	2		
6	ABL	SVXX/STXX	SEVA II or III /SATVA II or III	0	0	0	2	02	1		
7	HSSE	HSEX3	HSS-III	2	0	0	3	05	2		
8	S/M	SCX2/MNX2	SCOPE-II/Minor-II						3		
			TOTAL						21		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

			Semester VI						
	0	Cat 1- For Stude	ents who have NOT preferred semest	er loı	ng int	erns	hip		
No.	Туре	Code	Course	L	Т	Р	0	Ε	C
1	OE	OEXXX	Open Elective-I	2		2	3	7	3
2	PC	ET306	Power Electronics	3		2	06	11	4
3	PC	ET307	Computer Communication Networks	3		2	06	11	4
4	PE	ET3X1	PE-I	3			5	8	3
5	PE	ET3X2	PE-II	3			5	8	3
6	SBC	ET308	Mini Project-II	-	-	-	-	-	3
7	ABL	SVXX/STXX	SEVA II or III /SATVA II or III	-	-	-	02	02	1
8	8 S/M SCX3/MNX3 SCOPE-III/Minor-III								3
			TOTAL						21

	Semester-VI											
	Sem VI (Cat 2-For Students who have preferred semester long internship)											
No.	TypeCodeCourseLTP							Е	С			
1	PE*	ET3X1	PE-I						3			
2	PE*	ET3X2	PE-I					3				
3	SBC	ET310	Industry Internship						15			
4	S/M*	SCXX/MNXX	SCOPE-III/Minor-III	SCOPE-III/Minor-III					3			
	*To	-	line mode or allied courses from Monimum 08-12 weeks)	00C	S		ΤΟ	TAL	21			

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

PE/TD	PE1	PE2	PE3	PE4	PE5	PE6
THREAD 1:	1T11:	1T12:	1T13:	1T14:	1T11,	1T11,
VLSI &	Digital CMOS	Embedded	Real Time	Analog	1T12,	1T12,
Embedded	VLSI Design	Systems	Operating	CMOS VLSI	1T21,	1T21,
Systems			Systems	Design	1T22,	1T22,
THREAD 2:	1T21:	1T22:	1T23:	1T24:	1X,	1X,
Signal	Speech and	DSP	Image and	Principles Soft	1Y,	1Y,
Processing	Audio	Processors	Video	Computing	1P,	1P,
	Processing		Processing		1Q	1Q
THREAD 3:	1X:	1Y:	1P:	1Q:	2T11,	2T11,
Power	Power	Embedded	Energy	Power	2T12,	2T12,
Electronics	Electronic	System Design	Storage	Electronic	2T21,	2T21,
and Energy	Converters *	for Power	Systems in	Converters in	2T22,	2T22,
Systems		Converter	EV	EV	2X,	2X,
		Applications	Applications	Applications	2Y,	2Y,
					2P,	2P,
					2Q	2Q
	1T11,1T12,	1T11,1T12,	1T13, 1T14,	1T13, 1T14,	(1T25 *	(1T25 *
	1T21,1T22,	1T21,1T22,	1T23, 1T24	1T23, 1T24	Network	Network
	1X,1Y, 1T25 *	1X,1Y, 1T25 *	1P,1Q,	1P,1Q,	ing	ing
	2T11, 2T12,	2T11, 2T12,	2T13, 2T23,	2T13, 2T23,	Fundam	Fundam
	2T21, 2T22,	2T21, 2T22,	2T23, 2T24,	2T23, 2T24,	entals)	entals)
	2X, 2Y	2X, 2Y	2P, 2Q	2P, 2Q		

(* 1X, 1T25 are available only for Category 2 students)

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

Semester-V

SPIT/UG Syllabus/2020-21/ pg. 5

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					C	Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total	
	Analog and Digital	3	0	2	5	10	3	0	1	4	
PC		Examination Scheme									
		Component		I	ISE		SE	ESE		Total	
ET301	Communication	Theory		7	75 7		'5	1	50	300	
		Labor			50 -		-	50		100	

Pre-requi	site Course Codes, if any. EC202: Electronic Devices
	MA203: Probability and Stochastic Processes
	EC207: Signals and Systems
	bjective: The objective is to equip the students with basic knowledge for analyzing analog al communication systems ranging from data networks and internet to mobile data
-	cation systems such as cellular and WiFi systems. Specifically, the students will learn how to
	ommunication system resources including bandwidth and power by selecting a proper
signaling	and/or analog/pulse/digital modulation scheme
Course O	utcomes (CO): At the end of the course students will be able to
ET301.1	Describe various entities of analog, pulse, and digital communication system.
ET301.2	Apply concepts of signals and systems to analyze behavior of modulated signals in time
	domain, frequency domain and signal space.
ET301.3	Analyze and compute system performance measures such as efficiency, bit rate and
	bandwidth of various analog, pulsed and digital modulation methods.
ET301.4	Analyze the behavior of a various analog, pulse, and digital modulation schemes in presence
	of noise.
ET301.5	Compare various modulation and demodulation techniques.
ET301.6	Examine various wired and wireless applications and further infer health, safety, and
	environment aspects of wired and wireless systems.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
ET301.1	3				-				-	-		1
ET301.2	2	2			3				3	3		
ET301.3	2	2			3				3	3		1
ET301.4	3	3			3				3	3		1
ET301.5	2	2			3				3	3		
ET301.6	1	1				1	1	1	3	3		3

Bharatiya Vidya Bhavan's Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
ET301.1	2	2				
ET301.2	2	2		2	1	
ET301.3	2	2		2	2	
ET301.4	2	2		2	2	
ET301.5	2	2				
ET301.6	1	1				

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember ·	Understand	Apply ·	Analyze ·	Evaluate	Create
	•				

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Continuous-Wave Modulation	1,2	
	1.1	Review of signals and systems, Frequency domain representation of		10
		signals, classification of Frequency spectrum, Block diagram of an		
		analog and digital communication system, Need for modulation.		
	1.2	Principles of Amplitude Modulation Systems- DSB, SSB and VSB		
		modulations, Principle of FDM.		
	1.3	Angle Modulation, Representation of FM and PM signals, Spectral		
		characteristics of angle modulated signals.		
	1.4	Super heterodyne receiver		
	1.5	Noise in amplitude modulation systems, Noise in Frequency		
		modulation systems. Pre-emphasis and De-emphasis, Threshold		
		effect in angle modulation.		
2	Title	Pulse Modulation	1,2	08
	2.1	Sampling process. Types of Pulse modulation		
	2.2	Pulse code modulation (PCM), Differential pulse code modulation.		
	2.3	Delta modulation, Noise considerations in PCM, Time Division		
		multiplexing, Digital Multiplexers		
3	Title	Baseband Pulse Transmission	1,2	10
	3.1	Baseband receiver, Probability of error of integrate and dump		
		receiver, Matched filter, optimum filter		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

	3.2	Line coding and Power spectral density (PSD) of line codes, inter		
		symbol Interference and Nyquist criterion, Raised cosine filter,		
	3.3	Duobinary encoding, Introduction to linear and adaptive		
		equalization		
4	Title	Pass band Digital Modulation schemes	2	14
	4.1	BPSK, DPSK, QPSK, M-ary PSK, QAM, BFSK, M-ary FSK, MSK-		
		Principle of working, PSD, and Signal space analysis		
	4.2	Digital Modulation tradeoffs, Probability of Error evaluations of		
		various modulations. (Derivation not expected)		
	4.3	Synchronization and Carrier Recovery for Digital modulation.		
	4.4	Introduction to OFDM		
5	Self-	a. Case study (any one)		06
	Stud	1. Effect of various Communication systems on health, safety, and		
	У	environment.		
		2. Professional engineering regulations, legislation and standards		
		related to communication.		
		3. Code of ethics for wired and wireless systems for		
		user/devices/companies		
		b. Research article (any one)		
		1. Applications of analog and digital modulations		
		2.Digital modulations specifications and effect of various		
		parameters in wireless networks such as WLAN		
		3.Software defined radio for digital communication		
		4. Error correction codes for digital communication		
		5.Comparative analysis of analog and digital communication		
		through applications		
			Total	42+6

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Simulation and implementation of double sideband full carrier for various modulation index.
2	Implement the frequency modulation circuit to obtain FM waveforms and calculate modulation index
3	Analyze effect of pre-emphasis and de-emphasis on FM waveforms.
4	Implementation of natural sampling and reconstruction of waveforms
5	Implementation and detection of pulse amplitude modulation.
6	Implementation of Binary Phase Shift Keying.
7	Implementation of Binary Frequency shift keying.
8	Duo binary Encoder.
	vllabus/2020-21/ pg 8

SPIT/UG Syllabus/2020-21/ pg. 8

Sardar Patel Institute of Technology (Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

9	Simulation of digital modulation scheme and analysis of Power spectral density.
10	Simulation and analysis of signal space of various modulations in presence of noise.
11	Signal transmission through Raised cosine filter and eye pattern analysis.
12	Simulation of OFDM.
13	Mini project in analog/pulse/digital modulation methods.

Textbooks

Sr. No	Title	Edition	Authors	Publisher	Year
1	Communications Systems	Fourth	Haykin S	John Wiley	2001
				and Sons	
2	Principles of	Second	Taub H. and	Tata McGraw	2001
	Communication Systems		Schilling D. L	Hill	

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Digital	Third	Haykin S	John Wiley	2001
	Communication.			and Sons	
2.	Communication	Fourth	Proakis J. G.	Pearson	2002
	Systems Engineering		and Salehi M.	Education	
3.	Digital and Analog	Fourth	B.P.Lathi	Oxford	2017
	Communication				

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total
		3	0	2	6	11	3	0	1	4
PC		Examination Scheme								
	Control Systems	Comp	Component ISE I		MSE		ESE	Total		
ET302		The	eory		75		75		150	300
		Laboratory			50				50	100

Pre-requisite Course Codes, if any.	MA101: Engineering Calculus				
	MA102: Differential Equations and Complex Analysis				
	EC 101: Digital Systems and Microprocessors				
	EC 203: Probability and Stochastic Processes				
	EC 204: Electronic Instruments and Measurement Lab				
Course Objectives: To develop a system for real life application by applying the concepts of control					

Course Objectives: To develop a system for real life application by applying the concepts of control system theory and allied techniques for system performance evaluation.

Course Outcomes (CO): At the end of the course students will be able to

ET302.1	Classify different types of control systems, component of control system and formulate
E1302.1	mathematical modeling of the given system.
ET302.2	Apply various methods for representation of the given control system.
ET302.3	Analyze the transient and steady state behavior of given system for standard test inputs.
ET302.4	Analyze the stability of systems in time domain and frequency domain.
ET302.5	Discuss the concept of controllability and observability using state variable model.
ET302.6	Evaluate the system performance with the use of compensators & controllers.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
ET302.1	3				2			3	3	2	2	2
ET302.2		3			2			3	3	2	2	2
ET302.3		3			2			3	3	2	2	2
ET302.4		3			2			3	3	2	2	2
ET302.5		3			2			3	3	2	2	2
ET302.6	3				2	2		3	3	2	2	2

*Separate tables are added CO-PEO/PSO Correlation Matrix since PSOs for ETRX and EXTC Department are different.

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
ET302.1	1	1	2			
ET302.2	1	1	2			
ET302.3	1	1	2		2	
ET302.4	1	1	2		2	
ET302.5	1	1	2		2	
ET302.6	1	1	2		2	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate ·	Create
----------	------------	-------	---------	------------	--------

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Introduction to control system and system Modeling		
	1.1	Introduction to control system:	1,2	10
		Definition of system, Notion of feedback, Open loop and closed		
		loop systems; feedback and feed forward control structure;		
		Examples of control systems.		
	1.2	Dynamic Response: Standard test signals; Transient and steady	1,2	
		state behavior of first and second order systems; Generalized error		
		coefficients, steady state errors in feedback control systems and		
		their types.		-
	1.3	Control System Modeling: Types of model's Impulse response	1,2	
		model, State variable model, Transfer function model, Modeling		
		of electrical systems and translational mechanical systems.		1.0
2	Title	Representation of Control System and State Space Analysis		10
	2.1	Block diagram representation of systems, Block diagram reduction	1,2	
		methods, closed loop transfer function, signal flow graph. Mason's		
		gain rule		-
	2.2	State Space Analysis: Concepts of state space, State equations,	1,2	
		State transition matrix, properties of state transition matrix,		
		Solution of homogeneous systems.		
	2.3	Controllability and Observability: Concept of controllability,	3,4	
		Controllability analysis of LTI systems, Concept of observability,		
		Observability analysis of LTI systems using Kalman approach.		
3	Title	Time Domain System Stability Analysis		8

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

	3.1	Concepts of Stability Concept of absolute, relative and robust	1,2	
	5.1	stability	1,2	
	3.2	Routh-Hurwitz stability criteria	1,2 1,2	
	3.3	Root Locus Analysis: Root-locus concepts; General rules for	1,2	
		constructing root-locus, Root-locus analysis of control systems.		
4	Title	Frequency Domain System Stability Analysis		8
	4.1	Relation between time and frequency response	1,2	
	4.2	Bode Plot: Magnitude and phase plot, Method of plotting Bode	1,2	
		plot; Stability analysis by using Gain and phase margins on the		
		Bode plots		
	4.3	Polar plots, Nyquist stability criterions; Nyquist plot; Gain and	1,2	
		phase margins.		
5	Title	Compensators & Controllers		6
	5.1	Types of compensators, Realization of basic compensators -	1,2	
		cascade compensation in time domain and frequency domain.		
	5.2	Controllers: Concept of ON/OFF controllers; Concept of P, PI,	1,2	
		PD and PID Controllers.		
	5.3	Advanced Control Systems: Introduction to Robust Control,	3,4	
		Adaptive control and Model predictive control, Neuro- fuzzy controllers.		
6	Self-	Examples on open loop and closed loop control system, Modeling	1,2,3,	
U	Study	of rotational mechanical systems, Pole placement using state	4,5	
	Study	feedback Popov–Belevitch–Hautus (PBH) test in state space,	т,5	
		Design of lag, lead and lag-lead compensator using Bode plot and		
		Root locus techniques, Design of real-life applications of control		
		system.		
	1		Total	42

Laboratory Component:

Exp. No.	Experiment Details	Marks CO
1	To obtain the characteristics of control system components:	05
	i. To plot the Synchro transmitter characteristics and Synchro transmitter and receiver as an error detector.	CO1
	ii. To plot characteristics of Potentiometer and its loading effect for different conditions of load.	
2	To demonstrate the working of real-life feedback control system and obtain	05
	their characteristics:	CO1
	i. To plot Speed torque characteristic of DC servo motor.	
	ii. To determine the line and load regulation characteristics of AC servo voltage	
	stabilizer at different line and load conditions and observe the mechanism of	
	AC voltage stabilization as an example of closed control system.	
3	To develop a program in Matlab/Scilab/LabVIEW:	05

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

	i. To define the given closed loop transfer function of system and plot their poles & zeros on s-plane.	CO2
	ii. To reduce the given control system block diagram or signal flow graph.	
4	To develop a program in Matlab/Scilab/LabVIEW:	10
	i. To obtain the step response of a given first/second order control system and	CO3
	obtain its time domain parameters from this step response. Compare these	
	results with mathematical calculations.	
	ii. To determine step response for a Type 0, Type 1, Type 2 systems and find	
	error coefficients.	
	iii. To find solution for a given control system described by its state space	
	equation in terms of state transition matrix, zero input response, zero state	
	response, complete response.	
5	Develop a program in Matlab/Scilab/LabVIEW:	10
	i. To obtain the root locus of a system described by its Transfer Function with	CO4
	unity feedback, Comment on the stability of this given control system.	
	Compare these results with mathematical calculations.	
	ii. To find gain margin and phase margin of the system described by its	
	Transfer Function with unity feedback using Bode/Nyquist plot. Comment on	
	the stability of this given control system. Compare these results with	
	mathematical calculations.	
6	Develop a program in Matlab/Scilab/LabVIEW:	10
	i. To find whether a given control system described by its state space equation	CO5
	is controllable or not, observable or not, to find rank of matrix and using rank	
	comment on system controllability and observability.	
	ii. To design a controller and observer via state space.	
7	Evaluate the effect of Compensator/PID controller on performance of the	5
	control system.	CO6

ISE Evaluation: CO1-CO6

Mini-Project: Identify the model of control system for real life application and demonstrate controlling action for the same.

This is group activity. Students will form a group of minimum 3 students. Students will develop the block diagram of the system first, then design each block using appropriate components. Simulate the complete block diagram using any tool like Matlab, Scilab or LabVIEW. The duration of this activity is a complete semester, but evaluation will be done in phases and rubrics designed. In the first phase students will develop the block diagram for the given problem statement. In the second phase students will develop the block diagram and simulate each of the block diagrams and test it for input-output relationship. In the third phase students will interface all the designed blocks to obtain final input-output relationship of the system. Hardware implementation is optional.

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

Textbooks

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Control Systems Engineering	Fifth	I. J. Nagrath, M. Gopal	New Age	2012
				International	
2	Modern Control Engineering	Fifth	Ogata. K	Prentice Hall	2010
				of India	

Reference Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Control Systems: Principle and design	First	M. Gopal	Tata McGraw Hill	1998
2	Modern Control System	Eleventh	Richard C. Dorf and Robert H. Bishop	Pearson	2013
3	Control Systems Engineering	Sixth	Norman Nise	John Wiley & Sons	2011
4	Linear Control System Analysis and Design: Conventional and Modern	First	Constantine H. Houpis and John J. D'Azzo	Mcgraw-Hill	1975

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

Course		Teachin	g Sch	eme (l	Hrs/w	eek)	C	redits	Assig	ned
(Category)	Course Name Digital Signal Processing	L	Т	Р	0	Ε	L	Т	Р	Total
Code										
		3	0	2	5	10	3	0	1	4
PC				Ex	amin	ation	Schem	e		
		Compo	nent	IS	E	Μ	ISE	ES	SE	Total
ET303		Theorem	ry	7	5		75	15	50	300
		Laboratory		50				5	0	100

Pre-requisit	e Course Codes, if any.	EC207: Signals and Systems
Course Obj	ective: To develop mathematic	cal foundation of system and design digital filters
Course Out	comes (CO): At the end of the	e course students will be able to
ET303.1	Classify and perform various	s operations on signals and systems.
ET303.2	Apply DFT properties and il	lustrate FFT algorithms.
ET303.3	Apply Z Transform on discre	ete time signals.
ET303.4	Analyze LTI System using Z	Z Transform.
ET303.5	Design and Realize Digital f	ïlters.
ET303.6	Analyze Multirate Signal Pro	ocessing.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
ET303.1	3	1	2		2							
ET303.2	1	1	2		2							
ET303.3	1	1	2		2							
ET303.4	1	1	2		2							
ET303.5	1	1	2		2							
ET303.6	1	1	2		2							2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
ET303.1		2				2	
ET303.2		2				2	
ET303.3		2				2	
ET303.4		2				2	
ET303.5		2				2	
ET303.6		1				2	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

		Remember	Understand	✓ Apply	✓ Analyze	✓ Evaluate	Create
--	--	----------	------------	---------	-----------	------------	--------

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Overview of Discrete Time Signals	6,7,8	
	1.1	Sampling of Continuous Time Signal, Standard Discrete Time Signals: Impulse Signal, Unit Step, Unit Ramp, Sinusoidal, Exponential.		08
	1.2	Classification of Signals: Deterministic and non-deterministic, Periodic and a periodic, Symmetric (even) and Asymmetric (odd), Energy and Power, Causal and Anti-causal signals.		
	1.3	Operations of Signals: Shifting, Scaling, Time Reversal, Addition and Multiplication, Convolution (Linear and Circular), Correlation		
2	Title	Discrete Fourier Transform (DFT)	1, 3	12
	2.1	Discrete Time Fourier transform (DTFT), Discrete Fourier Transform (DFT), Properties of DFT, Inverse DFT.		
	2.2	Fast Fourier Transform: Radix-2 Decimation in Time Fast Fourier Transform (DIT-FFT) and Decimation in Frequency Fast Fourier Transform (DIF-FFT) algorithms, Real and Complex Calculations using FFT, Linear and Circular Convolution using FFT,		
	2.3	Filtering of long data sequence, Overlap Add Method, Overlap Save Method		
3	Title	Z-Transform	6,7	04
	3.1	Z-Transform of discrete time signals, Properties of Z-Transform, Relation between Z-Transform and DTFT,		
	3.2	Inverse Z-Transform, Long division Method, Partial Fraction Expansion Method		
4	Title	Linear Time Invariant (LTI) Systems	1,4	08
	4.1	Classification of systems: Static and dynamic, time variant and time invariant, linear and nonlinear, causal and non-causal, stable and unstable systems.		
	4.2	Impulse Response, Transfer Function, Differential Equation, Stability of Systems, Frequency Response, Solution of Differential Equation using Z-Transform		
	4.3	LTI systems as frequency-selective filters like; Low pass, High pass, Band pass, Invertibility of LTI systems, Minimum-phase, Maximum-phase, Mixed-phase systems		
5	Title	Design of Digital filters and Implementation	1,2	10
	5.1	Design of Infinite Impulse Response (IIR) filters using Impulse Invariant Method and Bilinear Transformation Method, Butterworth and Chebyshev Type I filter design.		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

	5.2	Concepts of Finite Impulse Response (FIR) filter, symmetric and anti-symmetric FIR filter, FIR filter design using Window method and Frequency sampling method. Realization structures for IIR and FIR filters using direct Form Realization assessed parallel structures: Linear Phase Realization		
		Realization, cascade, parallel structures; Linear Phase Realization, Frequency Sampling Realization.		
6	Self-	1.Multirate Signal Processing: Down-sampling and Up-sampling	1,5	*5
	Study	by integer factors; Decimator and Interpolator, Sampling rate conversion by non-integer factor.2. Application of Filter: Sub-band filters.		
			Total	42+*5

Laboratory Component

Sr. No	Title of the Experiment
1	Discrete Convolution and Correlation
2	Discrete Fourier Transform
3	Fast Fourier Transform
4	Linear Filtering using Overlap Add Method/ Overlap Save Method.
5	Design of Butterworth IIR Filter using Impulse invariant method
6	Design of Butterworth IIR Filter using Bilinear Transformation method
7	Linear phase FIR Filter design using Windowing method
8	Linear phase FIR Filter design using Frequency sampling method
9	Multirate Signal Processing
10	Mini Project on real Time DTSP application

Textbooks

Sr. No	Title	Edition	Authors	Publisher	Year
1	Digital Signal Processing:	Fourth	J. Proakis, D. G.	Pearson	2014
	Principles, Algorithms and		Manolakis, and D. Sharma	Education	
	Applications				
2	Digital Signal Processing	Fourth	Ramesh Babu	Scitech	2014
3	Digital Signal Processing	-	S.Salivahanan, A	Tata	2010
			Vallavaraj, C Gnanapriya	McGraw Hill	

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Signals and Systems	Second	Alan V Oppenheim, Alan	Pearson	2002
			S, Willsky and A Hamid		
			Nawab		
2	Signals and Systems	Third	Simon Haykin and Barry	John Wiley	2002
	- •		Van Veen	& Sons	

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

3	Theory and	Second	L. R. Rabiner and B. Gold	Prentice-	2006
	Applications of Digital Signal Processing			Hall	
4	Multirate Systems and Filter Banks	First	P.P. Vaidyanathan,	Pearson	1992

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

Course (Category)	8				Credits Assigned					
Code		L	Т	Р	0	Ε	L	Т	Р	Total
	Electromagnetic	3	0	2	6	11	3	0	1	4
PC		Examination					on Scheme			
		Comp	onent		ISE	I	MSE	I	ESE	Total
ET304	Engineering	The	eory		75		75		150	300
		Labor	ratory		50				50	100

Pre-requi	isite Course Codes, if any.	MA101: Engineering Calculus
		MA102: Differential Equations and Complex Analysis
		MA201: Linear Algebra
Course O	bjective: To teach fundamenta	ls of Electromagnetic Waves
Course O	outcomes (CO): At the end of a	the course students will be able to
ET304.1	Apply basic laws of electroma	agnetic and Maxwell's equations.
ET304.2	Illustrate the behavior of EM	waves and travelling of waves in free space as well as media.
ET304.3	Solve problems related to the	propagation of electromagnetic waves.
ET304.4	Discuss the types of antennas	and their parameters.
ET304.5	Discuss types of radio wave p	ropagation.
ET304.6	Design applications using Ele	ctromagnetic Waves theory.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
ET304.1	1	1	2		2					3		
ET304.2	1	1	2		2							
ET304.3	1	1	2		2					3		
ET304.4	1	1	3		2					1		
ET304.5	1	1	2		2							
ET304.6	1	1	3		2					2		3

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
ET304.1		2			2	
ET304.2		2			2	
ET304.3		2			2	
ET304.4		2			2	
ET304.5		2			2	
ET304.6		1			1	

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember √ Understand√	Apply√	Analyze√	Evaluate	Create	
-------------------------------	--------	----------	----------	--------	--

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Coordinate system transformation and vector calculus		
	1.1	Cartesian, cylindrical and spherical coordinate, Differential length, area and volume, line surface and volume integrals.	2	3
	1.2	Del Operator, Gradient of scalar, Divergence of a vector and Divergence Theorem, Curl of a Vector and Stoke's Theorem, Laplacian Theorem, Classification of a Vector Field.		
2	Title	Basic Laws of Electromagnetic and Maxwells Equations	1	9
	2.1	Coulombs law, Electric fields due to continuous charge distributions, Gauss law and its applications, Electric potential (Magnetic vector potential and Electrical Scalar Potential), relationship between E and V, Poisson and Laplace equations, Bio-Savarts law, Amperes law.		
	2.2	Boundary conditions for static electric and magnetic fields		
	2.3	Faradays Law, Displacement current, Maxwells Equations: Integral and differential form for static and time varying fields and its interpretation		
3	Title	Electromagnetic Wave Propagation	1,2	9
	3.1	Wave equation: Derivation and its solution in Cartesian co-ordinates.		
	3.2	Solution of wave equations: Partially conducting media, perfect dielectrics and good conductors, Concept of Skin Depth.		
	3.3	Electromagnetic Power: Poynting Vector and power flow in free space and in dielectric, conducting media.		
	3.4	Polarization of wave: Linear, Circular and Elliptical.		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

	3.5	Propagation in different media: Behavior of waves for normal and oblique incidence in dielectrics and conducting media.		
4	Title	Waveguide	1,2	6
	4.1	Wave propagation in parallel plane waveguide (No derivation expected), Analysis of waveguide general approach (No derivation expected), in waveguide.		
	4.2	Rectangular waveguide, Modal propagation in rectangular waveguide, Surface currents on the waveguide walls, Field visualization, Attenuation.		
5	Title	Transmission Lines	1,2	9
	5.1	Power frequency lines: Representation, losses and efficiency in power lines, effect of length, calculation of inductance and capacitance.		
		Radio frequency lines: Representation, propagation constant, attenuation constant, phase constant, group velocity, input impedance, characteristic impedance, trade-off between attenuation and power transfer, reflection coefficient, standing wave ratio, VSWR, ISWR, ABCD parameters of transmission line.		
	5.2	Smith Chart: Impedance locus diagram, impedance matching.		
6	Title	Applications of Electromagnetics	2,3	6
	Self- Study	Xerography. Laser printer, Faraday's cage, lightning, RF MEMS, Magnetic levitation, Metamaterials, RFID, Stealth aircraft, remote sensing, radio astronomy, EMI and Electromagnetic Compatibility, Different types of antennas.	1,2,6	06
Fotal		1	<u> </u>	42

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Basic operations on scalar and vectors
	Working with Numbers: Scalars and Vectors using any simulation platform or Python.
	Working with Complex Numbers using any simulation platform or Python.
	Working with Matrices using any simulation platform or Python.
2	Curl and Divergence
	Numerical Computation of Divergence and Curl.
	Numerical Computation of Divergence and Curl for a Current Carrying Wire.

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

-	
3	Write a program that displays the distribution of the electric potential due to an electric dipole
	with a moment located at the origin of a spherical coordinate system.
4	Numerical Integration and Calculating the Electric Field from a Ring of Charge.
5	3-D and 2-D radiation patterns of a Hertzian dipole using MATLAB/Python.
6	Antenna parameters
	Visualization of a wireless system with two antennas.
	Radiation patterns of a small loop antenna.
	Radiation patterns of a quarter-wave monopole.
7	Waveguide: Verify the relationship between wavelength of an EM wave in air and inside a
	rectangular waveguide.
8	Simulating the Two-ray Propagation Model in any simulation platform or Python.
9	Using Virtual Lab: Introduction to Smith chart and its application for the unknown
	impedance measurement using virtual lab IIT K
10	Measurement of Frequency and wavelength of a waveguide using Microwave bench setup.
11	Using Virtual Lab: Study of field pattern of various modes inside a rectangular waveguide
	using virtual lab IIT K
12	Case Study- The student is required to develop a simple tool to carry out unit conversions
	that are associated with EM-related calculations.

Text Books :

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Electromagnetic Waves	Third	R.K. Shevgaonkar	Tata McGraw Hill	2009
2	Principles of	Sixth	Matthew N.O.	Oxford International	2015
	Electromagnetics		Sadiku	Student	

Reference Books:

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Engineering	Third	W.H. Hayt, and J.A.	McGrawHill	2006
	Electromagnetics		Buck		
2	Electromagnetic Waves and	Second	Edward C. Jordan	Pearson	2006
	Radiating Systems		and Keth G. Balmin	Publications	
3	Engineering	Third	Nathan Ida	Springer	2015
	Electromagnetics			Publications	
4	Antennas & Wave	Fourth	J.D. Kraus, R.J.	McGrawHill	2011
	Propagation		Marhefka, and A.S.		
			Khan		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

Course		Teaching Scheme (Hrs/week)					Credits Assigned			
(Category) Code	Course Name	L	Т	Р	0	Ε	L	Т	Р	Total
		0	1	2	1	4	0	1	1	2
(SBC)	Java Programming Lab	Examination Scheme								
(Component IS			E (%)	M	SE (%)	ES	E (%)	Total
ET305	Lau	Theory		1	100*					100
		Labor	atory		50				50 [#]	100

Pre-requis	site Course Codes, if any.	CS101: Problem Solving using Imperative Programming					
		CS102: Problem Solving using OOPs					
Course O	Course Objective: To learn Object-Oriented programming paradigm using Java programmi						
	language.						
Course O	Course Outcomes (CO): At the end of the course students will be able to						
ET305.1	Demonstrate programming us	sing basic constructs of JAVA.					
ET305.2	Apply Inheritance and polym	orphism for a given scenario.					
ET305.3	Apply abstraction and exception handling to create an efficient program.						
ET305.4	ET305.4 Use Generic classes and collection for solving problem.						
ET305.5	Develop a mini project based on the real-world problem.						

Note:

*= Tutorial-50 marks and Mini Project-50 marks (Preferably based on real-world problem statement from Industry/Academia/Research)

#= oral exam-20 marks and Lab experiment-30 marks

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
ET305.1	3				2							2
ET305.2	2				2							2
ET305.3	2				2							2
ET305.4	2				2							2
ET305.5	2	1	1	1	2	1			2	2		2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
ET305.1		2		2		
ET305.2		2		2		
ET305.3		2		2		
ET305.4		2		2		
ET305.5		2		2		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create ·
----------	------------	-------	---------	----------	----------

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Introduction to JAVA	1,2,3	3
1	1.1	Fundamentals of Java Programming: Classes, JDK, JRE, JVM,	1,2,5	5
	1.1	Unicode system, I/O using Scanner class and Buffered Reader		
		class.		
	1.2	Instance variables, Methods, Constructors.		
	1.3	Object class, Nested class, Access Specifiers, Abstract Classes and Wrapper Classes.		
2	Title	OOP Concepts Mapping to JAVA	1,2,3	4
	2.1	Inheritance (IS – A), Aggregation & Composition (Has – A)		
		Method overloading & overriding, this, super, final keyword,		
		Static.		
	2.2	Autoboxing and Unboxing, Polymorphism.		
	2.3	Packages and Interfaces: Package concept, creating user defined		
		package, Access control protection, Interface.		
3	Title	Exception Handling and Multithreading	1,2,3	4
	3.1	Try and catch block, Multiple catch block, Nested try, finally		
		block, Throw, Throws keywords, Exception propagation, Custom		
		exception.		
	3.2	Create thread using Thread and Runnable class. Thread methods,		
		schedule, sleep, join, Thread priority, Thread group, perform		
		multiple tasks using multiple thread Thread synchronization.		
4	Title	Generics and Collection	1,2,3	3
	4.1	Creating Generic Classes, Generic Methods, Bounded Type		
	4.2	Collection's framework, methods of collection interface (Array		
		list, Linked list, Queue etc.)		
			Total	14

Laboratory Component, if any.

Sr. No	Title of the Experiment
1	Program on I/O using command line arguments, scanner class, Buffered Reader etc.
2	Program on Constructor, types of constructors and constructor overloading.
3	Program on Polymorphism, Runtime polymorphism.
4	Program on Inheritance, Abstract Class, Interface.

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

5	Program on Nested Class, Aggregation, Composition.
6	Program on Multithreading.
7	Program on Exception Handling. (built in and User defined)
8	Program on Package and access modifiers.
9	Program on Generics
10	Program on Collection

Textbooks

Sr. No	Title	Edition	Authors	Publisher	Year
1	Java Programming	First	Ralph	Tata McGraw-	2009
	From the Group Up		Bravaco, Shai	Hill	
			Simoson		
2	Java The Complete	Eleventh	Herbert	Tata McGraw-	2019
	Reference		Schildt	Hill	

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	An introduction to	Third	Jaime Nino,	Wiley Student	2008
	Programming and Object	Frederick A. Hosch		Edition	
	Oriented Design using Java				
2	Java Programming A	First	C Xavier	Tata McGraw-	2011
	Practical Approach			Hill	
3	Java [™] Programming	Fourth	Ken Arnold, James	The (Java	2005
	Language		Gosling, David	Series) by Sun	
			Holmes		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

Semester-VI

SPIT/UG Syllabus/2020-21/ pg. 26

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total
		3	0	2	5	10	3	0	1	4
(PC)	Dormon			Exam	n Scheme					
	Power Electronics	Component			ISE		MSE		ESE	Total
ET306	Electronics	Theory			75		75		150	300
		L	aborato	ry	50				50	100

Pre-requisite Course Codes, if any. Basic Electrical Engineering Course Objective: To impart knowledge on the basic topology, operation and analysis using performance parameters of power electronic converters. Course Outcomes (CO): At the end of the course students will be able to ET306.1 Understand the operation of power semiconductor switches. Analyze various single and three phase AC-DC power converter circuits ET306.2 Illustrate the operating principle and construct a various types of DC-DC converters. ET306.3 Analyze various single and three phase DC-AC power converter circuits ET306.4 Understand the operation of AC-AC voltage converters by means of circuit topology and ET306.5 waveforms.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
ET306.1	2.5											
ET306.2	2	3										
ET306.3		2										
ET306.4		2.5	2.5									
ET306.5	2											

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

CO/PEO/PSO	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
ET306.1	2	1				
ET306.2	2			2		
ET306.3	2			2		
ET306.4	2			2		
ET306.5						

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understan	dJ ApplyJ	Analyze/	Evaluate	Create
--------------------	-----------	----------	----------	--------

Theory Component

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

Module	Unit	Topics	Ref.	Hrs.
No.	No.	*		
1	Title	Power Semiconductor Devices		
	1.1	Principle of operation, constructional features, characteristics of:	T1,	
		SCR, GTO, MOSFET and IGBT, Si-Carbide-MOSFET and IGBT,	T3	6
		Ga-Ni Power devices, Common type of Power Modules		
	1.2	Basic Gate Drive circuits for SCR, MOSFET and IGBT		
2	Title	AC to DC Converters		
	2.1	Operation and analysis of single-phase controlled rectifiers with R,	T1,	
		and RL load, freewheeling effect. Operation and analysis of three-	Τ2,	
		phase controlled rectifiers with resistive load, effect of source	R4	10
		inductance,		
	2.2	Single Phase and Three-Phase PWM Rectifier, Vienna Rectifier.	T1,]
		Power factor improvements	R4	
3	Title	DC to DC Converters		
	3.1	Switch Mode Power Converters, non-isolated and isolated	T1,	
		converters, Buck, Boost and Buck-Boost converters, flyback and	R4	
		forward converters, Hardware design of SMPS converters and their		10
		Magnetics		
	3.2	Closed loop control of Switched Mode DC-DC Converters with	R5	
		Constant Voltage and Constant Current mode of Operation		
4	Title	DC to AC Converters		
	4.1	Principle of operation of Inverters, Inverter Classification.	T1,	
	4.2	Voltage source inverters: -Principle of operation and analysis of:	T2,	
		Single phase Half bridge, full bridge, and three-phase bridge	R4	10
		inverters, six step operation (R-Load), PWM control of Voltage		
		source converters. Introduction to Space Vector Modulation		
5	Title	AC-AC converters		
-	5.1	Principle of on-off and phase control – single-phase half and full	T2	1
		wave AC voltage controller, three-phase AC voltage controller.	R6	6
		Single Phase Bidirectional AC switches using MOSFETs, IGBTs,	110	Ŭ
		Single-phase Bidirectional AC-AC converters		
6	Self	Comparison of Power Semiconductor Devices, Detailed analysis of		6*
v	Study	minimum one application for each type of converter (AC-DC, DC-		U
	Study	AC, DC-DC)		
		Total (*not incl		42

Laboratory Component (Indicative): To be completed minimum of 8 to 10 experiments

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

Sr. No	Title of the Experiment
1	Study of Characteristics and Specification of SCR, MOSFET/ IGBT
2	Gate Driver Circuits for SCR, MOSFET, IGBTs
3	Single phase Line Commutated Semi-converter and Fully controlled Converter
4	Single phase PWM Vienna Rectifier
5	Operation and analysis of single- phase bridge inverter with R Load and controllable Switches
6	Demonstration of PWM three phase bridge Voltage Source inverter with L-C filter
7	Design and Demonstration of a Buck-Converter and Boost Converter in CCM
8	Design and Demonstration of a flyback-Converter
9	Design and Demonstration of single-phase AC Voltage Controller using Thyristors
10	Simulation Exercise on PWM Vienna Rectifier
11	Simulation Exercise on Single-phase PWM AC-AC converters with Bidirectional switches

Textbooks

Sr. No	Title	Edition	Authors	Publisher	Year
1	Power Electronics: Third		Ned Mohan,	John Wiley and	2003
	converters, Application and		Undeland and	sons	
	design		Robbin		
2	Power Electronics Circuits, Fourth		Rashid M.H.	Pearson	2004
	Devices and Applications			Education	
3	Power Electronics Second		MD Singh and K.B	Tata McGraw	2006
			Khanchandani	Hill	

Reference Books

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	Modern Power Electronics and	First	Bimal K Bose	Pearson	2002
	AC Drives			Education Asia	
2	Modern Power Electronics	Second	P.C Sen	S.chand	2005
3	Power Electronics	Eleventh	P.S.Bimbra,	Khanna	2003
				Publishers	
4	Power Electronics	First	S. K. Mandal	McGraw Hill	2014
				Education (India)	
5	Switch-mode power converters	First	Keng C. Wu.	Elsevier Inc.	2006,
6	Advanced Power Electronics	First	EUZELI CIPRIANO	John Wiley &	2015
	Converters		DOS SANTOS JR.,	Sons	
			EDISON ROBERTO		
			CABRAL DA SILVA		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

Course		Teachir	ng Sch	eme (l	Hrs/w	reek)	Credits Assigned			
(Category) Code	Course Name	L	Т	Р	0	Ε	L	Т	Р	Total
		3	-	2	5	10	3	-	1	4
PC	Computer Communication	Examination Scheme								
		Component		ISE		Μ	MSE		SE	Total
ET307	Networks	Theory		75		7	75	150		300
		Laboratory		50				50		100

Pre-requisit	e Course Codes, if any. EC301: Analog and Digital Communication							
Course Obj	ective: The objective of the course is to provide a fundamental understanding of							
Computer Communication networks.								
Course Outcomes (CO): At the end of the course students will be able to								
ET307.1	Apply Conceptual understanding and functional aspects of computer communication and telecom networks.							
ET307.2	Analyze design and configure small and medium sized computer network that meets a specific need for communications.							
ET307.3	Simulate computer networks and analyze the simulation results including troubleshoot connectivity problem occurring at layers of TCP/IP model.							
ET307.4	Apply the principles behind the Modern Network approaches such as SDN NFV and IoT and security issues.							

CO-PO Correlation Matrix: (1-Weak, 2-Medium, 3-Strong)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
ET307.1	3	3										
ET307.2			3	2	3							2
ET307.3			3		3	2						
ET307.4	2	2							3	3		3

CO-PEO/PSO Correlation Matrix : (1-Weak, 2-Medium 3-Strong)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
ET307.1	1			2		
ET307.2						
ET307.3				3		
ET307.4	1				2	

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember · √	Understand · √	Apply √ ·	Analyze · √	Evaluate √	Create
---------------------	----------------	-----------	-------------	------------	--------

Theory Component

Modu le No.	Unit No.	Topics	Ref.	Hrs.			
1	Title	Fundamental of Computer Networks	1	08			
	1.1	Basic definitions. Networking devices. Layering architecture: The OSI model. Description of layers.					
	1.2 The Internet protocols TCP/IP protocol suit, IP Protocol and address. What is the Internet? Delay in the Internet (trace route and ping). History of the Internet. Security in the Internet.						
2	Title	Enterprise Network Design	2	06			
	2.1 Network requirements, Planning and Design, Structured Wiring and Structured Network Design consist of Core Layer, Distribution Layer, and Access.						
	2.2	Network Design methodology &Network Design considerations Core Layer Technologies. Investigating Server Farms and Security Integrating, Remote Sites into the Network Design.					
3	Title	Transport and Application Layer	1,3	06			
	3.1	Transport Protocols introduction. Reliable data transfer - Stop-and-wait and Go-back-N design and evaluation. TCP and UDP semantics and syntax. TCP RTT estimation. Principles of congestion control - efficiency and fairness, reactive and proactive. Socket's programming A simple client-server implementation.					
	3.2	Application layer: Application layer protocols, Client-server as a key model. Web, HTTP, FTP, SMTP, POP3, and DNS. Peer-to-peer file sharing networks.					
4	Title	Software Defined Network and Network Function Visualization	5	10			
	4.1	Network Requirements - The SDN Approach - SDN- and NFV-Related Standards - SDN Data Plane - OpenFlow Logical Network Device -					

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

Total	•			42
6	Self- Study	Types of Networks, Transmission media, Network Topologies		
	Title	Networks		5
	5.2	Secure sockets-Secure Socket Layer (SSL) - Firewalls and Internet access- Packet filter firewall- Proxy firewall- VPNs – Mobile IP – Header Compression – Voice over IP –		
	5.1	Threats and attacks. Symmetric and public key cryptography. IPsec- Authentication Header-Encapsulating security payload,		
5	Title	Internet of Things (IoT) SECURITY	1,3	10
	4.2	NFV Concepts - NFV Reference Architecture - NFV Infrastructure - Virtualized Network Functions - NFV Management and Orchestration - NFV Use Cases - SDN and NFV		
		OpenFlow Protocol - SDN Control Plane Architecture - REST API - SDN Application Plane Architecture.		

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Network Lab set up
2	IP Networking & Network Commands: ifconfig, ping, traceroute, netstat, arp ,nslookup dig
	& route etc.
3	Network Protocol Analyzers: TCPDUMP & Wireshark
4	Installation & Configuration of Web Server (at least four) using open-source tool
5	Network Socket Programming
6	Installation and configuration of open-source Network simulator software
7	Firewall Implementation (IPTABLES)
8	Implementation of SDN
9	Implementation of VPN
10	Cryptography using open source tools/Crypt tools and open SSL

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	TCP/IP protocol suit	Fourth	Behrouz A.	McGraw Hill	2009
			Forouzan (Author)	Education	
2	Introducing Network	-	CCNA Discovery	-	-
	Design Concepts		Learning Guide		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

3	Computer Networking: A	Fifth	J. F. Kurose and K. W.	Prentice Hall	2009
	Top-Down Approach		Ross		
4	Data Communication and	Fourth	B.A.Forouzan	McGraw Hill	2017
	Networking				
5	Information Security:	First	Deven Shah	Wiley	2007
	Principles and Practice			-	

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Foundations of Modern Networking: SDN, NFV,		William Stallings	Addison-Wesley ISBN:	2015
	QoE, IoT, and Cloud			9780134175393	
2	Computer Networks	Fifth	A.Tanenbaum	Pearson Education	2013
3	Data and Computer Communications	Tenth	William Stallings	Pearson Education	2013

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

Course (Category)	Course Name	ſ	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total	
	Digital CMOS VLSI Design	3			5	8	3			3	
PE		Examination Scheme									
		Comp]	ISE I		MSE	E	SE	Total		
ET311		The	Theory 75			75		50	300		
		Labor	Laboratory		oratory						

Pre-requisite Course Codes, if any.	ET101: Basic Electrical Engineering
	EC101: Digital Systems and Microprocessors
	ET202: Electronic Devices
	ET205: Analog Circuits

Course Objective: Today's growth in electronic sector is due to improvements in semiconductor chip design. VLSI course is the foundation course introduced to teach fundamentals of MOSFET based logic circuit design. The primary objective of this course is to impart basic knowledge required to study advanced courses in VLSI domain.

Course Outcomes (CO): After successful completion of the course, student will be able to

ET311.1	Discuss scaling theory for MOSFET
ET311.2	Design MOSFET based inverter circuits with given constraints
ET311.3	Analyze MOSFET based combinational and sequential logic circuits
ET311.4	Realize MOSFET based logic circuits with different design styles
ET311.5	Discuss principle of working of semiconductor memories

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

ET311	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
ET311.1	3											
ET311.2		3										
ET311.3			3									
ET311.4			3									
ET311.5			3									

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

ET311	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
ET311.1	1	2	2			
ET311.2	2	1	2		2	2
ET311.3	1	1	1		2	

SPIT/UG Syllabus/2020-21/ pg. 34

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

ET311.4	2	2	2	2	
ET311.5	1	2	1	2	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember · √	Understand · √	Apply √ ·	Analyze · √	Evaluate	Create
--------------	----------------	-----------	-------------	----------	--------

Theory Component

Module No.	Tonics						
1	Title	Review of MOSFET Physics		08			
	1.1	Threshold Voltage Equation, MOSFET Structure and Operation, Current-Voltage Characteristics and MOSFET Capacitances	1				
	1.2	MOSFET Scaling, Types of scaling and Small geometry effects	1				
2	Title	MOSFET Inverters		08			
	2.1	Static Characteristics of resistive load and CMOS Inverter, comparison of all types of MOS inverters	1				
	2.2	Dynamic Characteristics of inverters, design of CMOS inverters with constraints	1				
3	Title	Combinational MOS Logic Circuits	1,2	08			
	3.1	MOS Logic Circuits with Depletion NMOS Loads and CMOS Logic Circuits					
	3.2	Complex Logic Circuits and Concept of equivalent CMOS inverter					
4	Title	Dynamic Logic Circuits	1	08			
	4.1	Static CMOS, pass transistor logic, transmission gate					
	4.2	Pseudo NMOS, Domino, NORA, Zipper, C ² MOS					
5	Title	Sequential MOS Logic Circuits	1,2	06			
	5.1	Behavior of Bi-stable Elements					
	5.2	Circuit Realization: SR Latch, JK FF, D FF, 1 Bit Shift Register, MUX, decoder					
6	Title	Semiconductor Memories	2,3	06			
	6.1	ROM Array, SRAM (operation, design strategy, leakage currents, read/write circuits),					
	6.2	DRAM (Operation 3T, 1T, operation modes, leakage currents, refresh operation, Input-Output circuits),]			
	6.3	Flash (mechanism, NOR flash, NAND flash)					

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

6.4	Peripheral Circuits: Sense amplifier, decoder		
		Total	42

Reference Books

Sr. No.	Title	Edition	Author	Publisher	Year
1	CMOS Digital Integrated	Third	Sung-Mo Kang,	Tata McGraw	
	Circuits Analysis and Design	Edition	Yusuf Leblebici	Hill	
2	Digital Integrated Circuits: A	Second	Jan M. Rabaey,	Pearson	
	Design Perspective	Edition	Anantha	Education	
			Chandrakasan,		
			Borivoje Nikolic		
3	Introduction to VLSI Circuits	Student	John P. Uyemura	Wiley	2013
	and Systems	Edition			

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

Course (Category)	Course Name]	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Τ	Р	0	Ε	L	Т	Р	Total	
		3			5	8	3			3	
PE		Examination Scheme									
	Embedded Systems	Comp]	ISE		MSE	E	SE	Total		
ET312		Theory			75		75		.50	300	
		Labor	Laboratory								

Pre-requisi	te Course Codes, if any.	EC101: Digital Systems and Microprocessors							
-		ET201: Computer Architecture and Organization							
		ET206: Microcontrollers							
Course Obj	jective: To empower the stu	dents in system design skills using modeling practices and							
learn key concepts in reliability of embedded systems with respect to Industrial standards.									
Course Outcomes (CO): After successful completion of the course, student will be able to									
ET312.1									
	recent trends in technology								
ET312.2	Analyze the reliability of en	mbedded system with respect to fault detection and fault							
E1312.2	tolerance								
ET312.3	Apply the industry standard	ds for assessment of embedded product							
ET312.4	Analyze the given embedded	ed application with respect to security							
ET312.5	Choose suitable criteria for	selection of embedded application.							
ET312.6	Demonstrate hardware and	software skills based on embedded case studies.							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2									
CO2	2	2	2									
CO3	2	2	2									
CO4	2	2	2									
CO5	2	2	2									
CO6	2	2	2	2	2							

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

СО	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
CO1		1				
CO2	1		1			

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

CO3	1		1		
CO4	1	1	1		
CO5		1	1		
CO6	1		1	2	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember ·	Understand ·	Apply ·	Analyze ·	Evaluate	Create
------------	--------------	---------	-----------	----------	--------

Module No.	Unit No.	Topics	Ref.	Hrs
1	Title	Fundamentals of Embedded System		12
	1.1	Introduction to Embedded Systems, Characteristics of Embedded System, Design Process, Design Metrics and optimization of various parameters of embedded system. Design trade-offs due to process compatibility, thermal considerations, etc. Real time System's requirements, real time issues, interrupt latency	1,2	
	1.2	Embedded Product development lifecycle. Program Modeling concepts with design examples: DFG, FSM, Petri-net, UML, Use case, Object and Class Structuring	1,2	
	1.3	Technological aspects of embedded systems: Embedded microcontroller cores, embedded memories, interfacing between analog and digital blocks, signal conditioning, digital signal processing, sub system interfacing, interfacing with external systems and user interfacing. Introduction to real time programming languages and operating systems for embedded systems.	1,5	
2	Title	Reliable Embedded System		08
	2.1	Reliable Embedded System: Single-program, real-time embedded systems, TT vs. ET architectures, Modeling system timing characteristics, basic tick lists, determining the required tick interval, short tasks, importance of task offsets, task sequence initialization, task jitter, response times, importance of WCET/BCET information, challenges with WCET/BCET measurements, TTC scheduler, Fault-tolerance Techniques	3	
3	Title	Industry Standards		06
	3.1	Introduction to IEC 61508 standard: Organizing and managing the life-cycle, Requirements involving the specification, Requirements for design and development, Integration and test,	6,7	

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

			Total	42
	5.3	Embedded systems in Healthcare domain.	1,2	
		embedded communication, embedded software and development processes, Verification, Testing and Timing Analysis		
	5.2	Automotive Embedded Systems: Automotive Architectures,	1,2	
		camera and Air-conditioner		
		Fuzzy Logic Controller Application Examples: Washing Machine, Auto-focusing digital		
		tuning. Fuzzy Logic Controller		
		PID Controllers: Software Coding of a PID Controller, PID		
		Examples: Speed Control.		
		Introduction, Open-loop and Closed Loop Control Systems		
	5.1	Embedded Control Applications:	1,2	
5	Title	Case Studies *		08
		attacks on embedded systems and counter measures.		
	704	embedded systems, The Key, Using Keys, Various protocols,		
	4.2	Security in Embedded Devices and Systems: Introduction to secure	4	
		Protocols for industrial and control applications, Internet working Protocols. Wireless Applications: Blue-tooth		
		Languages, Network Based Design, Internet-Enabled Systems:		
		Elements of Protocol Design, High Level Protocol Design		
		Bridges, Routers, Switches, Distributed Embedded Architectures,		
		and Protocols. Network Architectures, Network Components-		
	4.1	Networked Embedded System: Network Fundamentals, Layers	10	
4	Title	Security in Network Embedded System		08
		software tools into ISO 26262 process		
		System Level, Product Development Software Level, Fitting		
	3.3	Introduction to IEC 26262 : Introduction of ISO/DIS 26262 (ISO 26262), Parts of ISO 26262, ASIL Levels, Product Development	9	
	2.2	transients and bursts.	0	
		Discharge, Radiated RF electromagnetic fields, Electrical fast		
		Protection of the Public Mains network, Immunity, Electrostatic		
	3.2	Introduction to IEC 60601 standard: Protection of radio services,	8	
		Operations and maintenance, Validation, Modifications, Acquired sub-systems, Organizing and managing the software engineering		

* Students are supposed to do some experiments/mini-projects as per instructions of teacher and requires individual efforts of students

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

Reference Books

Sr. No.	Title	Edition	Author	Publisher	Year
1	Embedded System: Architecture, Programming and Design	2nd edition	Rajkamal	Tata McGraw-Hill	2011
2	Introduction to Embedded Systems	2nd edition	Shibu K. V	Tata McGraw-Hill	2017
3	The Engineering of Reliable systems: LPC1769	-	Pont M. J	SafeTTy Systems	2014
4	Security in Embedded Devices	2010th edition	Gebotys, Catherine H.	Springer	2010
5	EmbeddedMicrocomputerSystems: Real time Interfacing	3rd edition	Jonathan W. Valvano	Cengage Learning	2012
6	FunctionalSafety,AStraightforwardGuide to applyingIEC 61508 and Related Standards	2nd edition	David Smith	Elsevier	2004
7	IEC 61508: IEC standard for the functional safety for electrical, electronics and programmable electronics equipment	-	-	https://www.iec.ch/s afety	-
8	IEC 60601: IEC standard on Medical Electric Equipment	-	-	https://www.iec.ch/s afety	-
9	IEC 26262: IEC standard on Road vehicles	-	-	https://www.iec.ch/s afety	
10	Embedded Systems Handbook: Networked Embedded Systems	2nd edition	Richard Zurawski	CRC Press	2009

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

Course		Teaching	Teaching Scheme (Hrs/week)						Credits Assigned			
(Category)	Course Name	L	Т	Р	0	E	L	Т	P	Total		
Code												
		2	0	2	8	8	2	0	1	3		
PE	a b b	Examination Scheme										
	Speech and Audio Processing	Component		ISE		MSE		ESE		Total		
ET321	ridulo i rocessing	Theory	Theory 50			50		100		200		
		Laborato	ry	50)		5	0	100		

Pre-requi	isite Course Codes, if any.	EC303: Digital Signal Processing						
Course O	bjective: To familiarize the bas	sic & advance mechanisms of speech and audio processing						
Course O	outcomes (CO): At the end of the	he course students will be able to						
ET321.1								
ET321.2	Analyze Audio Perception& p	Analyze Audio Perception& psycho-acoustic model.						
ET321.3	Demonstrate parametric repres	Demonstrate parametric representation, time domain & frequency domain representation of						
E1321.3	speech.							
ET321.4	Analysis of predictive method	s of speech.						
ET321.5	Develop systems for various a	pplications of speech & audio processing.						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
ET321.1	2											
ET321.2		2										
ET321.3			2									
ET321.4			2		2							
ET321.5					2							

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

ET321	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
ET321.1	2				2		
ET321.2	2				2		
ET321.3		2				2	
ET321.4		2				2	
ET321.5		2				2	2

BLOOM'S Levels Targeted (Pl. Tick appropriate)

SPIT/UG Syllabus/2020-21/ pg. 41

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

Remember Unders	atand Apply ·	Analyze ·	Evaluate ·	Create	
-----------------	---------------	-----------	------------	--------	--

Modul	Unit	Topics	Ref.	Hrs.
e No.	No.			
1	Title	Mechanics of speech	1.0	0
	1.1	Speech production: Mechanism of speech production, Acoustic	1,2	8
		phonetics – Digital models for speech signals -Sampling speech		
	1.2	signals, basics of quantization, delta modulation, and Differential PCM	1.0	
	1.2	Signal Processing Models of Audio Perception: Basic anatomy of hearing System. Auditory Filter Banks, Psycho-acoustic	1,2	
		analysis: Critical Band Structure, Absolute Threshold of		
		Hearing, Simultaneous Masking, Temporal Masking,		
		Quantization Noise Shaping, MPEG psycho-acoustic model.		
2	Title	Time domain methods for speech processing		8
4	2.1	Time domain parameters of Speech signal – Methods for extracting the	1,2	0
	<i>4</i> •1	parameters Energy, Average Magnitude, zero crossing Rate – Silence	1,2	
		Discrimination using ZCR and energy		
	2.2	Short Time Auto Correlation Function – Pitch period estimation using	4	
		Auto Correlation Function.	•	
3	Title	Frequency domain method for speech processing	1,2	8
	3.1	Short Time Fourier analysis: Fourier transform and linear filtering	4	-
		interpretations.		
	3.2	Sampling rates - Spectrographic displays - Pitch and formant extraction	2,3	
		- Analysis by Synthesis - Analysis synthesis systems: Phase vocoder,		
		Channel Vocoder.		
	3.3	Homomorphic speech analysis: Cepstral analysis of Speech, Formant	3,5	
		and Pitch Estimation, Homomorphic Vocoders, Speech coding, speech		
		enhancement.		
4	Title	Linear predictive analysis, synthesis of speech	3,5	4
	4.1	Basic Principles of linear predictive analysis – Auto correlation method		
		– Covariance method.		
	4.2	Solution of LPC equations – Cholesky method – Durbin's Recursive		
		algorithm.		
	4.3	Application of LPC parameters – Pitch detection using LPC parameters		
		– Formant analysis – VELP – CELP, Speech synthesis: basics of		
	G 16	articulatory, source-filter, and concatenative synthesis – VOIP.		
5	Self	Audio compression methods, Audio quality analysis, Spatial Audio		
	Stud	Perception and rendering, Speaker identification and verification		
	У		Total	26
			Total	28

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

Laboratory Component

Sr No.	Experiment Title
1	Speech production
2	Analysis of speech signal
3	Short-time spectrum analysis of speech
4	Spectrographic analysis of speech
5	Linear prediction analysis of speech
6	Formant synthesis
7	Cepstral analysis of speech
8	Analysis by synthesis of speech
9	Manual speech signal-to-symbol transformation
10	Speaker Analysis /speaker recognition

Text Books :

Sr. No	Title	Edition	Authors	Publisher	Year
1	Speech Communications: Human & Machine	Second	Douglas O'Shaughnessy	IEEE Press, Hardcover 2/e, ISBN: 0780334493.	1999
2	Discrete-Time Speech Signal Processing	First	Thomas F, Quatieri,	Prentice Hall /Pearson Education	2004

Reference Books:

Sr. No	Title	Edition	Authors	Publisher	Year
1	Speech Processing and Synthesis Toolboxes	First	Donald G. Childers	John Wiley &Sons,September ISBN:0471349593	1999
2	Fundamentals of Speech Recognition	First	L.R. Rabiner and B. H. Juang	Prentice Hall	2009
3	Speech and Audio Signal Processing	Second	Ben Gold and Nelson Morgan	John Wiley and Sons Inc., Singapore	2011
4	Discrete Time Processing of Speech Signals	First	J.R. Deller, J.H.L. Hansen and J.G. Proakis	John Wiley, IEEE Press	1999
5	Digital Processing of Speech Signals	First	L.R.Rabiner and R.W.Schaffer .	Prentice Hall	1979

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

Course		Teachin	g Sche	eme (H	Irs/w	reek)	Cr	edits	Assi	gned
(Category)	Course Name	L	Т	Р	0	Ε	L	Т	P	Total
Code										
		2	0	2	4	4	2	0	1	3
PE				Exa	mina	tion S	cheme			
	DSP Processors	Compone	ent	ISE		MSI	E	ESI	E	Total
ET322		Theory	y	50		50		100)	200
		Laborate	ory	50				50		100

Pre-requi	Pre-requisite Course Codes, if any. EC303: Digital Signal Processing				
Course O	bjective: To develop implemen	ntation of DSP algorithms using DSP Processor			
Course O	Dutcomes (CO): At the end of the	he course students will be able to			
ET322.1	Evaluate different types of error	ors in DSP implementation.			
ET322.2	Describe architectures of TMS	320XX devices.			
ET322.3	Explore various interfacing dev	vices to DSP Processors.			
ET322.4	Demonstrate Fast DSP algorith	nms using DSP processor			
ET322.5	Develop DSP application using	g DSP hardware.			

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
ET322.1	2											
ET322.2		2	1									
ET322.3		2	1									
ET322.4	2				1							
ET322.5			2					1	1	1		1

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
ET322.1		2		2		
ET322.2		2		2		
ET322.3		2		2		
ET322.4		2		2		
ET322.5		2		2		

BLOOM'S Levels Targeted (Pl. Tick appropriate)

RememberUnderstand✓Apply	✓ Analyze	✓ Evaluate	Create
--------------------------	-----------	------------	--------

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Computational Accuracy in DSP Implementations		
_	1.1	Number formats for signals and coefficients in DSP systems.	1,2	04
		Dynamic Range and Precision, Sources of error in DSP	7	
		implementations, A/D Conversion errors, DSP Computational		
		errors, D/A Conversion Errors, Compensating filter.		
	1.2	Sources of error in DSP implementations, A/D Conversion errors,	1,2	
		DSP Computational errors, D/A Conversion Errors.	-	
2	Title	Programmable DSP Hardware		08
	2.1	Processing Architectures (von Neumann, Harvard), DSP core	1,2	
		algorithms (FIR, IIR, Convolution, Correlation, FFT).		
	2.2	IEEE standard for Fixed- and Floating-Point Computations, Special	1,2	
		Architectures Modules used in Digital Signal Processors (like MAC		
		unit, Barrel shifters), On-Chip peripherals, DSP benchmarking.		
3	Title	Structural and Architectural Considerations		06
	3.1	Parallelism in DSP processing, Texas Instruments TMS320	1,2	
		Digital Signal Processor Families, Fixed Point & floating-Point TI		
		DSP Processors.		
	3.2	Data Addressing modes, Memory space of Processors, Program	1,2	
		Control, instructions, and programming of TMS320XX		
		Processors.		
	3.3	On-Chip Peripherals, Interrupts of TMS320XX processors,	1,2	
		Pipeline operation of TMS320XX Processors.		
4	Title	VLIW Architecture		06
	4.1	Current DSP Architectures, GPUs as an alternative to DSP	1,2	
		Processors.		
	4.2	Code Composer Studio, Mixed C and Assembly Language	1,2	
		programming, on-chip peripherals, Simple applications		
		developments as an embedded environment.		
	4.3	Peripherals to Programmable DSP Devices: Memory space	1,2	
		organization, External bus interfacing signals, Memory interface,		
		Parallel I/O interface, Programmed I/O, Interrupts and I/O, Direct		
		memory access (DMA).		
5	Title	Hardware implementation of DSP Algorithms		04
	5.1	The Q-notation, FIR Filters, IIR Filters, Interpolation Filters,	1,2	
		Decimation Filters, PID Controller, Adaptive Filters		
	5.2	An FFT Algorithm for DFT Computation, A Butterfly	1,2	
		Computation, Overflow and scaling, Bit-Reversed index generation		
6	Self-	A CODEC interface circuit, A CODEC-DSP interface example.		
	Study			
			Total	28

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

Laboratory Component

Jusorator	Component
Sr. No	Title of the Experiment
1	Harmonic Generation
2	FIR Filtering
3	IIR Filtering
4	Fast Fourier Transform Algorithm
5	Linear Filtering Algorithm
6	Sensor Interface
7	ADC-DAC Interface
8	Real Time Audio Signal Processing
9	Real time Biomedical Signal Processing
10	Real Time Power Signal Processing
I I	5 5

Textbooks:

Sr. No	Title	Edition	Authors	Publisher	Year
1	Digital Signal Processors, Architecture, Programming and Applications.	First	B. Venkata Ramani and M. Bhaskar	Tata McGraw Hill (TMH) Publication 2004	2004
2	DSP Implementation using DSP microprocessor with Examples from TMS32C54XX	First	Avtar Singh, S.Srinivasan	Thomson Publication	2004

Reference Books:

Sr. No	Title	Edition	Authors	Publisher	Year
1	DSP Processor	First	Phil Lapsley,	Wiley	1997
	Fundamentals,		Jeff Bier,	Publication	
	Architectures & Features		AmitShoham,		
			Edward A. Lee		
2	Digital Signal Processors	First	Sen M.	Pearson	2009
	Architectures,		Kuo&WoonSergGan,		
	Implementation and				
	Application				
3	Architectures for Digital	First	Peter Pirsch,	Wiley	1998
	Signal Processing			Publication	
4	Digital Signal Processing	Second	S. Salivahanan	Tata McGraw	2001
			A. Vallavaraj	Hill Publication	
			G. Gnanapriya		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

Course		Teaching Scheme (Hrs/week)				Credits Assigned				
(Category) Code	Course Name	L	Т	Р	0	Е	L	Т	Р	Total
	_	2	0	2	5	10	3	0	1	3
PE	Power	Examinatio					n Scheme			
	Electronic Converters	Component		ISE		MSE		ESE	Total	
ET221	(@)		Theory		50		5()	100	200
ET331	(@)	Laboratory		50				50	100	

@--> Not to be repeated if already studied as a Program Core i.e. Power Electronics

Pre-requisit	e Course Codes, if any. Basic Electrical Engineering							
Course Obj	Course Objective: To impart knowledge on the basic topology, operation and analysis using							
performance	parameters of power electronic converters.							
Course Out	comes (CO): At the end of the course students will be able to							
ET331.1	Understand the operation of power semiconductor switches.							
ET331.2	Analyze various single and three phase AC-DC power converter circuits							
ET331.3	Illustrate the operating principle and construct a various types of DC-DC converters.							
ET331.4	Analyze various single and three phase DC-AC power converter circuits							
ET331.5	Understand the operation of AC-AC voltage converters by means of circuit topology and							
	waveforms.							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
ET331.1	2.5											
ET331.2	2	3										
ET331.3		2										
ET331.4		2.5	2.5									
ET331.5	2											

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
ET331.1	2	1					
ET331.2	2				2		
ET331.3	2				2		
ET331.4	2				2		
ET331.5							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand <i>J</i>	Apply J	Analyze √	Evaluate	Create
SPIT/UG Syllabus/	/2020-21/ pg. 47				

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Power Semiconductor Devices		
	1.1	Principle of operation, constructional features, characteristics of:	T1,	
		SCR, GTO, MOSFET and IGBT, Si-Carbide-MOSFET and IGBT,	T3	8
		Ga-Ni Power devices, Common type of Power Modules		
	1.2	Basic Gate Drive circuits for SCR, MOSFET and IGBT		
2	Title	AC to DC Converters		
	2.1	Operation and analysis of single-phase controlled rectifiers with R,	T1,	
		and RL load, freewheeling effect. Operation and analysis of three-	T2,	
		phase controlled rectifiers with resistive load, effect of source	R4	10
		inductance,		
	2.2	Single Phase and Three-Phase PWM Rectifier, Vienna Rectifier.	T1,	
		Power factor improvements	R4	
3	Title	DC to DC Converters		
	3.1	Switch Mode Power Converters, non-isolated and isolated	T1,	
		converters, Buck, Boost and Buck-Boost converters, flyback and	R4	
		forward converters, Hardware design of SMPS converters and their		8
		Magnetics		
	3.2	Closed loop control of Switched Mode DC-DC Converters with	R5	
		Constant Voltage and Constant Current mode of Operation		
4	Title	DC to AC Converters		
	4.1	Principle of operation of Inverters, Inverter Classification.	T1,	
	4.2	Voltage source inverters: -Principle of operation and analysis of:	T2,	10
		Single phase Half bridge, full bridge, and three-phase bridge	R4	10
		inverters, six step operation (R-Load), PWM control of Voltage		
		source converters. Introduction to Space Vector Modulation		
5	Title	AC–AC converters		
	5.1	Principle of on-off and phase control – single-phase half and full	T2	
		wave AC voltage controller, three-phase AC voltage controller.	R6	6
		Single Phase Bidirectional AC switches using MOSFETs, IGBTs,		
		Single-phase Bidirectional AC-AC converters		
6	Self	Exercise on minimum of 4 to 6 Simulations		6*
	Study			
•	2	Total (*not incl	uded)	42

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

In-Semester Evaluation (Indicative): To be completed minimum of 4 to 6 Simulations

Sr. No	Title
1	Simulation Exercise on Single phase Line Commutated Semi-converter and Fully controlled
	Converter
2	Simulation Exercise on Single phase PWM Vienna Rectifier
3	Simulation Exercise on Single- phase bridge inverter with R Load and controllable Switches
4	Simulation Exercise on PWM three phase bridge Voltage Source inverter with L-C filter
5	Simulation Exercise on Buck-Converter and Boost Converter in CCM
6	Simulation Exercise on Fly-back-Converter
7	Simulation Exercise on Single-phase AC Voltage Controller using Thyristors
8	Simulation Exercise on PWM Vienna Rectifier
9	Simulation Exercise on Single-phase PWM AC-AC converters with Bidirectional switches

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Power Electronics:	Third	Ned Mohan,	John Wiley and	2003
	converters, Application and		Undeland and	sons	
	design		Robbin		
2	Power Electronics Circuits,	Fourth	Rashid M.H.	Pearson	2004
	Devices and Applications			Education	
3	Power Electronics	Second	MD Singh and K.B	Tata McGraw	2006
			Khanchandani	Hill	

Reference Books

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	Modern Power Electronics and	First	Bimal K Bose	Pearson	2002
	AC Drives			Education Asia	
2	Modern Power Electronics	Second	P.C Sen	S.chand	2005
3	Power Electronics	Eleventh	P.S.Bimbra,	Khanna	2003
				Publishers	
4	Power Electronics	First	S. K. Mandal	McGraw Hill	2014
				Education (India)	
5	Switch-mode power converters	First	Keng C. Wu.	Elsevier Inc.	2006,
6	Advanced Power Electronics	First	EUZELI CIPRIANO	John Wiley &	2015
	Converters		DOS SANTOS JR.,	Sons	
			EDISON ROBERTO		
			CABRAL DA SILVA		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total
(PE)	Embedded System Design	3	0	0	5	10	3	0	0	3
		Examination Scheme								
	for Power	Component			ISE		MSE		ESE	Total
ET332	Converter		Theory		50		50		100	200
	Applications	Laboratory			50				50	100

Course content

Digital Signal Controller (DSC: A micro-controller with a DSP engine): Architecture and real-time programming in Assembly and Embedded C. Introduction to Fixed Point Arithmetic. Understanding the constraints of program memory and execution time. Programming peripherals including GPIO, TIMERS etc. On Chip FLASH and EEPROM programming.

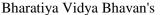
Field Programmable Gate Array (FPGA): Architecture and programming of digital circuits including Finite State Machines (FSM) in Verilog HDL. Understanding the CAD tool and various timing issues.

Communication-Chip level: AXI, Board level: SPI, I2C, System level: RS 232, CAN, MODBUS RTU on RS 485. Developing a GUI for supervisory control and monitoring. Introduction to different semiconductor memories: RAM, ROM, NVRAM etc. and their applications.

Analog sensing: Anti-aliasing filter design, scaling, online calibration and biasing. Continuous time feedback controller design and its discrete time implementation, D/A and A/D converters, effects of sampling, modeling the Pulse Width Modulator (PWM) etc.

Co-design: How to optimally implement an embedded task using a programmable processor (DSC) and a re-configurable hardware (FPGA). Embedded design of a typical Power Conversion System including: process control, protection, monitoring, real-time feedback control etc.

Concept of Hardware-in-the loop simulation in Power converters, Case-study: Design of Embedded system controller for (a) Induction Heating System (b) Three Phase Active Rectifier for PF Correction


Prerequisites

Under graduate level analog electronics, digital electronics and classical feedback control theory. Familiarity with micro-processor, digital signal processing and previous experience in programming will be helpful but not a necessity.

References

(1) Fundamentals of Digital logic with Verilog Design, S Brown and Z Vranesic, McGraw Hill Education; 2nd edition (2017).

(2) PIC Micro-controllers and Embedded Systems, Using assembly and C for PIC 18 Mazidi, Mckinlay and Causey, Pearson Education India; 1st edition (2008)

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. ETRX

(3) Feedback Control of Dynamic Systems, GF Franklin, JD Powell and Naeini, Pearson (2008)

(4) Microelectronic Circuits: Theory and Applications, AS Sedra and K Smith, Oxford University Press (2017)

- (5) Digital Signal Processing, JG Proakis and DK Manolakis, Pearson Education India; 4th edition (2007)
- (6) Digital Control of HighFrequency SwitchedMode Power Converters, (IEEE Press Series on Power Engineering) Lucca Corradini, Dragan Maksimovi, Paolo Mattavelli, Regan Zane, Wiley-Blackwell (2015)

(7)A Practical Introduction to Hardware/Software Co-design, Patrick R. Schaumont Springer; 2nd edition (2014).