

Bharatiya Vidya Bhavan's
Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

B. Tech. (Electronics & Telecommunication Engineering) Syllabus (Semester I-VIII)

2021 Iteration (2021-25)

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Nomenclature of the Courses

BSC	Basic Science Course	PC	Program Core				
BSE	Basic Science Elective	PE	Program Elective				
ESC	Engineering Science Course	MLC	Mandatory Learning Course				
ESE	Engineering Science Elective	OE	Open Elective				
SBC	Skilled Based Course	HSSE	Humanities and Social Science Elective				
ABL-SATVA	Self- Accomplishment	SCOPE	Skill Certification for Outcome based				
	Through Various Activities		Professional Education				
ABL-SEVA	ABL-SEVA Social Empowerment Through Various Activities						

Abbreviations

L	Lecture Hour	0	Other Work (Self Study)
Т	Tutorial Hour	Е	Total Engagement in Hours
Р	Laboratory Hour	С	Credit Assigned

Engagement and Credit Scheme

			Semester I						
No.	Туре	Code	Course	L	Т	Р	0	Ε	С
1	BSC	MA101	Engineering Calculus	3	1	0	8	12	4
2	BSC	AS101	Engineering Physics	2	1	2	5	10	4
3	ESC	AS104	Engineering Graphics	1	0	2	2	05	2
4	ESC	ET101	Basic Electrical Engineering	3	0	2	6	11	4
5	ESC	CS101	Problem Solving using Imperative	2	0	4	4	10	4
			Programming						
6	SBC	AS106	Skill Shop	0	0	2	0	02	1
7	ABL	SV1X/ST1X	SEVA-I or SATVA-I	0	0	0	2	02	1
			TOTAL	11	2	12	27	52	20

	Semester II										
No.	Туре	Code	Course	L	Τ	Р	0	Ε	С		
1	BSC	MA102	Differential Equations and Complex Analysis	3	1	0	8	12	4		
2	BSC	AS102	Engineering Chemistry	2	0	2	3	07	3		
3	BSC	AS103	Biology for Engineers	2	0	0	3	05	2		
4	ESC	AS105	Engineering Mechanics	2	0	2	4	08	3		
5	ESC	CS102	Problem Solving using OOPs	2	0	4	4	10	4		
6	ESC	EC101	Digital Systems and Microprocessors	3	0	2	5	10	4		
7	SBC	AS107	Communication Skills	1	0	2	2	05	2		
			TOTAL	15	1	12	29	57	22		

Bharatiya Vidya Bhavan's Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Semester-I

SPIT/Syllabus/2021-25/EXTC/pg. 3

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Е	L	Т	Р	Total
	Engineering Calculus	3	1	0	8	12	3	1	0	4
(BSC)		Examination Scheme								
MA101		Component			ISE		MSE		ESE	Total
		Theory			100		100		200	400

Pre-requis	ite Course Codes, if any.	HSC Mathematics					
Course Ob	jective: To develop mathematica	al skills for solving engineering problems.					
Course Ou	tcomes (CO): At the End of the	e course students will be able to:-					
MA101.1	Differentiate a function partially.						
MA101.2	Find extreme values of a given	Find extreme values of a given function.					
MA101.3	Find the nth order derivative of	a given function.					
MA101.4	Expand a given function as a po	ower series.					
MA101.5	Calculate the value of integrals integrals in various coordinate s	in one variable using different techniques and solve multiple systems.					
MA101.6	Calculate Area using double int	egration.					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MA101.1	3											
MA101.2	3	1										
MA101.3	2											
MA101.4	2											
MA101.5	3											
MA101.6	2	1										

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
MA101.1							
MA101.2							
MA101.3							
MA101.4							
MA101.5							
MA101.6							

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember $$ Understand $$ Apply $$	Analyze	Evaluate	Create	
------------------------------------	---------	----------	--------	--

Theory Component

Module No.	Unit No.	Topics	Ref	Hrs.
1	Title	Partial Differentiation	1,2,3	10
	1.1	Partial derivatives of first and higher order. Partial derivatives of composite functions.		4
	1.2	Euler's theorem for homogeneous functions with two and three independent variables, deductions from Euler's theorem.		3
	1.3	Application of partial derivatives: i) Local Maxima and Minima of functions of two variables. Ii) Lagrange's Method of undetermined multipliers.		3
2	Title	Successive Differentiation and Series	1,2,3	10
	2.1	Successive Differentiation: Proofs of nth derivatives of standard functions. Use of De Moivre's theorem and partial fractions to calculate nth derivatives of given functions.		3
	2.2	Leibnitz's Theorem on nth derivative of product of two functions		2
	2.3	 Infinite series: 1) Maclaurian's series (without proof) and derivation of series of some standard functions using Maclaurin series. Expansion of functions in powers of x by using i) Standard series method ii) Method of differentiation and integration. 2) Taylor's series and applications. 		5
3	Title	Integral Calculus (one variable)	1,2,3	8
	3.1	Gamma functions: properties of gamma functions and integrals reducible to gamma functions.		2
	3.2	Beta functions: properties, relation between Beta and Gamma functions, integrals reducible to Beta functions, Duplication formula.		4
	3.3	Differentiation under Integral sign: differentiating integrals with constant limits of integration for one parameter.		2
4	Title	Integral Calculus (multi variable)	1,2,3	14
	4.1	Tracing of curves. Sketching standard solids (Spheres, Ellipsoids, Cylinders, Cones, Tetrahedrons, planes)		2
	4.2	Double Integration: definition and evaluation. Evaluate by changing the order of integration and by changing to polar form.		7
	4.3	Application of double integral to finding area of given regions.		2
	4.4	Triple integration: definition and evaluation (Cartesian and cylindrical coordinates).		3

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

5	Self-	1.1 Partial differentiation of implicit functions.	1,2,3	08			
	Study	2.3 Series by method of Substitution					
		3.2 Proof of Duplication Formula					
		3.3 Differentiation under Integral sign using two parameters and variable					
	limits						
		4.1 Finding lengths of curves in Cartesian and polar form					
		Total		42*			

*Total of 42 hours does not include self-study hours.

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year	
1.	Higher Engineering Mathematics	44 th	Dr. B. S. Grewal	Khanna Publications	2020	

Sr. No.	Title	Edition	Authors	Publisher	Year
1.	Advanced Engineering Mathematics	28 th	H.K Das	S. Chand	2014
2.	Advanced Engineering Mathematics	10 th	Erwin Kreysizg	John Wiley & Sons	2011
3.	Advanced Engineering Mathematics	4 th	Jain and Iyengar	Narosa Publications	2014

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Teac	Teaching Scheme (Hrs/week)					Credits Assigned		
Code	Course Maine	L	Т	Р	0	E	L	Т	Р	Total
	Engineering Physics	2	1	2	5	10	2	1	1	4
(BSC)					Exan	ninatio	n Scheme			
~ /		Com	ponent	;	ISE]	MSE	E	SE	Total
AS101		Tł	neory		75		75	1	50	300
A5101		Laboratory			50				50	100

Pre-requi	site Course Codes, if any.	HSC level physics					
Course O	Course Objective: To provide the knowledge and methodology necessary for solving problems in the field of engineering						
Course Outcomes (CO): At the End of the course students will be able to							
AS101.1	Illustrate the knowledge of bas mechanics.	sic concepts of semiconductor physics, lasers and quantum					
AS101.2	Solve the problems by applyin	g the basics concepts of physics.					
AS101.3	Use the Schrodinger equation	to realize the concept of discreteness and quantum tunneling.					
AS101.4	Explain the working of various	s LASERs and its practical applications.					
AS101.5	To develop experimental skills	s and the practical abilities.					
AS101.6	To develop an ability of under	standing of concepts and principles of physics.					
AS101.7	To comprehend importance of	precision, accuracy of the experimental data.					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AS101.1	1											
AS101.2		1										
AS101.3		1										
AS101.4	1											
AS101.5				1								
AS101.6				1								
AS101.7												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
AS101.1							
AS101.2							
AS101.3							
AS101.4							
AS101.5							
AS101.6							
AS101.7							

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

BLOOM'S Levels Targeted (Pl. Tick appropriate)

RememberUnderstandApplyAnalyzeEvaluateCreate
--

Theory Component

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	Title	Quantum Mechanics	1.0.0	09
	1.1	De-Broglie hypothesis; experimental verification of de Broglie	1,2,3	
		hypothesis; wave packet, group velocity and phase velocity; Wave		
		function, Physical interpretation of wave function; Heisenberg's		
		uncertainty principle; Electron diffraction experiment; Applications of uncertainty principle		
	1.2	Schrodinger's time dependent wave equation, time independent wave	1,2,3	
	1.4	equation; Application of time-independent Schrodinger equation –	1,2,3	
		Particle trapped in one dimensional box and Potential barrier		
		(Tunnelling), Harmonic oscillator (qualitative)		
2	Title	Physics of Semiconductors and Semiconductor devices		13
	2.1	Conduction in metals and semiconductors; Fermi-Dirac distribution	5	_
		function and Fermi level in a conductor, insulator and semiconductor		
	2.2	Intrinsic and extrinsic semiconductors; intrinsic conductivity and	5	
		extrinsic conductivity; Law of mass action, charge neutrality		
		condition; intrinsic carrier concentration, electron and hole		
		concentration; Extrinsic carrier concentration as a function of		
		temperature; Effect of impurity concentration and temperature on the		
		Fermi Level; Hall Effect and its applications. Drift and Diffusion		
		current density		
	2.3	Formation of a P-N junction, depletion region and barrier potential;	5,6	
		Energy band structure of P-N Junction (unbiased, forward-bias,		
		reverse-bias); concept of carrier current densities in p-n junction in		
		equilibrium, forward bias and reverse bias; Breakdown mechanism -		
		Zener effect and avalanche		
	2.4	P-N junction devices: LED, Zener diode, photoconductors,	5,6	
		photovoltaic solar cells and Bipolar Junction Transistors		0.6
3	Title	LASERS	2.4	06
	3.1	Processes – Absorption of light, spontaneous emission, stimulated	3,4	
		emission; Einstein's equations, Population inversion; metastable		
	2.2	states; pumping and pumping schemes; optical resonance cavity	2.4	
	3.2	Ruby and Helium Neon laser, semiconductor laser; Applications of	3,4	
		laser in industry, medicine, and holography. (construction &		
		reconstruction of holograms)		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

4	Self-	Interference of light in thin films having uniform thickness, Newton's		05*					
	Study	rings, Applications of interference in anti-reflecting and highly							
		reflecting thin films.							
		Diffraction of light, Diffraction due to single slit, double slit, and							
		diffraction grating.							
	•	Total (*Not include	ed)	28					

Laboratory Component

Determination of energy band gap of a semiconductor tudy of I-V characteristics of a Zener diode Determination of the type of semiconductor sample, concentration of charge carriers and its							
etermination of the type of semiconductor sample, concentration of charge carriers and its							
Determination of the type of semiconductor sample, concentration of charge carriers and its							
mobility using Hall Effect							
Determination of Planck's constant using photo vacuum tube							
Measurement of ultrasonic velocity in liquid medium using ultrasonic interferometer							
Determination of radius of curvature using Newton's Rings							
etermination of thickness of a thin foil or wire using the interference pattern of a wedge-shaped							
lm							
etermination of wavelengths of a mercury source and resolving power of a plane diffraction							
rating							
tudy of single slit diffraction							
etermination of grating element of a diffraction grating using a laser source							
etermination of the numerical aperture of an optical fibre							
Ises of a Cathode-Ray Oscilloscope							

*Students will perform any 10 of the above experiments

Text Books

Sr. No.	Title Edition		Authors	Publisher	Year
1.	A Textbook of	11	Dr. M.N. Avadhanulu &	S. Chand	2018
	Engineering Physics		Dr. P. G. Kshirsagar		
2.	Engineering Physics	1	D. K. Bhttacharya &	Oxford University Press	2015
			Poonam Tandon		

Sr. No.	Title Edition		Authors	Publisher	Year
1.	Concepts of Modern	6	Arthur Beiser	McGraw Hill Education	2009
	Physics				
2.	Modern Physics	3	Serway, Moses and Moyer	Thomson Learning	2005

Sardar Patel Institute of Technology (Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

3.	Fundamentals of Physics	10	Halliday and Resnick	Wiley	2013
4.	Solid State Physics	8	S. O. Pillai	New Age International	2018
5.	Solid State Electronic	7	Ben G. Streetman and	Publishers Pearson Education	2016
	Devices		Sanjay Kumar Banerjee		
6.	Lasers: Fundamentals and Applications	2	Ghatak and Thyagarajan	Springer	2011

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)			Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total	
	Engineering Graphics	1	0	2	2	5	1	0	1	2	
(ESC)		Examination Scheme									
		Component]	ISE		MSE		SE	Total	
4 6104		Theory			20		20		60	100	
AS104		Laboratory			60				40	100	

Pre-requisite Course Codes, if any. Fundamentals up to 12th science

Course Objective: To develop technical drawing and visualization skills using instrumental drawing and soft tool, required for design and modeling, in Engineering Applications and Solutions.

Course Outcomes (CO): At the End of the course students will be able to

AS104.1 Construct basic engineering curves.

AS104.2 | Draw projections of points and lines.

AS104.3 Draw projections of regular solids inclined to both the reference planes.

AS104.4 Read the 3-dimensional view and draw the orthographic projections.

AS104.5 | Read the 3-dimensional view and draw the sectional orthographic projections.

AS104.6 | Read the orthographic projections and draw isometric view.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AS104.1	3	3										3
AS104.2	3	3										3
AS104.3	3	3										3
AS104.4	3	3										3
AS104.5	3	3										3
AS104.6	3	3										3

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply√	Analyze	Evaluate	Create
----------	------------	--------	---------	----------	--------

Sardar Patel Institute of Technology (Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Unit1	Introduction to Engineering Drawing	1,2	
	1.1	Introduction to Drawing Instruments, Types of Lines,	-	4
		Dimensioning Systems and Scaling as per IS conventions. First		
		angle method of projection only		
	1.2	Basic construction of Cycloid and Involutes.		
2	Unit2	Projections of Points and Lines	1	4
	2.1	Projection of points in all four quadrants		
	2.2	Projection of lines parallel to one principal reference plane.		
	2.3	Lines inclined to both the Reference Planes (Excluding Traces of		
		lines).		
3	Unit3	Projections of solids (Regular solids like Prism, Pyramid,	1,2	7
		Cylinder, Tetrahedron, Hexahedron and Cone only)		
	3.1	Projection of solid resting on plane (Single step projection)		
	3.2	Projection of solid such that base inclined to one reference plane		
		(Two step projection)		
	3.3	Projection of solid such that base inclined to both reference		
		planes (Three step projection/problem) (Exclude Spheres,		
		Composite, Hollow solids and frustum of solids)		
4	Unit4	Orthographic Projections	1,2	Lab Sessi
	4.1	Orthographic views of a simple machine part as per the first angle		ons
		method of projection recommended by I.S.		0115
	4.2	Full Sectional views of the Simple Machine parts.		
5	Unit5	Isometric Projections and views	2	Lab
	5.1	Isometric views (Natural scale only)	-	Sessi ons
6	Self	1.2 Construction of Engineering curves like ellipse, parabola,	1,2,	6*
	Study	hyperbola, helix, other types of cycloids etc. by using different	3	
		method of construction.		
		2.1 Projection of lines with traces, application-based problems on		
		Projection of lines		
		3.1 Projections of cut solids with different cutting planes.		
		4.1 Solve more practice examples of orthographic views. Draw		
		different views of a machine part/any object using third angle		
		method of projection. (Axonometric view, oblique view,		
		perspective etc.)		

Sardar Patel Institute of Technology (Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Total	15		
8	2	Isometric Projection/View sheet 8	
		Isometric Projection/View sheet 7	
		scale only. (Exclude Spherical surfaces).	
7	2	plain/natural	
		Isometric View of blocks with plain and cylindrical surfaces is using	
-		Introduction to Isometric Projection/View: -	
6	2	Sectional Orthographic projections sheet 6	
5	2	Introduction to Sectional Orthographic projections sheet 5	
4	2	Orthographic projections sheet 4	
3	2	Introduction to Orthographic projections sheet 3	
2	1	Auto-Cad Practice sheet-2	
		Auto-Cad Practice sheet-1	
1	4	Printing.	
1	2	Knowledge of setting up layers, Dimensioning, Hatching, plotting, and	
110	569910119	Introduction to Auto-CAD: -Basic Draw and Modify Commands.	
No	Sessions	Engineering Mutocad Laboratory	
Sr.	Noof	Engineering AutoCAD Laboratory	
		oonent (Minimum 5 sheets are expected)	I
Total (*Not inclu	(ded)	15
		part of the solid after cutting plane, reverse development of solid.	
		5.1 Development of surfaces of frustum of solid, and retaining	
		4.2 Half sectional orthographic views.	

Textbooks:

Sr. No	Title	Edition	Authors	Publisher	Year
1	Engineering Drawing	53 rd	N D Bhatt	Charotar	2016
2	Engineering Drawing	3 rd	Dhananjay A Jolhe	Tata McGraw Hill	2011

Sr. No	Title	Edition	Authors	Publisher	Year
1	AutoCAD 2017		Sham Tickoo	DreamTech Press, Delhi	2017
2	Engineering Drawing and Graphics	Fifth	K Venugopal	New Age International	2011

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name]	Teaching Scheme (Hrs/week)						Credits Assigned			
Code		L	Т	Р	0	Е	L	Т	Р	Total		
	Basic Electrical	3	0	2	6	11	3	0	1	4		
(ESC)		Examination Scheme										
		Component			ISE		MSE		SE	Total		
ET101	Engineering	Theory		v 75			75		50	300		
		Labor		50				50	100			

Pre-requ	uisite Course Codes, if any.	Basic concepts of electric charge, current, voltage and						
		Power						
Course (Objective: To impart a basic kn	owledge of electrical quantities, circuits and components.						
Course (Course Outcomes (CO): At the End of the course students will be able to							
ET101.1	Compute various electrical of	quantities of given dc circuit using circuit simplification						
	techniques and various networ	techniques and various network theorems.						
ET101.2	To expose the students to different terms and concepts in AC Circuits at fundamental							
	frequency and to expose them	to basics of effects of harmonics in the waveforms						
ET101.3	To study the working principle	es of electrical machines and their applications						
ET101.4	To expose the students the fu	ndamental concepts in Controllable Switch and Modulation						
	based Power Conversion							
ET101.5	To study Electrical Parameters	s of the Batteries and their selection and design criteria for a						
	specific application							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
ET101.1	3	2			3							
ET101.2	3	2			3							
ET101.3	3				3							
ET101.4	3				3							
ET101.5	3				3							

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
ET101.1					3	3	
ET101.2					3	3	
ET101.3							
ET101.4							
ET101.5							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember√	Understand $$	Apply $$	Analyze	Evaluate	Create

SPIT/Syllabus/2021-25/EXTC/pg. 14

Sardar Patel Institute of Technology (Autonomous Institute Affiliated to University of Mumbai)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	DC Circuits		
•	1.1	Electrical circuit elements (R, L and C), Voltage and current sources,		10
	1.1	Equivalent resistance of circuits, Simplification using delta-star and star-		
		delta transformation.		
	1.2	Kirchhoff's current and voltage laws, Analysis of simple circuits with dc		
		excitation. Mesh analysis, Superposition, Thevenin, Norton and Maximum Power Transfer Theorems		
	1.3	Time-domain analysis of first-order DC Transients in RL and RC circuits.		-
2	Title	AC Circuits		12
	2.1	Representation of sinusoidal waveforms, peak and rms values,		12
	<i>4</i> .1	phasor representation, real power, reactive power, apparent power,		
		power factor. Harmonics, Total Harmonic Distortion, Power		
		supplied by Harmonic voltages and currents, Power factor in case of		
		non-sinusoidal waveforms.		
	2.2	AC Analysis of series and parallel RLC Circuits with Resonance, Concept		
		of Bandwidth and Q-factor,		
	2.3	Three-phase balanced circuits, voltage and current relations in star and		
3	T:4].	delta connections.		10
3	Title	Electromagnetic and Electro-Mechanical Energy Converters Magnetically Coupled Coils, Self and Mutual Inductance and Dot		10
	3.1	Convention		
	3.2	Single Phase Transformer: Principle of Operation, Equivalent Circuits,		
	3.4	Efficiency and Regulation.		
	3.3	Introduction to Three-phase Transformers and Applications		-
	3.4	Fundamental Principles of Rotating Machines, Characteristics of Induction		-
	5.4	motor and DC motor		
4	Title	Electric Power Converters		05
-	4.1	Fundamental Principles of Buck, Boost and buck-boost DC-DC converters		
		and their Transfer Characteristics, Duty Ratio Control		
	4.2	Single-phase voltage source inverters and PWM		-
5	Title	Batteries: Electrical Characteristics and Applications		05
	5.1	Introduction to type of Batteries, Generalized Battery parameters such as		
		SoC, DoD, Energy and Power Densities, Battery C-rating, etc. Comparison		
		of Batteries, Charging and Discharging Characteristic		
	5.2	Selection and Sizing of Battery Packs for Specific Applications		1
6	Self-	Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB,		3*
-	Stud	MCCB, Types of Wires and Cables, Earthing. Elementary calculations for		
	У	energy consumption and power factor improvement.		
	-	Total (*Not incl	uded)	42

SPIT/Syllabus/2021-25/EXTC/pg. 15

Bharatiya Vidya Bhavan's Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Laboratory Component (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
01	Introduction to Electrical Measuring instruments, Lamp Loads, Inductor Loads and Capacitor Bank
02	Verification of Star-Delta and Delta-star Transformation with Kirchoff's Laws
03	Verification of Thevenin's Norton's and Maximum Power Transfer Theorem
04	Verification of DC Transient equations in RL and RC Circuits
05	Experimental study of single-phase AC circuit with R-L and R-C Load with Measurement of Power and Power factor
06	Experimental study of R-L-C Series Resonance. To plot resonance curve, To compute Bandwidth and Q-factor
07	Experiment on Magnetic Circuit Fundamentals
08	Loading of a transformer: measurement of primary and secondary voltages and currents, and power. To compute efficiency and regulation.
09	Three-phase transformers: Star and Delta connections. Voltage and Current relationships (line-line voltage, phase-to-neutral voltage, line and phase currents). Phase-shifts between the primary and secondary side. Cumulative three-phase power in balanced three-phase circuits.
10	Synchronous speed of two and four-pole, three-phase induction motors. Direction reversal by change of phase-sequence of connections. Torque-Slip Characteristic of an induction motor. Generator operation of an induction machine driven at super-synchronous speed.
11	Demonstration of (a) dc-dc converters (b) dc-ac converters – PWM waveform.
12	Demonstration of V/F control of Induction motor
13	Experimental study of charge and Discharge characteristics of a Lead-acid Battery
14	Introduction to L.T. Switch gear

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Textbooks

Sr. No.	Title	Editio n	Authors	Publisher	Year
1	Basic Electrical Engineering	3rd	D. P. Kothari and I. J.	Tata McGraw Hill	2010
2	Electrical Technology	23rd	B. L. Theraja	S. Chand	2003
				Publications	

Sr. No.	Title	Edition	Author	Publisher	Year
01	Basic Electrical Engineering	2 nd	D. C. Kulshreshtha	McGraw Hill	2019
02	Fundamentals of Electrical Engineering	2 nd	L. S. Bobrow	Oxford University Press	2011
03	Electrical and Electronics Technology	3rd	E. Hughes	Pearson	2010
04	Electrical Engineering Fundamentals	2 nd	V. D. Toro	Prentice Hall India	1989
05	Elements of Power Electronics	2 nd	P. T. Krein	New York and Oxford: Oxford University Press	2015
06	Power Electronics: Converters, Application and Design	2 nd	Ned Mohan, T.M Undelands and W P Robbins	John Wiley and Sons. Inc.	1995
07	Electric Machinery	6 th	A. E. Fitzgerald, C. Kingsley and S. D. Umans	McGraw-Hill	2003

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total
	Problem Solving using Imperative Programming	2	0	4	4	10	2	0	2	4
(ESC)		Examinatio					n Scheme			
		Comp	onent]	ISE]	MSE	E	SE	Total
CS101		Theory			-		-		-	-
0.5101		Laboratory			300			1	100	400

Pre-requ	isite Course Codes, if any.							
Course (Course Objective: To develop problem solving skills using imperative programming							
Course (Course Outcomes (CO): At the End of the course students will be able to							
CS101.1	Explain the problem-solving aspects using various programming paradigms.							
CS101.2	Solve real world problems using imperative programming approach.							
CS101.3	Solve problems using control structures for real world problems.							
CS101.4	Solve problems using Arrays and Text processing.							
CS101.5	Develop modular code for a given problem.							
CS101.6	Solve real world problems using Structures and Unions							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CS101.1	1											
CS101.2	2	2										
CS101.3	2	2										
CS101.4	2	2										
CS101.5	2	2										
CS101.6	2	2										

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
CS101.1							
CS101.2							
CS101.3							
CS101.4							
CS101.5							
CS101.6							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply $$	Analyze	Evaluate	Create

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
	Title	Introduction to Problem Solving and Programming Paradigms		
1	1.1	What is a Problem, Problem Solving Aspect, Top-Down Design, Implementation of Algorithms, Characteristics of a good algorithm, what is a computer program, real life examples of programming, Computer based applications of programming, Steps followed in Program Development, Characteristics of good Program	3,4	2
	1.2	Overview of Programming Paradigms - Declarative and Imperative, Problem-solving using Algorithm and Flowcharts,	3,4	2
	Title	Basic Elements of Computer Programming and Control flow		
	2.1	Variables, keywords, Data types, Operators: Arithmetic, Relational and Logical, Assignment, Unary, Conditional, Bitwise, Expression, Statements.	1,2	1
2	2.2	Branching Structures: if statement, if-else statement, multi-way decision, switch statement, continue statement, break statement Iterative Structures: while, do-while, for, nested loops	1,2	3
	2.3	Problem solving using Control Structures for real world problems	1,2,4	2
	Title	Problem Solving using Array Techniques		
	3.1	Introduction to Arrays: Declaration, Definition, accessing array elements, one-dimensional array, two-dimensional array, array of characters, Strings	1,2	2
3	3.2	Classical Problem-Solving using Arrays like Array Order Reversal, Array Counting or Histogramming, Finding the maximum number in a set.	1,2,4	2
	3.3	Text Processing problems like finding length, keyword search, finding anagrams	1,2,4	2
	Title	Problem Solving using Modular Approach		
4	4.1	Defining a Function, accessing a Function, Function Prototype, Passing Arguments to a Function, call by value, pointers and call by reference, Recursion	1,2	4
	4.2	Problem solving using Functions and Recursive applications	1,2,4	3
	Title	Structures and Unions		
5	5.1	Structures and Union: Declaration, Initialization, structure within structure, Array of Structure, Operation on structures, Concept of Union, Difference between structure and union,	1,2	3
	5.2	Real world problems using Structures and Unions	1,2,4	2
6	Self Study	File handling: Types of Files, File operation- Opening, Closing, Creating, Reading, Processing File, Command line arguments, Dynamic Memory Allocation	1,2,4	4*
		Total (*Not incl	uded)	28

Laboratory Component (Minimum 10 Laboratory experiments are expected)

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Note: All problems should be implemented using C language.

Sr. No.	Title of the Experiment
1	Use the formatted input/output statements, operators and expressions of C language
2	Apply various control structures to solve given problems.
3	Apply the concept of functions to incorporate modularity.
4	Demonstrate the use of one-dimensional arrays to solve a given problem.
5	Demonstrate the use of two-dimensional arrays to solve a given problem.
6	Apply the concept of recursion to solve a given problem.
7	Implement various text processing problems.
8	Apply the concepts of structures/union to solve a given problem.
9	Demonstrate the use of pointers to solve a given problem.
10	Implement various operations on files to solve a given problem.

Textbooks

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Programming with C	Fourth	Byron Gottfried	McGraw Hill (Schaum's outline series)	2018
2	The C programming Language	Second	Kernighan , Ritchie	Pearson	2015
3	Foundations of Programming Languages	Second	Kent D. Lee	Springer	2017
4	How to Solve it by Computer	First	R. G. Dromey	Prentice Hall India	1998

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Let Us C	Sixteenth	Yashavant Kanetkar	BPB	2017
2	Programming	Third	Carlo Ghezi,	John Wiley &	2008
	Language Concepts		Mehdi Jazayeri	Sons	
3	Computer	Second	V. Rajaraman &	PHI Learning,	2014
	Programming in C		Neeharika Adabala	Eastern Economy	
				Edition,	

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name]	Teaching Scheme (Hrs/week)						Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total		
	Skill Shop	0	0	2	0	02	0	0	1	1		
(SBC)			Examination						1 Scheme			
		Component			ISE		MSE		SE	Total		
4 5104		Theory										
AS106		Laboratory			50				50	100		

Pre-requ	uisite Course Codes, if any.					
Course Objective: To equip the students with the fundamental skills involved in the creation of						
simulated	simulated and physical design.					
Course Outcomes (CO): At the End of the course students will be able to						
AS106.1	Operate basic electronic equipment and instruments.					
AS106.2	Make PCB designs in simulations.					
AS106.3	Assemble, disassemble, and troubleshoot computer hardware and network peripherals.					
AS106.4	Fabricate basic jobs in traditional trades.					

AS106.5 Design a 3D model and translate it to a 3D printed component.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AS106.1									3			3
AS106.2			3		3				3			
AS106.3									3			3
AS106.4									3			3
AS106.5					3				3			

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
AS106.1	3						
AS106.2	3						
AS106.3	3						
AS106.4	3						
AS106.5	3						

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understan	d Apply $$	Analyze	Evaluate	Create	
--------------------	------------	---------	----------	--------	--

Sardar Patel Institute of Technology (Autonomous Institute Affiliated to University of Mumbai)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Lab Component

Trade No.	Unit No.	Topics	Ref.	Hrs.
1	Unit 1	Electronic Components	5	4
-	1.1	Introduction to Electronic Components	5	-
		Exposure to usual electronic equipment/instruments such as Multi-		
		meter, Oscilloscope, Function generator, IC tester and Power		
		supply, Information about their front panels, Demonstrations on		
		their working, Hands-on for measurement of component values and		
		DC voltage using multi-meter, AC mains voltage/1 KHz Square		
		wave/any small signal from function generator on Oscilloscope,		
		Testing of sample digital ICs using IC tester.		
		OR		
		Repairing of gadgets and appliances:		
		Elementary skills of repairing juicer, mixer, grinder, etc.		
2	Unit 2	PCB Laboratory Exercises	6	4
	2.1	Layout drawing, Positive and negative film making, PCB etching		
		and drilling, Tinning and soldering technique.		
3	Unit 3	Hardware and Networking	7,8	4
	3.1	Dismantling of a Personal Computer (PC), Identification of		
		Components of a PC such as power supply, motherboard,		
		processor, hard disk, memory (RAM, ROM), CMOS battery, CD		
		drive, monitor, keyboard, mouse, printer, scanner, pen drives, disk		
	3.2	drives etc.		-
	3.4	Assembling of PC, Installation of Operating System and Device drivers, Boot-up sequence. Installation of application software (at		
		least one).		
	3.3	Basic troubleshooting and maintenance.		
	3.4	Identification of network components: LAN card, wireless card,		-
	0.4	switch, hub, router, different types of network cables (straight		
		cables, crossover cables, rollover cables) Basic networking and		
		crimping.		
4	Unit 4	Traditional Trades*	1, 2	4
		Carpentry		
		Use and setting of hard tools like hacksaws, jack planes, chisels and		
		gauges for construction of various joints, wood turning and modern		
		wood turning methods. One carpentry job involving a joint and		
		report on demonstration of a job involving wood turning required		
		for successful completion of module.		
		OR		
		Electrical board wiring		
		House wiring, staircase wiring, and wiring diagram for fluorescent		
		tube light, Godown wiring and three phase wiring for electrical		
		motors.		
		OR Sheet Matel Practice		
<u> </u>		Sheet Metal Practice		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

		Introduction to primary technology processes involving bending, punching and drawing various sheet metal joints, development of joints. Utility job in sheet metal required for successful completion of module.		
5	Unit 5	3D Modeling and Printing	3, 4	4
	5.1	Modeling approaches for ideation and creation. Developing a CAD file (.iges/.step/.dwg) of a 3D model and export it as an .stl file for the purpose of 3D printing. Importing the 3D .stl file to generate a .gcode file for 3D printing through slicing, using open source software.		
	5.2	Introduction to 3D printing: methodologies, best practices, material and model variation. Live printing sessions of generated .gcode files in real time with optimal parameters and troubleshooting.		
			Total	20

* Students can opt for any one of the three trades from Unit 4.

Textbooks:

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Workshop Manual	6 th	Venkat Reddy	BS Publication	2008
2	Wiring Simplified: Based on 2017 National Electrical Code	45 th	Frederic P Hartwell, Herbert P. Richter, W. C. Schwan	Park Publishing	2017

Sr. No.	Title	Edition	Authors	Publisher	Year
3	Autocad 2017	1 st	Shyam Tikoo	Dreamtech Press	2016
4	Ultimaker 2+ reference manual	-	-	Ultimaker	2017
5	Encyclopedia of Electronic Components	1 st	Charles Platt	O Reilly	2012
6	Printed Circuit Boards	1 st	Khandpur R. S.	Tata McGraw Hill	2005
7	Troubleshooting Your PC For Dummies	2 nd	Gookin Dan	For Dummies	2005
8	Networking For Dummies	8 th	Lowe Doug	For Dummies	2007

Bharatiya Vidya Bhavan's Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Semester-II

SPIT/Syllabus/2021-25/EXTC/pg. 24

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total
(BSC)	Differential Equations	3	1	0	8	12	3	1	0	4
(DSC)		Examination Scheme								
MA102	and Complex Analysis	Component			ISE		MSE		ESE	Total
	Complex marysis	Theory			100		100		200	400

Pre-requis	ite Course Codes, if any.	Semester-I Mathematics				
Course Objective: To develop mathematical skills for solving engineering problems.						
Course Ou	Course Outcomes (CO): At the End of the course students will be able to:-					
MA102.1	Solve differential equations of first order.					
MA102.2	Solve differential equations of higher order using operators.					

MA102.3 Solve differential equations in electrical engineering problems.

MA102.4 Find powers, roots & logarithm of a complex number and to separate the function of a complex number into real and imaginary.MA102.5 Check whether a given function is analytic and construct analytic functions.

MA102.6 Compute integrals of complex valued functions.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MA102.1	3											
MA102.2	3											
MA102.3	1	1										
MA102.4	3											
MA102.5	2											
MA102.6	2	1										

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
MA102.1							
MA102.2							
MA102.3							
MA102.4							
MA102.5							
MA102.6							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Theory Component

Module No.	Unit No.	Topics	Ref	Hrs.
1	Title	Linear Differential Equations of first order	1,2,3	11
	1.1	Exact Differential Equations, Integrating Factors, equations reducible		3
		to exact form.		
	1.2	Linear differential equations (Definition), equations reducible to linear		2
		form, Bernoulli's equation		
	1.3	Simple application of differential equation of first and second order to		2
		electrical engineering problems.		
	1.4	Numerical solution of ordinary differential equations of first order and		4
		first degree using		
		(a)Taylor's series method		
		(b)Euler's method		
		(c) Modified Euler method		
		(d) Runge-Kutta fourth order formula.		
2	Title	Linear Differential Equations of higher order	1,2,3	11
	2.1	Linear Differential Equation with constant coefficient- complementary		7
		function, particular integrals of differential equation of the type $f(D)y =$		
		X where X is e^{-ax} , sin(ax+b), cos(ax+b), x^m , e^{ax} V, xV, where V is		
		a function of x.		
	2.2	Cauchy's homogeneous linear differential equation and Method of		2
		variation of parameters for second order.		
	2.3	System of Differential Equations.		2
3	Title	Complex Numbers	1,2,3	12
	3.1	Revision: Complex Numbers as ordered pairs, Argand's diagram,		1
		Cartesian, Polar and Exponential form of Complex Numbers.		
	3.2	De Moivre's Theorem and its application to determine powers of		3
		complex numbers. Roots of complex numbers by De Moivre's Theorem.		
	3.3	Expansion of $\sin n\theta$ and $\cos n\theta$ in terms of powers of $\sin \theta$ and		2
		$\cos\theta$. Expansion of $\sin^n\theta$ and $\cos^n\theta$ in terms of sines and cosines of		
		multiples of θ .		
	3.4	Hyperbolic Functions: relation between circular and hyperbolic		4
		functions, Inverse hyperbolic functions. Separation into real and		
		imaginary parts of complex functions.		
	3.5	Logarithm of a complex number.		2
4	Title	Analytic functions and Complex Integrals	1,2,3	8
	4.1	Analytic functions, Cauchy Reimann equations in cartesian and polar		4
		form, construction of analytic functions using Milne-Thompson's		
		method, Harmonic functions, poles of f(z).		
	4.2	Line Integral, Cauchy's Integral theorem for simply connected regions,		4
		Cauchy's Integral formula (for poles lying inside or outside the curve).		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

5	Self-	1.3 To form D.E. for given L-C-E-R circuit		08
	Study	1.4 Picard's method		
		2.1 Method of undetermined coefficients to solve differential equations.		
		2.2 Legendre's differential equation, Method of variation of parameters		
		for third order differential equations.		
		3.2 Complex examples using De Moivre's Theorem.		
		4.1 Construction of analytic function $f(z) = u + iv$ when $u + v$ or $u - v$ is		
		given. Orthogonal trajectories		
	•		Total	42*

*Total of 42 hours does not include self-study hours.

Textbooks

Sr. No.	Title	Edition	Authors	Publisher	Year
1.	Higher Engineering Mathematics	44th	Dr. B. S. Grewal	Khanna Publications	2020

Sr. No.	Title	Edition	Authors	Publisher	Year
1.	Advanced Engineering Mathematics	28th	H. K Das	S. Chand	2014
2.	Advanced Engineering Mathematics	10th	Erwin	John Wiley &	2011
			Kreysizg	Sons	
3.	Advanced Engineering Mathematic	4th	Jain and	Narosa	2014
			Iyengar	Publications	

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name]	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	P	Total	
		2	0	2	3	7	2	0	1	3	
(BSC)		Examination Scheme									
4 6103	Engineering Chemistry					MSE	E	SE	Total		
AS102	Chemistry	Theory			50		50		00	200	
			Laboratory		50				50	100	

Pre-requis	ite Course Codes, if any. HSC level Chemistry
Course Ob	pjective: To provide necessary background of Chemistry suited for relevant areas of engineering
Course Ou	atcomes (CO): At the End of the course students will be able to
AS102.1	Relate thermodynamic principles and laws to crucial applications like heat engines
	(Understanding)
AS102.2	Summarize properties and applications of different materials like polymers, ceramics, alloys,
	nanomaterials, conductors, and insulators (Understanding)
AS102.3	Identify methods for corrosion control based on knowledge of different types of corrosion and
	factors affecting rate of corrosion (Application)
AS102.4	Compare different sources of energy like conventional fossil fuels, alternative fuels, batteries, and
	fuel cells with respect to availability, working principles, constitution, efficiency of performance
	and environmental impact (Understanding)
AS102.5	Apply knowledge of electrochemistry and green chemistry in the interest of public health and
	environment (Application)
AS102.6	Make use of analytical techniques (complexometric and iodometric titrations) and instruments
	(pH-meter, conductometer and Orsats's Apparatus) for various purposes like hardness parameters
	of water, composition of alloys etc.
AS102.7	Estimate key properties of lubricants like flash point, viscosity and acid value
AS102.8	Estimate molecular weight of polymer

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AS102.1	1											
AS102.2	1											
AS102.3	2											
AS102.4	2						1					
AS102.5	1						2					
AS102.6				1								
AS102.7				1								
AS102.8				1								

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
AS102.1							
AS102.2							
AS102.3							
AS102.4							
AS102.5							
AS102.6							
AS102.7							
AS102.8							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply $$	Analyze	Evaluate	Create
----------	------------	----------	---------	----------	--------

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
	Title	Thermodynamics		
	1.1	Introduction, Terminology, Concepts of Internal Energy and Thermodynamic equilibrium, Zeroth and First Law of Thermodynamics, Implications and Limitations of First law	1,3	
1	1.2	Concept of Enthalpy, Joule Thomson Effect, Carnot's Cycle, Carnot's theorem and related numerical, Second Law of Thermodynamics	1,3	4
	1.3	Applications of thermodynamic principles to the working of refrigerator and air conditioner	1,3	
	Title	Polymers		
2	2.1	Introduction, Effect of heat on polymers: Glass transition temperature and melting with significance;	1, 2, 3	3
	2.2	Conducting polymers, Liquid crystal polymers, Engineering Polymers	1, 2,3	
	Title	Corrosion		
	3.1	Introduction, Dry corrosion(i) Due to oxygen (ii) Due to other gases	1,2	
3	3.2	Electrochemical corrosion and mechanism, Galvanic, differential aeration corrosion, Significance of galvanic series for corrosion phenomenon	1,2	5
	3.3	Factors affecting rate of corrosion (i)Position in galvanic series, (ii) relative areas of anode and cathode, (iii) conductance of medium	1,2	
	3.4	Methods to decrease the rate of corrosion: Material selection, Proper designing, Cathodic protection- i) Sacrificial anodic protection	1,2	

Sardar Patel Institute of Technology (Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

	•	Total (*Not i	ncluded)	28
		 Tops down vs bottoms up approach to nanotechnology and applications of nanoparticles other than carbon 		
8	Study	 Commercial applications of superconducting materials 		4*
	Self-	 Anodic Protection as a corrosion control strategy Current research and advances in fuel cells 		
		1. Supramolecular polymers and their applications		
	1.5	YBa2Cu3O7-y, properties and applications	1,2,3	
	7.3	Superconductors, perovskite structure and 1:2:3 compound	1,2,3	
		conductors.		
	7.2	applications, Stoichiometric, defect and controlled valency semi-	1,2,3	
7		Insulators, Semiconductors and Superconductors: Thermal and electrical insulating materials and important engineering		4
-		Structure, Properties and applications		
	7.1	Carbon nanomaterials: Fullerenes and Carbon nanotubes,	1,2,3	
	7 1	and cermets : magnetic, electronic and electrical applications	1.0.2	
	11110	Eutectic mixtures and soft solders, Advanced Ceramic materials		
	Title	Atom Economy, Green Solvents (Water, Supercritical Fluids), Engineering Materials		-
6	6.1	12 principles of green chemistry with examples, numericals on	1,2	3
	Title	Green Chemistry		
	5.3	applications	1,2	
	5 2	Electrochemical sensors: Working principle, construction and	1,2	
	3.4	fuel cells (in brief)	-	
5	5.2	Reserve Batteries, Fuel cells, characteristics, description, construction and working of Hydrogen-oxygen fuel cells, Types of	1,2	4
		Rechargeable Lithium-ion batteries		
	5.1	Introduction, Important terms, Nickel-Hydrogen (metal hydride),	1,2	
	Title	Batteries and Battery Technology		
		(Description, Utility, advantages, and disadvantages)		
	4.4	alcohol, Biomass, Biogas, Biodiesel, Natural Gas and CNG	1,2	
		(by weight and by volume only) for given solid & gaseous fuels. Disadvantages of fossil fuels, Alternative (Green) Fuels: Power		
	4.3	Combustion- Calculations for requirement of only oxygen and air	1,2	
4	4.2	unleaded petrol	-,-	5
	10	Knocking, Octane number, Cetane number, Antiknock agents,	1,2	-
		calorific values.		
	4.1	Gross or Higher calorific value & Net or lower calorific value, Dulong's formula & numerical for calculations of Gross and Net	1,2	
		Definition and classification of fuels, Calorific value: Definition,		
	Title	Energy Sciences		
		application only)		
		ii) Impressed current method, Metallic coatings, Cathodic and anodic coatings (Galvanization and Tinning: principle and		

Sardar Patel Institute of Technology (Autonomous Institute Affiliated to University of Mumbai)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Laboratory Component

Sr. No.	Title of the Experiment							
1	Determination of total, temporary and permanent hardness of water sample							
2	Removal of hardness using ion exchange column							
3	Molecular weight determination of polymers by Oswald's Viscometer							
4	Γο determine flash point of a lubricating oil							
5	Determination of Viscosity of oil by Redwood Viscometer							
6	Estimation of acid value of lubricant							
7	Determination of amount of strong acid present in a solution using a conductometer							
8	Determination of strength of acid using a pH meter							
9	Estimation of Copper in brass by Iodometric Titration							
10	Analysis of Flue gas for its composition (by Orsat's Apparatus)							
11	Estimation of Iron in plain Carbon steel							
12	Determination of COD of wastewater sample							

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Engineering Chemistry	XI	P. C. Jain & M. Jain	Dhanpat Rai & Co. (Pvt) Ltd.	2014
2	A Textbook of Engineering Chemistry	XII	S. S. Dara & S. S. Umare	S. Chand & Co.	2014
3	A Textbook of Engineering Chemistry	III	S Chawla	Dhanpat Rai & Co. (Pvt) Ltd.	2015

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Physical Chemistry	Eleventh	Peter Atkins	Oxford University Press	2017

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	0					Credits Assigned				
Code		L	Т	Р	0	Ε	L	Т	Р	Total
	Biology for Engineers	2	0	0	3	5	2	0	0	2
(BSC)			Examination				n Scheme			
		Comp	onent]	ISE		MSE	E	SE	Total
AS103		The	Theory		50		50	1	00	200
		Labor	atory		-				-	-

Pre-requis	site Course Codes, if any. HSC level Biology							
Course Ob	Course Objective: To provide engineering perspective towards the biological principles and systems							
Course Ou	atcomes (CO): At the End of the course students will be able to							
AS103.1 Understand basic biological principles and organizational structure of living systems at								
	molecular level.							
AS103.2	Comprehend basic biological principles and organizational structure of living systems at							
	cellular level							
AS103.3	Know Energy transformation and information processing in biological systems							
AS103.4	Appreciate biological process with engineering perspective							
AS103.5	Identify significance of Gene, Blood and Skin in human health system.							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AS103.1	3											
AS103.2	3											
AS103.3	2											
AS103.4	2	1										
AS103.5	2	1										

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
AS103.1							
AS103.2							
AS103.3							
AS103.4							
AS103.5		2					

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember $$ Understand $$ Apply $$	Analyze	Evaluate	Create
------------------------------------	---------	----------	--------

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.			
	Title	Biomolecules and bio-polymers: Structure and Function	1,3				
1	1.1	Organic and inorganic molecules, Unique Properties of water					
1	1.2	Carbohydrates, Lipids, Amino Acids and proteins, Nucleic Acids (DNA and RNA)		4			
	Title	Levels of organization of life	1,3				
2	2.1	Cell as a basic unit of life, prokaryotic and eukaryotic cells, microbes, plant and animal cells; Cell organelles – structure and function; Cell membrane.		4			
	2.2	Levels of organization: cells, tissues, organs, systems & organism					
	Title	Energy transformations	1,3				
3	3.1	Energy transformations in Chloroplast: Photosynthesis (photochemical & biochemical phase) and ATP generation, Aerobic and anaerobic systems		5			
	3.2	Energy transformations in Mitochondria: Cellular respiration (glycolysis and Kreb cycle) and ATP generation					
	Title	Transport and Defense mechanisms	1,3				
4	5.1	Transport Phenomena in Biological Systems: Membrane channels and ion channels; Fluid flow and mass transfer (nutrients & ions); In plants: Xylem and Phloem; In animals: Blood and Lymph Transport of gases: Oxygen and Carbon dioxide Heat Transport - Body temperature regulation.		5			
	5.2	Defense mechanisms: In plants: Herbivory, secondary metabolites In animals: Innate and Adaptive immune systems					
	Title	Engineering perspectives of biological sciences:	1,3				
5	6.1	Biology and engineering crosstalk – At cell level: Hybridoma technology At tissue level: Plant Tissue Culture, Animal Tissue Culture;		6			
	6.2	Tissue Engineering: Principles, methods and applications Introduction to Biomimetics and Biomimicry, nano-biotechnology					
	Title	Role of Gene, Blood and Skin in human health system.	2,4				
6	7.1	Introduction to Genetic Engineering. Blood Type, Complete Blood Count Test and Abnormalities.		4			
	7.2	Structure of Skin, Functions of Skin. Engineering methods for identification of Skin diseases.					
7	Self Study	Intentification of Skin diseases. Introduction to Biosensors, transducers, amplifiers; Introduction to medical imaging and different medical Imaging modalities; Review of Signals and system; Electro Physiological Signal Analysis.					
		Total (* Not in	ncluded)	28			

Sardar Patel Institute of Technology (Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Textbooks

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Molecular Cell Biology	IV	Lodish H, Berk A, Zipursky SL	W. H. Freeman	2000
2	Textbook of Anatomy and Physiology for Nurses and allied Health Sciences	Ι	Indu Khurana & Arushi	CBS Publsihers & Distributors Pvt Ltd	2019

Sr. No.	Title	Edition Authors		Publisher	Year
3	Lehninger Principles of Biochemistry	IV	Nelson, D. L., & Cox, M. M.	Freeman	2004
4	Introduction to Biomedical Engineering.	III	Joseph D. Bronzino, John Enderle	Academic Press	2012

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name]	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total	
	Engineering Mechanics	2	0	2	4	08	2	0	1	3	
(ESC)			Examination					n Scheme			
		Comp	onent		ISE	l	MSE	E	SE	Total	
A S105		Theory			50		50	1	00	200	
AS105		Laboratory			50				50	100	

Pre-requis	site Course Codes, if any.						
Course O	Course Objective: To provide knowledge of force analysis methods required in engineering						
application	ns and solutions. Also, to develop analytical and computational ability.						
Course Ou	atcomes (CO): At the End of the course students will be able to						
AS105.1	Draw free body diagram and determine reactive forces using conditions of equilibrium and						
	Lami's theorem						
AS105.2	Determine coefficient of friction for various contact surfaces						
AS105.3	Analyze the three-dimensional system of space forces.						
AS105.4	Analyze the kinematics of particle and obtain the various parameters of motion.						
AS105.5	Determine Instantaneous center of rotation (ICR).						
AS105.6	Design and conduct an experiment to demonstrate principles of statics and dynamics						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AS105.1	3	3										
AS105.2	3	3										
AS105.3	3	3										
AS105.4	3	3										
AS105.5	3	3										
AS105.6	3	3							3			

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
AS105.1	3						
AS105.2	3						
AS105.3	3						
AS105.4	3						
AS105.5	3						
AS105.6	3						

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understa	d Apply $$	Analyze	Evaluate	Create	
-------------------	------------	---------	----------	--------	--

Theory Component

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	Title	Equilibrium of forces		
	1.1	Equilibrant force, conditions of equilibrium for concurrent forces,	1,3	
		parallel forces and general force system, equilibrium of connected		8
		bodies, Lami's theorem.		
	1.2	Types of supports, types of loads, Beams, Determination of reactions	3	
		at supports for various types of loads on beams		
2	Title	Friction		
	2.1	Introduction to Laws of friction, Cone of friction, Equilibrium of	1,2	4
		bodies on inclined plane, Application to problems involving wedges,		
		ladders.		
3	Title	Forces in space		5
	3.1	Rectangular Components of Forces in Space, Resultant of Space	1	
		forces, Moment of a Force about a point, axis and line. Equilibrium of		
		a particle in space.		
4	Title	Kinematics of Particle		8
	4.1	Motion along straight and curved path, Rectangular component of	2,3	
		velocity and acceleration, Tangential & Normal component of		
		acceleration, Motion curves(a-t, v-t, s-t curves), Projectile motion,		
5	Title	Kinematics of Rigid Bodies		3
	5.1	Instantaneous center of rotation for the velocity of bodies in plane	3	
		motion, (up to 2 linkage mechanism)		
6	Self-	1. Applications of resultant of forces, concept of couple and moments,	1,2,3	6*
	Study	2. Centroid and center of gravity, analysis of trusses.		
		3. Kinetics of rigid body, work energy principle.		
		4. Principle of Law of Conservation of momentum, Impact and		
		collision.		
		Total (*Not Incl	uded)	28

Sardar Patel Institute of Technology (Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Sr. No.	Title of the Experiment							
1	Draw the force polygon and determine the equilibrant force for concurrent coplanar force system.							
2	Use the conditions of equilibrium for parallel force system and determine the support reactions.							
3	Apply the principle of moment for equilibrium of levers.							
4	Determine the coefficient of friction for glass slab and a metal plate on an inclined plane.							
5	Determine the axial forces using Lami's theorem for Jib crane apparatus.							
6	Use the conditions of equilibrium for non-concurrent non-parallel force system and draw the force							
	polygon.							
7	Measure the acceleration due to gravity with the help of simple pendulum apparatus.							
8	Determine the range of projectile and the time of flight for the projectile motion.							
9	Verify the law of conservation of momentum and determine the coefficient of restitution for collision							
10	(Plot the motion of projectile using air-cushion table apparatus.) A small project based on							
	Engineering Mechanics concept.							

Textbooks

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Vector Mechanics for	9 th	Beer and	McGraw Hill	2010
	Engineers statics and		Johnston		
	dynamics				
2	Engineering Mechanics	5^{th}	Bhavikatti S S	New Age	2009
			and	International	
			Rajsekharappa		
3	Engineering Mechanics	14 th	A K Tayal	Umesh	2012
	Statics and Dynamics			Publication, Delhi	

Sr. No.	Title	Edition	Authors	Publisher	Year
3	Engineering Mechanic: Statics	5 th	E.W. Nelson,	McGraw Hill	1998
	and Dynamics,		C.L. Best, W.G.		
			McLean,		
4	Singer's Engineering	3 rd	Vijaya Kumar	BS Publication	2012
	Mechanics Statics and		Reddy. K. and		
	Dynamics		Suresh Kumar. J		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned				
Code		L	Т	Р	0	Ε	L	Т	Р	Total	
	Problem Solving using OOP	2	0	4	3	7	2	0	2	4	
(ESC)		Examination					1 Scheme				
		Comp	Component		Component ISE]	MSE	E	ESE	Total
CS102		Theory		Theory							
C5102		Laboratory			300			1	00	400	

Pre-requis	ite Course Codes, if any.	Problem Solving using Imperative Programming					
Course Ob	Course Objective: To learn problem solving using Object-Oriented programming paradigm						
Course Outcomes (CO): At the End of the course students will be able to							
CS102.1	Apply concepts of object-orien	Apply concepts of object-oriented programming using classes and objects					
CS102.2	Apply Inheritance for a given s	cenario					
CS102.3	Apply polymorphism for solving a given problem						
CS102.4	Apply abstraction and exception handling to create efficient program.						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CS102.1	2	2	2									
CS102.2	2	2	2									
CS102.3	2	2	2									
CS102.4	2	2	2									

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
CS102.1							
CS102.2							
CS102.3							
CS102.4							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

RememberUnderstandApply $$ AnalyzeEvaluateCreate
--

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Theory (This course content delivery will be in C++/Java. Course Contents to be taken care accordingly)

Module No.	Unit No.	Topics	Ref.	Hrs.
		Introduction and Encapsulation		8
	1.1	Introduction to Object Oriented Programming, Procedural verses Object	1,2	
		Oriented Programming, Principles, Benefits and applications of Object-		
1		Oriented Programming.		
	1.2	Encapsulation: Problem solving with Objects and Classes		
	1.3	Static data member and methods, constructors and their types. Types of		
		functions and keywords, Strings, Arrays		
		Inheritance		6
	2.1	Concept of Inheritance, parent class, derived class, base class, and	1,2	
2		derived class constructor		
	2.2	Types of inheritance: single, multiple, multilevel, hierarchical, hybrid		
	2.3	Aggregation and Composition		
		Polymorphism		6
3	3.1	Static Polymorphism: Method overloading and Constructor overloading	1,2	
5	3.2	Dynamic Polymorphism: Method overriding		
	3.3	Data conversion		
4		Abstraction		2
4	4.1	Abstraction: abstract class	1,2	
		Exception Handling		6
5	5.1	try, throw, and catch exceptions	1,2	
	5.2	Function exception declaration]	
	Self	File Handling,	1,2	5*
6	Study	\$STL, \$pointers, \$virtual functions		
		@Multithreading, @Packages, @interface		
		Total (*Not inc	luded)	28+

\$ only for C++

@ only for Java

****** Language used: C++ for Etrx and Extc Branch

** Language used: C++ / Java for IT and CE Branch

Sardar Patel Institute of Technology (Autonomous Institute Affiliated to University of Mumbai)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Laboratory Component

Sr. No.	Title of the Experiment
1	Program on Encapsulation: Write a program to demonstrate classes and objects
2	Program on Encapsulation: Write a program to demonstrate constructor
3	Program on Polymorphism: Implement a Program to demonstrate method overloading,
4	Program on Polymorphism: Implement a Program to demonstrate constructor overloading
5	Program on Polymorphism: Implement a Program to demonstrate method overriding
6	Program on Inheritance: Implement a Program to demonstrate single, multilevel Inheritance
7	Program on Inheritance: Implement a Program to demonstrate multiple Inheritance
8	Program on Abstraction: Implement a Program to demonstrate Abstraction using abstract class
9	Program on Abstraction: Implement a Program to demonstrate multithreading/ STL
10	Program to demonstrate File Handling

Textbooks

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Object Oriented Programming with C++	Sixth	E Balagurusamy	Tata McGraw Hill	2017
2	Oriented Programming in Turbo C++	Fourth	Robert Lafore	Galgotia	2001
3	Java - The Complete Reference	Tenth	Herbert Schildt	Tata McGraw- Hill	2017
4	Java Programming From the Ground Up	First	Ralph Bravaco, Shai Simoson	Tata McGraw- Hill	2009

Sr. No.	Title	Edition	Authors	Publisher	Year
1	The Compete Reference C++	Fourth	Herbert Schlitz	Tata McGraw Hill	2017
2	An introduction to Programming and Object Oriented Design using Java	Third	Jaime Nino, Frederick A. Hosch	Wiley Student Edition	2010

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					C	Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total	
	Digital Systems and Microprocessor	3	0	2	5	10	3	0	1	4	
(PC)		Examination Scheme									
		Compo	onent	IS	E	M	SE	ESE Total			
EC101		Theory 75		5	75		150		300		
		Labora	atory	50				50		100	

Pre-requis	ite Course Codes, if any.								
Course Ob	jective: To prepare students to perform the analysis and design of various digital electronic								
circuits and	circuits and introduce them to the concept of microprocessors								
Course Outcomes (CO): At the End of the course students will be able to									
EC101.1	Explain various logic gates, SOP, POS forms and their minimization with k- map for given combinational circuits.								
EC101.2	Construct combinational circuits using given MSI devices.								
EC101.3	Apply the knowledge of flip-flops and MSI to design sequential circuits								
EC101.4	Compare the logic families based on their characteristics								
EC101.5	Comprehend the architectural features of 8085 with basic assembly language programming								

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC101.1	3	3	3		3							
EC101.2	3	3	3		3							
EC101.3	3	3	3		3							
EC101.4	3	2	2		3							
EC101.5	3	2	2		3							

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC101.1	2	2	3	3	3	2	2
EC101.2	2	2	3	3	3	2	2
EC101.3	2	2	3	3	3	2	2
EC101.4	2	3	3	3	3	3	2
EC101.5	3	3	3	3	3	3	3

BLOOM'S Levels Targeted (Pl. Tick appropriate)

RememberUnderstandApplyAnalyze	Evaluate	Create	
--------------------------------	----------	--------	--

SPIT/Syllabus/2021-25/EXTC/pg. 41

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Combinational Circuits		11
	1.1	Logic Gates: Basic gates, Universal gates, Sum of products and products of sum, minimization with Karnaugh Map (up to four variables), Quine McCluskey method and realization.	1,4	
	1.2	Combinational Circuits using basic gates as well as MSI devices: Half adder, Full adder, Half Subtractor, Full Subtractor, Multiplexer, Demultiplexer, Decoder, Comparator	1,4	
2	Title	Sequential Circuits		
	2.1	Sequential Logic: Latches and Flip-Flops. Conversions of Flip-Flops.	1,4	11
	2.2	Counters: Asynchronous Counters, Synchronous Counters, Up Down Counters, Mod Counters, Ring and Twisted Ring Counters, Shift Registers, Universal Shift Register	1,4	
	2.3	MSI counters (IC 7490, IC 74160, IC 74163, IC 74169), MSI Shift registers (IC 74194) and their applications	2,5	
3	Title	Clocked Synchronous Machines		
	3.1	Mealy and Moore Machines, clocked synchronous state machine analysis, State reduction techniques.	2,5	05
4	Title	Logic Families		05
	4.1	Types of logic families (TTL and CMOS), characteristic parameters (propagation delays, power dissipation, Noise Margin, Fan-out, and Fan-in), transfer characteristics of TTL NAND.	1,4	
5	Title	Introduction to Microprocessors		10
	5.1	Evolution of computers and Microprocessors	3	
	5.2	Essential components of a conventional Central Processing Unit (CPU)	3	
	5.3	Architecture of 8-bit microprocessor 8085	3	
	5.4	Basic instruction set with its addressing modes and concepts of Instruction cycle, Machine cycle and T states. Elementary programming in assembly language.	3	
	5.5	Elements of I/O data transfer with the concept of interrupts	3	1
6	Self Study	Concepts of PROM, PAL and PLA. Timing Considerations and Meta-stability in Flip-Flops. Clocked synchronous state machine design. Interfacing CMOS to TTL and TTL to CMOS. Concepts of peripherals and memory with its interfacing with		5*
	<u> </u>	8085 microprocessors Total (*Not inc	luded)	42

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	To implement the combinational logic for given function using basic gates/MSI ICs.
	a. To study and verify the truth table of logic gates
	b. To study the universal NAND and NOR gate
	c. To study the working of half adder, full adder, half subtractor, Full subtractor
	along with truth table
2	To implement TTL and CMOS logic family
	a. To study TTL NAND gate (BJT implementation).
	b. To study CMOS NAND gate
	c. To study interfacing of the TTL /CMOS
3	To implement 4-bit, 5-bit and 8-bit comparator using given MSI
4	To design implement gate level multiplexers and MSI multiplexers
5	To design and implement gate level and MSI circuits of flip-flops
6	To design counters
	a. To design a MOD4 synchronous up/down counter
	b. To study IC 7490 – Asynchronous Decade Counter
7	To synchronous counters, synchronous counters and shift register using given MSI.
	a. To study IC 74160 as Synchronous Decade Counter and Mod 6 counter
	b. To study IC 74163 as Synchronous MOD 16 Counter and Mod 10 counter
	c. To verify the truth table of IC 74194 as Universal Shift Register and implement Ring
	and Twisted Ring Counter.
8	To perform basic arithmetic operations through assembly language program in 8085
9	To simulate COPY and PASTE operation through 8085 assembly programs
10	To write a program to add N elements stored in an array of 8 bit numbers (8085)

Textbooks

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Modern Digital Electronics	Forth	R. P. Jain	Tata McGraw Hill	2009
2	Digital Design Principles And Practices	Third	John F. Wakerly	Pearson Education	2001
3	Microprocessor Architecture, Programming, and Applications with the 8085	Sixth	Ramesh S. Gaonkar	Penram International	2013

Sr. No.	Title	Edition	Authors	Publisher	Year
4	Digital Design	Forth	Morris Mano	Pearson	2008
				Education	
5	Fundamentals of digital	Second	Stephen Brown and	McGraw Hill	2006
	logic design with VHDL		ZvonkoVranesic		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name]	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total	
	Communication Skills	1	0	2	2	5	1	0	1	2	
SBC		Examination Scheme									
		ComponentISEMSEES				SE	Total				
AS107		Theory					50**			50	
		Laboratory		1	150*					150	

** MSE will be evaluated based on written test based on module 1 and 2.

** ISE will be evaluated based on marks scored in practical, out of 150.

Pre-requis	site Course Codes, if any.						
Course Objective: To apply the principles of communication in personal and professional environment.							
Course Outcomes (CO): At the end of the course students will be able to							
AS107.1	Apply the principles of business writing for professional documents.						
AS107.2	Develop advance vocabulary and grammar for spoken and written communication.						
AS107.3	Design the draft a formal speech.						
AS107.4	Analyze received information by using active listening and reading skills.						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AS107.1										2		
AS107.2										2		
AS107.3										2		
AS107.4										2		

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
AS107.1							
AS107.2							
AS107.3							
AS107.4							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply T WITHON AND AND A	Analyze	Evaluate	Create				
SPIT/Syllabus/2021-25/EXTC/pg. 44									

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Theory Component

Module No.	Unit No.	Topics	Ref.	L Hrs.	P Hrs
1	Title	Vocabulary Building & Grammar			
	1.1	Concept of word formation, the root words from	7,1	2	4
		foreign languages and their use in English			
	1.2	Common errors in writing, confused pair of words,	6, 2		
		redundancies, clichés			
2	Title	Writing Skills		7	14
	2.1	Principles of Business Writing: 7Cs of communication,	4		
		sentence structures, Organizing paragraph in direct and			
		indirect style; Summarization			
	2.2	Practices in Writing: E-mail Etiquettes, e-mail for	3		
		business purposes			
	2.3	Critical Reading: understanding the concept of critical	5		
		reading and applying to analyze a given text.			
3	Title	Oral Skills		5	10
	3.1	Listening Comprehension(audio): Pronunciation,	5		
		intonation, Stress and Rhythm			
	3.2	Speaking Practices:	3		
		1. Common everyday situation: Conversation and			
		dialogues (group activity, ice-breaking session)			
		2. Public Speaking: Extempore, formal speech			
4	Self-	1. Basic Rules of Grammar			6*
	Study	2. GRE Vocabulary			
		3. Reading a book (fiction/non-fiction) and			
		preparing a review on it			
		Total (*Not	included)	42	nrs

List of activities (Graded, Non-graded)

Sr. No.	Title of the assignments	Marks
1	Skit based on a given situation	-
2	ISE 1 – Summary Writing	10
3	ISE 2 – Extempore	10
4	ISE 3 – Grammar	20
5	ISE 4 – Vocabulary	20
6	Reviewing a book (fiction/ non-fiction)	10
7	ISE 5 – Email Writing (Inquiry)	20
8	ISE 6 – Email Writing (Complaint)	20
9	ISE 6 – Speech	20
10	ISE 7 – Critical Reading	20
	Total	150

SPIT/Syllabus/2021-25/EXTC/pg. 45

Sardar Patel Institute of Technology (Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Text Books:

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Communication Skills	2013	Shirley Mathews	Technical Publication,	2013
				Pune	
2	English Vocabulary in Use	1999	Michael McCarthy,	Cambridge University	1999
			Felicity O'Dell	Press, India	

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Oxford Practice Grammar	1999	John Eastwood	Oxford, India	1999
2	Communication Skills	2011	Meenakshi Raman, Oxford, India Sangeeta Sharma		2011
3	Communication Skills	2010	Dr. Meera Bharwani	Synergy Knowledge- ware, India	2010
4	English Grammar for Today	2005	Geoffrey Leech	Palgrave, UK	2005
5	Word Power Made Easy	1978	Norman Lewis	Anchor Books, New York	1978

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

			Semester III						
No	Туре	Code	Course	L	Т	Р	0	Ε	С
1	BSC	MA201	Linear Algebra	2	0	2	5	09	3
1	BSC*	MA202	Foundation of Mathematics-I*	2	1	0	6	09	3
2	PC	EC201	Computer Architecture & Organization	3	0	2	4	09	4
3	PC	EC202	Electronic Devices	3	0	2	4	09	4
4	PC	EC203	Network Theory	3	0	2	4	09	4
5	SBC	EC204	Electronic Instruments and Measurement Lab	0	1	2	2	05	2
6	SBC	AS201	Communication Skills	1	0	2	2	05	2
7	ABL	SVXX/ STXX	SEVA II or III /SATVA II or III	0	0	0	0	03	1
8	HSSE	HSEXX	HSS-I	2	0	0	3	05	2
			TOTAL	16	2	12	30	63	25

*Only for Lateral Entry Students

			Semester IV						
No.	Туре	Code	Course	L	Т	Р	0	Ε	С
1	BSC	MA203	Probability and Stochastic Processes	3	0	0	5	08	3
1	BSC*	MA204	Foundation of Mathematics-II	2	1	0	6	09	3
2	PC	EC205	Analog Circuits	3	0	2	6	11	4
3	PC	EC206	Microcontrollers	3	0	2	6	11	4
4	PC	EC207	Signals and Systems	3	0	2	6	11	4
5	SBC	EC208	Mini Project-I	0	0	0	4	04	2
6	ABL	SVXX/STXX	SEVA II or III /SATVA II or III	0	0	0	3	01	1
7	HSSE	HSEX2	HSS-II	2	0	0	3	05	2
8	S/M	SCX1/MNX1 SCOPE-I/Minor-I							3
	TOTAL					6	39	60	26

*Only for Lateral Entry Students

	Second Summer for HSC students								
No.	Туре	Code	Course	L	Т	Р	0	Ε	С
1	MLC	AS202	Constitution of India	1	0	0	05	06	NC

	Second Summer (For Lateral Entry Students)									
No.	No.TypeCodeCourseL					Р	0	Ε	С	
1	BSC	MA201	Linear Algebra	2	0	2	5	09	3	
1	BSC	MA203	Probability and Stochastic Processes	3	0	0	5	08	3	
2	MLC	AS202	Constitution of India	1	0	0	05	06	NC	

Bharatiya Vidya Bhavan's Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Semester-III

SPIT/Syllabus/2021-25/EXTC/pg. 48

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	,	Teaching Scheme (Hrs/week)					Credits Assigned				
Code		L	Т	Р	0	Ε	L	Т	Р	Total		
		2	0	2	5	9	2	0	1	3		
(BSC)		Examination Scheme										
× ,	Linear Algebra	Component IS		ISE		MSE	E	SE	Total			
MA 201	U	Theory			50		50		00	200		
MA201		Laboratory			50				50	100		

Pre-requis	ite Course Codes, if any.	MA101, MA102					
Course Ob	jective: To develop mathematical skills for solvin	ng engineering problems.					
Course Ou	Course Outcomes (CO): At the End of the course students will be able to:						
MA201.1	Solve a homogeneous and non-homogeneous sys	tem of linear equations using rank of amatrix.					
MA201.2	Solve system of linear equations by Numerical Methods.						
MA201.3	Solve equations in real life problems and to encode and decode messages using the concept of						
	matrices.						
MA201.4	Identify whether given structures are vector s	spaces and subspaces and construct a basis					
	for them.						
MA201.5	Show if a given matrix is diagonalizable or n	ot.					
MA201.6	Apply concepts of Eigenvalues and eigenvec	tors to calculate functions of a square matrix,					
	Google page rank vector and solve systems of differential equations using						
	diagonalization of matrices.						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MA201.1	3											
MA201.2	3											
MA201.3	3	1										
MA201.4	3											
MA201.5	3											
MA201.6	3	1										

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
MA201.1							
MA201.2							
MA201.3							
MA201.4							
MA201.5							
MA201.6							

SPIT/Syllabus/2021-25/EXTC/pg. 49

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember $$ Understand $$ Apply $$	Analyze	Evaluate	Create
------------------------------------	---------	----------	--------

Theory Component

Module No.	Unit No.	Topics	Ref	Hrs.
1	Title	Basics of matrices	3,5	03
	1.1	Revision of basic matrices and types of matrices.		01
	1.2	Row echelon form, Reduced Row Echelon form, Rank of a matrix.		02
2	Title	Linear equations & its solutions	1,2,3,5	07
	2.1	Consistency and solution of simultaneous linear homogeneous and non- homogeneous equations.		02
	2.2	Application of solving systems of equations in traffic control.		01
	2.3	Solution of system of linear algebraic equations, by (1) Gauss Elimination Method (2) Gauss Jordan method (3) Gauss Jacobi Iteration method (4) Gauss Seidel Method. (5) LU Decomposition -Crout's method		04
3	Title	Vector spaces (over field of real numbers)	1,2,5	08
	3.1	Vector space, subspace, span, linear dependence and independence of vectors, basis, dimension, orthogonal projection & gram-Schmidt process. Null space, row space, column space, Rank-Nullity theorem (only statement). Least square method.		08
4	Title	Encoding & decoding using Matrices.	4	02
-	4.1	Application of matrices to Coding and Decoding	-	02
5	Title	Eigenvalues and Eigenvectors	1,2,3,5	08
-	5.1	Eigenvalues, Eigenvectors and its properties. Cayley Hamilton theorem and its applications. Diagonalization of matrices. Derogatory and Non- derogatory matrices.	7 7-7-	04
	5.2	Application to find google page rank. Functions of a square matrix. Solving system of differential equations using diagonalization.		04
6	Self- Study	 1.2 Normal form. 2.2 Forming equations using KVL for circuits and solving them using matrices. 3.1 Singular Value Decomposition. 5.1 Additional properties with proofs of eigenvalues and eigenvectors. 	1,2,3,5	05*
		Total (*Not in	cluded)	28

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	Introduction to Scilab (getting started) and its benefits to use as a mathematics tool.
2	Basic commands of scilab and vectors & matrix operations.
3	Conditional branching and iterations using Scilab.
4	Solution of linear equations using row-echelon and inverse of a matrix.
5	Solutions of linear equations using Gauss Elimination method.
6	Solutions of linear equations using Gauss Jordan method.
7	Solutions of linear equations using Gauss-Jacobi method.
8	Solutions of linear equations using Gauss-Seidel method.
9	Solutions of linear equations using Crout's method.
10	To find Eigen values and Eigenvectors using Scilab

Textbooks

Sr. No.	Title	Edition	Authors	Publisher	Year
1.	Linear Algebra and its applications	4th	Gilbert	Cengage	2014
			Strang		
2.	Higher Engineering Mathematics	44th	Dr. B. S.	Khanna	2020
			Grewal	Publications	

Sr. No.	Title	Edition	Authors	Publisher	Year
1.	Linear Algebra and its applications	3rd	David. C. Lay	Pearson Education	2006
2.	Elementary Linear Algebra Application Version	6th	H Anton and Crorres	John Wiley & Sons	2010
3.	Advanced Engineering Mathematics	28th	H. K Das	S. Chand	2014
4.	Hill Ciphers	1st	Jonaki B Ghosh	At Right Angles	2015
5.	Advanced Engineering Mathematics	10th	Erwin Kreysizg	John Wiley & Sons	2011

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	(Category) Course Name		Teaching Scheme (Hrs/week)						Credits Assigned			
Code		L	Т	Р	0	Е	L	Т	Р	Total		
		2	1	0	6	9	2	1	0	3		
(BSC)	Foundations of	Examination Scheme										
MA202	Mathematics-I	Component			ISE		MSE	F	ESE	Total		
WIA202		Theory			75		75	1	150	300		

Pre-requis	ite Course Codes, if any							
Course Ob	Course Objective: To develop foundation of mathematical skills.							
Course Ou	terms (CO): At the End of the course students will be able to: -							
MA202.1	Differentiate a function of one variable and partially differentiate a function of more than one variable.							
MA202.2	Apply the concept of partial differentiation to find extreme values of a given function.							
MA202.3	Find nth order derivative of a given function.							
MA202.4	Expand a given function as a power series.							
MA202.5	Perform operations on matrices and find inverses and determinants of them.							
MA202.6	Perform vector operations and compute dot products and cross products between them.							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MA202.1	2											
MA202.2	2											
MA202.3	2											
MA202.4	1											
MA202.5	1											
MA202.6	1											

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
MA202.1							
MA202.2							
MA202.3							
MA202.4							
MA202.5							
MA202.6							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember $$ Understand $$ Apply	Analyze	Evaluate	Create	
---------------------------------	---------	----------	--------	--

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Theory Component

Module No.	Unit No.	Topics	Ref	Hrs.
1	Title	Differential Calculus	1,2	18
	1.1	Partial fractions. Derivatives of standard functions, product and quotient rule for differentiation.	_	04
	1.2	Partial derivatives of first and higher order, composite differentiation		03
	1.3	Application of partial derivatives: Local Maxima and Minima of functions of two variables.		02
·	1.4	Successive Differentiation: Proofs of nth derivatives of standard functions. Use of partial fractions to calculate nth derivatives of given functions. Leibnitz theorem for nth derivative of product of		05
	1.5	two functions. Infinite series: expansion of functions in powers of x using maclaurin series. Taylor's series.		04
2	Title	Matrices	1,2	07
	2.1	Addition and scalar multiplication of matrices. Matrix multiplication, types of matrices.		03
	2.2	Elementary row transformations, finding inverses using matrices, determinants and its properties		04
3	Title	Vectors	1,2	03
	3.1	Vector definition, addition, scalar multiplication, dot product of two vectors, angle between two vectors, cross product.		03
		·	Total	28

Textbooks

Sr. No	Title	Edition	Authors	Publisher	Year
1	Higher Engineering	44th	Dr. B. S.	Khanna	2020
	Mathematics		Grewal	Publications	

Sr. No	Title	Edition	Authors	Publisher	Year
1	Advanced Engineering	10th	Erwin Kreysizg	John Wiley &	2011
	Mathematics			Sons	
2	Advanced Engineering	28th	H. K. Dass	S. Chand	2014
	Mathematics			Publications	

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	T	Teaching Scheme (Hrs/week)				Credits Assigned			
Code		L	Т	P	0	Ε	L	Т	P	Total
		3	0	2	4	9	3	0	1	4
(PC)	Computer Examination			n Sch	Scheme					
`` ,	Architecture &	& Component ISE	ISE	I	MSE	E	SE	Total		
EC201	Organization	The	eory		75		75	1	50	300
		Labo	ratory		50				50	100

Pre-requis	ite Course Codes, if any.	EC101, Any Programming Language					
Course Ob	Course Objective: Imparting concepts of each component of computer architecture thoroughly with						
practical as	spects including memory systems	and I/O communications with interfacing					
Course Ou	itcomes (CO): At the End of the	course students will be able to					
EC201.1	Describe basic computer structu	are and compare computer architecture models					
EC201.2	Design algorithms to solve ALU	U operations and memory mapping techniques					
EC201.3	Comprehend processor archite analysis	ecture with various design methods of CPU with comparative					
EC201.4	2	design and analysis of mapping techniques for cache and virtual					
EC201.5	Analyze different parallel proce	essing and pipelining concepts with pipelining hazards					
EC201.6	Comprehend different types of methods and arbitration techniq	I/O buses, compare and contrast different types of data transfer uses					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC201.1	3											
EC201.2		2		2								
EC201.3	2			2								
EC201.4		2		2								
EC201.5	2											
EC201.6	2											

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC201.1							
EC201.2							
EC201.3							
EC201.4							
EC201.5							
EC201.6							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember U	Understand	Apply	Analyze $$	Evaluate	Create	
------------	------------	-------	------------	----------	--------	--

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Overview of Computer Architecture and Organization		
I	1.1	Introduction of Computer Organization and Architecture, Basic organization	1	5
		of computer and block level description of the functional units, Evolution of x86 Computers, Von Neumann model, Harvard Model, Embedded system		
	1.2	Performance Issues: Designing for performance, Amdahl's Law, Multi- core, GPGPU	1	
2	Title	Data Representation and Arithmetic Algorithms		6
	2.1	Number representation: Floating-point representation, Floating point	2,3	
		arithmetic, IEEE 754 floating point number representation		
	2.2	Integer Data computation: Addition, Subtraction. Multiplication: Signed multiplication, Booth's algorithm.	2,3	
	2.3	Division of integers: Restoring and non-restoring division	2,3	
3	Title	Processor Organization and Control Unit		9
	3.1	CPU Architecture, Register Organization Instruction formats, basic instruction cycle. Instruction interpretation and sequencing, Case Study of 8086 Architecture and Register Organization.	1,2,4	
	3.2	Control Unit: Soft wired (Micro-programmed) and hardwired control unit design methods. Microinstruction sequencing and execution. Micro	2,4	
	3.3	operations RISC and CISC: Introduction to RISC and CISC architectures and design	2,4	
	5.5	issues.	2,4	
4	Title	Memory Organization		11
	4.1	Introduction to Memory and Memory parameters. Classifications of primary and secondary memories. Types of RAMS and ROM, Allocation policies, Memory hierarchy and characteristics.	1,2	
	4.2	Cache memory: Concept, architecture (L1, L2, L3), mapping techniques. Cache Coherency, Interleaved and Associative memory.	1,2	
	4.3	Virtual Memory: Concept, Segmentation and Paging, Page replacement policies	1,2,4	
5	Title	I/O Organization and Introduction to Parallel Processing		11
	5.1	Buses: Types of Buses, Bus Arbitration, BUS standards	2	
	5.2	I/O Interface, I/O channels, I/O modules and IO processor, Types of data transfer techniques: Programmed I/O, Interrupt driven I/O and DMA.	1,2	
	5,3	Introduction to parallel processing concepts, Flynn's classifications, pipeline processing, Pipeline stages, Pipeline Hazards	1,2,4	
6	Self Study	Comparative Study of microprocessors and micro architectures with respect to their important features.8086 instructions and assembler directives with addressing modes with memory interfacing techniques. Cache memory protocol and virtual memory concepts in Pentium processors. Vector and Array Processors with VLIW architecture		4*
		Total (*Not inc	luded)	42

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Laboratory Component, if any: (Minimum 10 Laboratory experiments are expected)

Sr.	Title of the Experiment
No.	
1	Implementation of various Arithmetic Operations through Assembly Language Programming for
	microprocessor 8086 (MASM)
2	Simulate the operation of COPY and PASTE in 8086 (MASM)
3	Implement various String Operations in 8086 through the utilities provided by DOS interrupts
	(MASM)
4	Generation of alphabetic arrangement of a given string in 8086 (MASM)
5	Design password application (generation and detection) in 8086 (MASM)
6	Design of Carry Look Ahead Adder
7	Implementation and programming of Booth's Multiplication Algorithm
8	Implementation and programming of Division Algorithm (Non-Restoring and Restoring)
9	Implementation of Mapping techniques of Cache memory
10	Implementation of Page Replacement Policies

Textbooks

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Computer Organization	Fifth	Carl Hamacher, Zvonko Vranesic and Safwat Zaky	Tata McGraw-Hill	2002
2	Computer Organization and Architecture: Designing for Performance	Eighth	William Stallings	Pearson	2010
3	Computer System Architecture	Third	M, Morris Mano	Pearson	1993 Reprinted 2007
4	Computer Architecture & Organization	Third	John P. Hayes	McGraw- Hill	1998

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Structured Computer	Sixth	Andrew S. Tanenbaum	Pearson	2013
	Organization				
2	Microprocessor and	Third	Douglas V Hall	Tata-	2012
	Interfacing: Programming			McGraw	
	& Hardware			Hill	
3	Computer Architecture and	Second	B. Govindarajulu	McGraw	Paperback
	Organization: Design			Hill	-2017
	Principles and Applications				

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Teach	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total	
		3	0	2	4	9	3	0	1	4	
(PC)]	Exami	inatior	n Schen	ne			
	Electronic Devices	es Component			ISE		MSE	E	SE	Total	
EC202		Theory			75		75		50	300	
		Labor		50				50	100		

Pre-requi	isite Course Codes, if any. ES13 (Basic Electrical Technology)							
Course O	bjective: To teach fundamentals of electronic devices							
Course O	utcomes (CO): At the End of the course students will be able to							
EC202.1	202.1 Discuss device physics and characteristics of semiconductor devices.							
EC202.2	Discuss working principle and characteristics of BJT							
EC202.3	Discuss working principle and characteristics of FET							
EC202.4	Analyze single stage BJT and FET amplifier circuits							
EC202.5	Discuss semiconductor device fabrication process							
EC202.6	Discuss construction, working principle and characteristics of advance semiconductor devices							
	HEMT, MESFET and HBT							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC202.1	2	1			2							
EC202.2	2	1			2							
EC202.3	2	1			2							
EC202.4	2	3			2							
EC202.5	2	1			2							
EC202.6	2	1			2							3

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

CO	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC202.1							
EC202.2							
EC202.3							
EC202.4							
EC202.5							
EC202.6							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember $$	Understand $$	Apply√	Analyze√	Evaluate	Create

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Diode	1	
	1.1	Review of PN Junction Analysis		6
	1.2	Applications of Diode: Simple diode model, Limiter circuits,		
		Rectifiers, Clamper Circuits, Peak Detector and Voltage Doubler		
	1.3	Zener diode and Schottky diode		
2	Title	Bipolar Devices	1,2	11
	2.1	BJT: The bipolar transistor action, minority carrier distribution, low-		
		frequency common-base current gain, non-ideal effects, Ebers-Moll Model and Hybrid-Pi Model		
	2.2	Voltage amplifier, current amplifier, trans-conductance amplifier and		
		trans-resistance amplifier.		
		Biasing schemes for BJT amplifiers, bias stability, various		
		configurations (such as CE, CB, CC) and their features, small signal		
		analysis, low frequency models, estimation of voltage gain, input		
		resistance, output resistance etc., design procedure for specifications,		
		frequency analysis of multistage amplifiers.		
3	Title	Field Effect Devices: JFET	1,2	11
	3.1	Construction, operation, and device characteristics		
	3.2	Biasing schemes for FET amplifiers, bias stability, various		
		configurations (such as CS, CG, CD) and their features, small signal		
		analysis, low frequency models, estimation of voltage gain, input		
		resistance, output resistance etc., design procedure for specifications,		
		frequency analysis of multistage amplifiers.		10
4	Title	Field Effect Devices: MOSFET	2	10
	4.1	Two terminal MOS structure, MOSFET construction,		
		Band diagrams under equilibrium and external bias, Threshold		
	1.0	Voltage		
	4.2	V-I and CV characteristics, Channel length modulation,		
-	T1 (1	Short Channel effects, MOSFET Model	D 0	
5	Title	Integrated circuit fabrication process	R-3	4
	5.1	Oxidation, diffusion, ion implantation, photolithography		
	5.2	Etching, chemical vapor deposition, sputtering, twin-tub CMOS		
	G 16	process.		4 . 1.
6	Self- Study	Device structure, principle of operation and V-I characteristics of MODFET (i.e. HEMT), MESFET and HBT		4*
		Total (*Not incl	uded)	42

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment										
1	To plot forward and reverse characteristics of semiconductor diode										
2	Implement clipper and clamper circuits using diode										
3	Implement half-wave and full-wave rectifier circuits										
4	To plot characteristics of Zener diode and observe Zener as voltage regulator										
5	Finding characteristics of BJT configurations (CE/CB/CC) using simulation and hardware										
	implementation.										
6	Obtain the operating point for different biasing circuits										
7	Design and implement single stage BJT based amplifier for the required specifications.										
8	Obtain frequency response of single stage BJT based amplifier										
9	Finding characteristics of FET (CG/CS/CD) using Simulation and Hardware Implementation										
10	Design and implement single stage FET based amplifier for the required specifications.										
11	Obtain frequency response of single stage FET based amplifier										
12	Obtain Input-Output Characteristics of MOSFET using circuit simulator										

Textbooks:

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Electronic Devices and Circuits	Eleventh	RL Boylestad and Lous Nashelsky	Prentice Hall	2013
2	Electronic Circuit Analysis and Design	Third	Donald A. Neamen	Tata McGraw Hill	2006

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Semiconductor Physics and	Fourth	Donald A. Neamen and	Tata McGraw	2017
	Devices		Dhrubes Biswas	Hill	
2	CMOS Digital Integrated	Fourth	Sung-Mo Kang, Yusuf	Tata McGraw	2019
	Circuits		Leblebici and Chulwoo	Hill	
			Kim		
R-3	Semiconductor Devices:	Third	S. M. Sze and Ming-	Wiley	2015
	Physics and Technology		Kwei Lee		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Teac	eaching Scheme (Hrs/week) Credits Assign							ned		
Code		L	Т	Р	0	Ε	L	Т	Р	Total		
(PC)		3	0	2	4	09	3	0	1	4		
(10)		Examination Scheme										
	Network Theory	Com	Component		ISE		MSE		E	Total		
EC203		Theory			75		75	150		300		
		Laboratory			50			50		100		

Pre-requi	site Course Codes, if any. ET101									
Course O	Course Objective: To teach fundamental theorems for circuit analysis.									
Course O	utcomes (CO): At the End of the course students will be able to									
EC203.1	nalyze the given circuits using theorems and transformation techniques									
EC203.2	Analyze the given circuit using Graph Theory									
EC203.3	Analyze the given RL, RC and RLC circuits in time domain									
EC203.4	Analyze the given RL, RC and RLC circuits in frequency domain									
EC203.5	Predict the circuits using Foster and Cauer realization methods									
EC203.6	Explain the concept of two port network, relation between the parameters									
	and their interconnection									

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC203.1		3										
EC203.2		3										
EC203.3		3										
EC203.4		3										
EC203.5	3											
EC203.6	3											

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC203.1					3	2	
EC203.2					3	2	
EC203.3					3	2	
EC203.4					3	2	
EC203.5					3	2	
EC203.6					3	2	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

RememberUnderstandApplyAnalyze $$ EvaluateCreate
--

SPIT/Syllabus/2021-25/EXTC/pg. 60

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Analysis of DC circuits and coupled circuits:		12
-	1.1	Analysis of circuits with and without controlled sources using generalized loop, node matrix, Superposition, Thevenin, Norton, Maximum Power transfer.	3	
	1.2	Self and mutual inductances, coefficient of coupling, Dot convention, equivalent circuit, solution using loop analysis	1	
2	Title	Graph Theory:		4
	2.1	Concept of loop, tree, co-tree, incidence matrix, cut set matrix and tie set matrix	4	
	2.2	Duality principle and its application	4	
3	Title	Transient Analysis:		12
	3.1	Time domain analysis of R-L and R-C circuits: Forced and natural response, time constant, initial and final values	1,3	
	3.2	Time domain analysis of R-L-C circuits: Forced and natural response, effect of damping Solution using second order equation for standard input signals: Transient and steady state time response	1,3	
	3.3	Frequency domain analysis of RLC circuits: S-domain representation, applications of Laplace Transform insolving electrical networks	1,3	
4	Title	Network Synthesis:		6
	4.1	Network Function: driving point and transfer function, Poles and Zeros, calculation of residues by analytical and graphical method, frequency response	2	
	4.2	Positive real functions: Concept of positive real function, testing for Hurwitz polynomials, testing for necessary and sufficient conditions for positive real functions	2	
-	4.3	Synthesis of RC, RL, LC circuits: Concepts of synthesis of RC, RL, LC driving point functions.	2	
	Title	Two Port Network:		8
	5.1	Parameters: Open Circuit, Short Circuit, Transmission and Hybrid parameters, relationships among parameters, reciprocity and symmetry conditions	1	
	5.2	Series/parallel connection: T and Pi representations, interconnection of Two-Port networks	1	
6	Self- Study	Millman's theorem, Telogen's theorem, Nonplanar graphs, Solution using first order equation for standard input signals, Transient and steady state time response, solution using universal formula, Terminated Two-Port networks		4*
		Total (*Not inc	luded)	42

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Laboratory Component

Sr. No.	Title of the Experiment						
1	To measure and calculate currents and voltages for a given resistive circuit and verify KCL						
	and KVL.						
2	To verify superposition theorem experimentally for a given resistive circuit consisting of						
	two independent sources.						
3	To verify Thevenin's theorem experimentally for a given circuit.						
4	To verify maximum power transfer theorem experimentally for a given circuit.						
5	To verify reciprocity theorem experimentally for a given circuit.						
6	To measure and calculate RC time constant for a given RC circuit.						
7	To measure and calculate RC time constant for a given RL circuit.						
8	To measure and analyze (settling time, overshoot, undershoot, etc.) step response of for a						
	given series RLC circuit for following cases: (1) $\zeta = 1$ (critically damped system), (2) ζ						
	>1(over damped system), (3) ζ <1 (under damped system). Choose appropriate values of						
	R, L, and C to obtain each of above cases one at a time.						
9	To measure and calculate Z-parameters for a given two-port system.						
10	To measure and calculate Y-parameters for a given two-port system.						
11	To measure and calculate h-parameters for a given two-port system.						
12	To measure and calculate ABCD-parameters for a given two-port system.						

Design based Problems (DP)/Open Ended Problem:

- 1. Write a 'c' program to obtain RC time constant from a given step response of RC circuit.
- 2. Write a 'c' program to plot frequency response of RC circuit for different values of R and C.
- 3. Write a 'c' program to obtain 3-dB bandwidth and RC time constant from a given frequency response of RC circuit.
- 4. Write a 'c' program to plot impedance of a given series RLC circuit as a function of frequency. Also obtain minimum value of impedance and series resonance frequency using 'c' program.
- 5. Write a 'c' program to obtain following parameters from step response of series RLC circuit for different values of R, L and C.

a. Propagation delay

- b. Overshoot
- c. Undershoot
- d. Damping factor
- e. Natural frequency
- f. Settling time

Sardar Patel Institute of Technology (Autonomous Institute Affiliated to University of Mumbai)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Circuit Theory	Seventh	A.	Dhanpat Rai and Co.,	2018
		Revised Edition	Chakrabarti	New Delhi	
2	Network Analysis	Third Edition	M E Van	Prentice-Hall of	2018
			Valkenburg	India Pvt. Ltd.	

Sr. No.	Title	Edition	Authors	Publisher	Year
3	Network Analysis and	Second Edition	Franklin F	Wiley	2006
	Synthesis		Kuo		
4	Networks and Systems	Second Edition	D. Roy	New Age	2009
			Choudhury	International Pvt.	
				Ltd, Wiley	

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Teacl	hing Sc	heme (Hrs/w	eek)	0	Credits Assigned		
Code	Course realite	L	Т	Р	0	Ε	L	Т	Р	Total
		0	1	2	2	5	0	1	1	2
(SBC)	Electronics	Examination So					cheme			
	Instruments and	Comp	onent	IS	ISE		MSE	ESE 		Total
EC204	Measurement Lab	The	ory	-						
		Labor	atory	1	150 -		- 50		50	200

Pre-requis	ite Course Codes, if any. ET101					
Course Ob	pjective: To teach principle of working and application of various measuring instruments used in					
Electronics	Laboratories					
Course Ou	itcomes (CO): At the End of the course students will be able to					
EC204.1	Describe the working of measuring instruments available in the lab					
EC204.2	Find out and verify the manufacturers, make, models, market cost and specifications of the given					
	instrument					
EC204.3	Select the suitable test and measuring instrument for the given circuit					
EC204.4	Operate the instrument for observing and recording the given signal in time domain and frequency					
	domain					
EC204.5	Recognize the importance of calibration of instruments					
EC204.6	Design signal conditioning circuit for measurement of various parameters					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC204.1	2	1			3							
EC204.2	2	1			3							2
EC204.3	2	2			3							
EC204.4	2	1			3							
EC204.5	2	1			3							
EC204.6	2	1	3		3							

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC204.1							
EC204.2							
EC204.3							
EC204.4							
EC204.5							
EC204.6							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Sardar Patel Institute of Technology (Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Sr. No.	Title of the Experiment						
1	Measurement of static parameters using analog ammeter, voltmeter, and galvanometer.						
2	Exploring controls of CRO/DSO and measurement of various parameters in the given circuit using						
	CRO/DSO						
3	Study of working principle and exploring controls of function generator, signal generator and						
	arbitrary function generator						
4	Study of working principle of tachometer, lux meter, clamp meter and thermal camera and						
	demonstrate its use.						
5	Study of working principle of multimeter, wattmeter & energy meter and demonstrate its use.						
6	Designing DC bridge for Resistance Measurement (Quarter, Half and Full bridge)						
7	Designing signal Conditioning circuit for Strain Measurement						
8	Designing AC bridge Circuit for capacitance measurement and verification using Q-meter						
9	Designing signal Conditioning circuit for Temperature Measurement						
10	Designing signal Conditioning circuit for Distance Measurement						

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned				
Code		L	Т	Р	0	Ε	L	Т	Р	Total	
		1	0	2	2	5	1	0	1	2	
SBC	Professional	Examination Scheme									
	Communication	Comp	onent		ISE N		MSE ES		SE	Total	
AS201	Skills	Theory									
		Labor	ratory		200					200	

Pre-requisite Course Codes, if any.									
	bjective: To demonstrate the desired spoken and written communication skills required in								
early profe	early professional life, with focus on job placements.								
Course O	Course Outcomes (CO): At the End of the course students will be able to								
AS201.1	Demonstrate the spoken and written skills for job placements.								
AS201.2	Draft professional documents.								
AS201.3	Design written communication for social media.								

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AS201.1										2		
AS201.2										2		
AS201.3										2		

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
AS201.1							
AS201.2							
AS201.3							

BLOOM'S Levels Targeted (Pl. appropriate)

Remember	Understand	Apply $$	Analyze $$	Evaluate	Create

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Theory Component

Module No.	Unit No.	Topics	Ref.	L Hrs.	P Hrs
1.	Title	Placement Skills		6	12
	1.1	Resume Writing & Cover Letter			
	1.2	Group Discussion			
	1.3	Case Studies/Pitching a startup			
	1.4	Team Building Skills/Work			
	1.5	Interview Skills			
2	Title	Corporate Communication		6	12
	2.1	Presentation Skills			
	2.2	Meeting: Notice, Agenda, Minutes			
	2.3	Proposal Writing			
	2.4	Report Writing: Informative, Analytical report			
3	Title	Research Writing		2	4
	3.1	Sourcing information through digital media			
	3.2	Written communication using social media: Blog			
4	Self	Research Paper, News Analysis			6*
	Study				
		Total(*Not inclu-	ded)	42 I	nrs

List of ISEs

Sr. No.	Title of the Experiment	Marks
1	Resume	20
2	Cover Letter	20
3	GD	40
4	Mock Interview	20
5	Presentation	20
6	Blog Writing	20
7	Team Building Activity	
8	Minutes of the Meeting/Notice & Agenda	20
9	Proposal Writing	20
10	Report Writing	20
	Total	200

Textbooks

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Interpersonal Skills at Work	2002	John Hayes	McGraw Hill Education	2002
2	Campus Placement: A Comprehensive Guide	2016	Ankur Malhotra	McGraw Hill Education	2016

Sardar Patel Institute of Technology (Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Sr. No.	Title	Edition	Authors	Publisher	Year
1	If I Understood You, Would I Have This Look on My Face? My Adventures in the Art and Science of Relating and Communicating	2017	Alan Alda	Random House	2017
2	Handbook for Writing Proposals	2010	Robert J. Hamper, Sue Baugh	McGraw Hill Education	2010
3	Effective Communication Skills for Scientific and Technical Professionals	2000	Harry Chambers	Paperback Basic Books	2000
4	The Art of Writing Together	2008	William Issac	Crown Business	2008
5	Communication Skills	2011	Meenakshi Raman, Sangeeta Sharma	Oxford, India	2011

Bharatiya Vidya Bhavan's Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Semester-IV

SPIT/Syllabus/2021-25/EXTC/pg. 69

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Teach	Teaching Scheme (Hrs/week)					Credits Assigned			
(Category) Code	Course Maine	L	Т	Р	0	Ε	L	Т	Р	Total	
	Probability and Stochastic Processes	3	0	0	5	8	3	0	0	3	
(BSC)		Examination Scheme									
``		Component]	ISE		MSE	F	ESE	Total	
MA203		The	eory		75		75		150	300	
		Laboratory			-				-	-	

Pre-requisite Course Codes, if any. MA101, MA102

Course Objective: To provide the fundamentals and advanced concepts of probability theory and random process to support core courses in electronic and Electronic and communication engineering. The required mathematical foundations will be studied at a fairly rigorous level and the applications of the probability theory and random processes to engineering problems will be emphasized.

	itcomes (CO): At the End of the course students will be able to
Course Ou	
MA203.1	Apply concepts of mathematics to set operations and probability theory
MA203.2	Apply concepts of probability theory to single random variables
MA203.3	Apply theorems to multiple random variables and investigate significance of Central Limit
	Theorem.
MA203.4	Determine solutions to various characteristics of random variables/distributions/processes
MA203.5	Investigate characteristics of random processes
MA203.6	To interpret use of probability distributions in real world and illustrate Markov Theory application
	to Queuing theory.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MA203.1	3	3			1				1	3		1
MA203.2	3	3			1				1	3		1
MA203.3	3	3			1				1	3		1
MA203.4	3	3			1				1	3		1
MA203.5	3	3			1				1	3		1
MA203.6	3	-							1	3		1

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
MA203.1	2	2					
MA203.2	2	2					
MA203.3	2	2					
MA203.4	2	2					
MA203.5	2	2					
MA203.6	2	2					

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember $$ Understand $$	Apply√	Analyze√	Evaluate	Create	
---	--------	----------	----------	--------	--

Theory Component

Module No.	Unit Topics		Ref.	Hrs.
1	Title	Probability	1,2	08
	1.1	Sets and set operations; Probability space; Conditional probability and Bayes theorem		
2	Title	Single Random Variable	1,2	08
	2.1	Discrete random variables, probability mass function, probability distribution function, example random variables and distributions		
	2.2	Continuous random variables, probability density function, probability distribution function, example distributions		
3	Title	Multiple Random Variables	1,2	10
	3.1	Joint distributions, functions of one and two random variables, moments of random variables; Conditional distribution		
	3.2	densities and moments; Characteristic functions of a random variable		
	3.3	Markov, Chebyshev and Chernoff bounds		
4	Title	Sequence of Random Variables	1,2	06
	4.1	Random sequences and modes of convergence (everywhere, almost everywhere, probability, distribution and mean square)		
	4.2	Limit theorems; Strong and weak laws of large numbers, central limit theorem.		
5	Title	Random Process	1,2	10
	5.1	Random process. Stationary processes. Mean and covariance functions. Ergodicity.		
	5.2	Transmission of random process through LTI. Power spectral density.		
6	Self- Study	Application of different probability distributions (to any one field of interest but not limited to) 1.Wireless Communication	1,2	06*
		 2.Queuing theory 3. Networking 4. Digital Signal Processing. 5.VLSI 		
			Total	42

*Not included in the total

Sardar Patel Institute of Technology (Autonomous Institute Affiliated to University of Mumbai)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Textbooks

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Probability, Random Variables and Stochastic Processes	4 th	A. Papoulis and S. Unnikrishnan Pillai	McGraw Hill	2002
2	Probability and Random Processes with Applications to Signal Processing	3 rd	H. Stark and J. Woods	Pearson education	2002

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Probability And Random	3 rd	Alberto Leon	Pearson	2008
	Processes for Electrical Engineering		Garcia	education	
2	Probability, Statistics and Random Processes	3 rd	T Veerarajan	McGraw Hill	2008

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	r	Teaching Scheme (Hrs/week)						Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total		
		2	1	0	6	9	2	1	0	3		
(BSC)	Foundations of		Exam	n Scheme								
MA204	Mathematics-II	Component]	ISE		MSE		SE	Total		
		Theory 75			75	1	150	300				

Pre-requisite Course Codes, if any.	Foundations of Mathematics-I
-------------------------------------	------------------------------

Course Objective: To develop basic foundation of mathematical skills.

Course Outcomes (CO): At the End of the course students will be able to: -

MA204.1	Integrate a function of one variable using various techniques
---------	---

MA204.2 Sketch basic curves and solve double and triple integrals.

MA204.3 Solve basic problems using properties of complex numbers.

MA204.4 Solve differential equations of first order.

MA204.5 Apply the techniques of solving first order differential equations to electrical engineering problems.

MA204.6 Solve differential equations of higher order

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MA204.1	1											
MA204.2	1											
MA204.3	1											
MA204.4	2											
MA204.5	1	1										
MA204.6	2											

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
MA204.1							
MA204.2							
MA204.3							
MA204.4							
MA204.5							
MA204.6							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember $$ Understand $$ Apply $$ AnalyzeEvaluateCreate
--

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Theory Component

Module No.	Unit No.	Topics	Ref	Hrs.
1	Title	Integral Calculus	1,2	13
	1.1	Formulae for integral of standard functions, integration by parts,		04
		integration by method of substitution.		
	1.2	Gamma functions, Beta functions. Differentiation under Integral sign		04
		with constant limits and one parameter.		
	1.3	Standard curves (lines, circles, parabolas, ellipses). Concept of double		05
		integration. Evaluation of double and triple integrals.		
2	Title	Complex Numbers	1,2	03
	2.1	Operations on complex numbers, polar form of a complex number,		03
		properties of a complex number.		
3	Title	Differential Equations	1,2	12
	3.1	Exact differential equations. Linear differential equations of the first		04
		order and equations reducible to linear.		
	3.2	Solving differential equations of first order in electrical networks.		01
	3.3	Linear differential equations with constant coefficients: complementary		07
		function and particular integral.		
			Total	28

Textbooks

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Higher Engineering	44th	Dr. B. S.	Khanna	2020
	Mathematics		Grewal	Publications	

Reference Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Advanced Engineering	10th	Erwin	John Wiley &	2011
	Mathematics		Kreysizg	Sons	
2	Advanced Engineering	28th	H. K. Dass	S. Chand	2014
	Mathematics				

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Т	Teaching Scheme (Hrs/week)						Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total		
	Analog Circuits	3	0	2	6	11	3	0	1	4		
(PC)		Examination Scheme										
		Comp]	ISE 1		MSE		SE	Total			
EC205		Theory			75		75		150	300		
EC205		Labor		50				50	100			

Pre-requi	site Course Codes, if any. ET101, ET202							
Course O	bjective: To teach fundamentals of analog electronic circuits							
Course Outcomes (CO): At the End of the course students will be able to								
EC205.1	Apply the concept of negative and positive feedback							
EC205.2	Discuss differential amplifier and power amplifier circuits							
EC205.3	Discuss fundamentals of operational amplifier IC							
EC205.4	Design linear and non-linear applications using operational amplifier IC							
EC205.5	Discuss various data conversion techniques							
EC205.6	Design applications with special purpose ICs							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC205.1	1	1	2	2								
EC205.2	1	1	2	2								
EC205.3	1	1	2	2								
EC205.4	1	1	2	2								
EC205.5	1	1	2	2								
EC205.6	1	1	3	2								

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC205.1							
EC205.2							
EC205.3							
EC205.4							
EC205.5							
EC205.6							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember $$ Understand $$ Apply $$ Analyze $$ EvaluateCreation
--

Sardar Patel Institute of Technology (Autonomous Institute Affiliated to University of Mumbai)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Feedback topologies and Oscillators	1	8
-	1.1	Voltage series, current series, voltage shunt, current shunt, effect of	-	Ŭ
	-	feedback on gain, bandwidth etc., calculation with practical circuits,		
		concept of stability, gain margin and phase margin.		
	1.2	Oscillators: Review of the basic concept, Barkhausen criterion, RC		
		oscillators (phase shift, Wien bridge etc.) and LC oscillators		
		(Hartley, Colpitt, Clapp etc.)		
2	Title	Differential amplifier and Power Amplifier	1	8
	2.1	Current mirror: Basic topology and its variants, V-I characteristics,		
		output resistance and minimum sustainable voltage (VON),		
		maximum usable load.		
	2.2	Differential amplifier: Basic structure and principle of operation,		
		calculation of differential gain, common mode gain, CMRR and		
		ICMR.		
	2.3	Power amplifiers: Power BJTs, Power MOSFETs, Heat Sinks,		
		Class A, Class B, Class C and Class AB operation, Power efficiency		
3	Title	Operational Amplifier	2	12
	3.1	Functional Block Diagram of op amp, DC and AC characteristics of		
		an op-amp, Ideal op-amp		
	3.2	Linear Applications of Operational Amplifier		
		Inverting and non-inverting amplifier, adder, subtractor, integrator,		
		differentiator, difference amplifier, instrumentation amplifier		
		Active Filters: First order filters, second order active finite and		
		infinite gain low pass, high pass		
	3.3	Non-Linear Applications of Operational Amplifier		
		Comparators: Inverting comparator, non-inverting comparator,		
		zero crossing detector		
4	Title	Schmitt Triggers: Inverting Schmitt trigger Data Converters	2	6
4	4.1	Digital-to-analog converters (DAC): Weighted resistor, R-2R	2	U
	7.1	ladder, resistor string etc.		
	4.2	Analog to-digital converters (ADC): Single slope, dual slope,		
	7,4	successive approximation, flash etc.		
	4.3	Switched capacitor circuits: Basic concept, practical configurations,		
		application in amplifier, integrator, ADC etc.		
5	Title	Special Purpose Integrated Circuits	2	8
÷	5.1	Timer 555 and its applications	-	Ū
	5.2	Three-terminal fixed (78XX series) and general purpose 723 voltage		
		regulators.		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

6		Multiplier IC's, Power Amplifier IC's, PLL and VCO. Design of	6*
	Study	applications using these IC's.	
		Total (*Not included)	42

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment							
1	Design and implement any one negative feedback amplifier							
2	Design and implement any one oscillator circuit							
3	Design and implement differential amplifier with and without current mirror circuit							
4	Design and implement any one power amplifier circuit							
5	To measure (a) Input bias current, (b) Input offset current, (c)Input offset voltage & (d) Slew							
	rate of the given Op-Amp IC 741.							
6	Design and implement linear application using Op-Amp IC 741.							
7	Design and implement non-linear application using Op-Amp IC 741							
8	Design and implement active filter circuit using Op-Amp IC 741.							
9	Design and implement data converter circuit							
10	Design and Implement Multivibrator Circuits using IC 555							
11	Design, Implement and analyze Voltage Regulator Circuit using IC 723.							

Textbooks:

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Electronic Circuit Analysis and	Third	Donald A.	Tata McGraw	2006
	Design		Neamen	Hill	
2	Linear Integrated Circuits	Fourth	D. Roy	New Age	2018
			Choudhury and S.	International	
			B. Jain	Publishers	

Reference Books:

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Millman's Electronic Devices and Circuits	Third	Jacob Millman, Christos C Halkias, and Satyabratata JIT	McGraw Hill	2014
2	Design with operational amplifiers and analog integrated circuits	Fourth	Sergio Franco	Tata McGraw Hill	2016
3	Op-Amps and Linear Integrated Circuits	Fourth	Ramakant A. Gayakwad	Pearson Prentice Hall	2015

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total
	Microcontrollers	3	0	2	6	11	3	0	1	4
(PC)					Examination Scheme					
		Comp	onent		ISE		MSE		SE	Total
ECOOC		The	eory		75		75	1	50	300
EC206		Laboratory			50			:	50	100

Pre-requis	ite Course Codes, if any.	EC101, ET201						
Course Ob	Course Objective: Imparting the detailed architectural features of various microcontrollers like 8051, PIC							
and ARM a	and ARM along with integrated peripherals and programming							
Course Ou	Course Outcomes (CO): At the End of the course students will be able to							
EC206.1	Compare and contrast traditional n	Compare and contrast traditional microprocessor with traditional microcontroller 8051						
EC206.2	Understand and describe architectural features of microcontrollers like PIC and ARM							
EC206.3	Comprehend ARM core model and	d classify different modes of operation with justification						
EC206.4	Classify various instructions with	addressing modes of microcontrollers like PIC and ARM						
EC206.5	Analyze the given problem statemethrough program in PIC and ARM	ent and apply the programming concepts to solve the problem						
EC206.6	Illustrate and utilize the integrated	peripherals of 16- and 32-bit microcontrollers						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC206.1	3											
EC206.2	3											
EC206.3	3											
EC206.4	3											
EC206.5		3			3			3		3		
EC206.6		3	2									

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC206.1							
EC206.2							
EC206.3							
EC206.4							
EC206.5							
EC206.6							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understand	Apply	Analyze $$	Evaluate	Create
---------------------	-------	------------	----------	--------

Sardar Patel Institute of Technology (Autonomous Institute Affiliated to University of Mumbai)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Theory Component

Module	Unit	Topics	Ref.	Hrs.
1	Title	Introduction of 8-bit Microcontroller – 8051		
	1.1	Overview of 8051 Family of Controllers	1	4
	1.2	Architecture of 8051 with block diagram schematic	1	
	1.3	Brief description of integrated components of 8051	1	
2	Title	PIC Microcontroller		10
	2.1	Microcontroller architecture and Programming model	2	
	2.2	Instruction set with addressing modes	2	
	2.3	Programming and Problem-solving approaches	2	
3	Title	PIC Integrated Peripherals		9
	3.1	I/O Ports with its interfacing	2	
	3.2	Interrupt Structure	2	
	3.3	Timers with its configuration	2	
	3.4	Data Converters (ADC and DAC)	2	
	3.5	Serial I/O (SPI and I ² C protocol)	2	
4	Title	ARM7TDMI(ARMv4T) Architecture		10
	4.1	Features and advantages, ARM versions	3,4	
	4.2	Processor operating states, ARM core data flow model, operating	3,4	
	4.3	Instruction set with addressing modes	3,4	
5	Title	LPC2148 ARM7 Processor Programming and Interfacing		9
	5.1	Processor state changing (ARM $\leftarrow \rightarrow$ THUMB), Exceptions, interrupts,	3,4	
	5.2	Timer Programming, Watchdog Timer	3,4	
	5.3	ADC and Sensor Interfacing	3,4	
	5.4	SPI and I2C Peripheral Interface	3,4	
6	Self Study	ARM-v7-M (Cortex-M3), Comparison of ARM-v&-A (Cortex A8), ARM-v7-R (Cortex R4), ARM-v7-M (Cortex M3). Application Case Study for PIC and ARM controllers		6*
		Total (*Not inc	luded)	42

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment						
1	Programming the I/O Port of 8-bit 8051 Microcontroller and effectively interface the LED and						
	switch.						
2	Programming and Interfacing for utilization of on-chip resources like Timers and Serial						
	Communication of 8-bit 8051 Microcontroller.						
3	PIC assembly language programming and simulation						
4	PIC LED/LCD interfacing and programming						
5	PIC Timers and interrupts programming						
6	PIC ADC Programming						
7	ARM LEDs and Keyboard Interface						
8	ARM Programming and Interfacing of sensors using on chip ADC						
9	ARM Programming and Interfacing on chip Serial Port						
10	ARM Programming and Interfacing on chip timer						

Textbooks

Sr. No.	Title	Edition	Authors	Publisher	Year
1	The 8051 Microcontroller and	Second	Muhammad Ali	Pearson	2006
	Embedded Systems: Using		Mazidi, Janice G.		
	Assembly and C		Mazidi and R. D.		
			McKinlay		
2	Fundamentals of	Fourth	Ramesh Gaonkar	Penram	2007
	Microcontrollers and			International	
	Applications in Embedded			Publishing Pvt.	
	Systems (with PIC18			Ltd	
	microcontroller family)				
3	ARM System Developer's	First	Andrew N. Sloss,	Elsevier Inc	2004
	Guide Designing and		Dominic Sysmes and	Morgan	
	Optimizing System		Chris Wright	Kaufmann	
	Software				
4	ARM Architecture, Reference	Second	David Seal	Addison Wesley	2001
	Manual			•	

Reference Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	PIC Micron roller: An Introduction to Software & Hardware Interfacing	Second	Han- Way Huang	Cengage Learning	2005
2	ARM System-on-Chip Architecture	Second	Steve Furber	Addison- Wesley	2000

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Course Name (Hrs/week)						Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total	
		3	0	2	6	11	3	0	1	4	
(PC)		Examination					1 Scheme				
	Signals and Systems	Comp	onent]	ISE]	MSE	E	ESE Total		
EC207		The	eory		75		75	1	50	300	
EC207			Laboratory		50				50	100	

Pre-requis	ite Course Codes, if any.	MA101, MA102		
Course Objective: To develop strong foundation of continuous time signals and systems				
Course Outcomes (CO): At the End of the course students will be able to				
EC207.1	Classify and illustrate various op	perations on signals and systems.		
EC207.2	Analyze the properties of a conti	nuous time signal in frequency domain and observe the spectrum.		
EC207.3	Apply Laplace Transform on con	ntinuous time signals		
EC207.4	EC207.4 Evaluate Linear Time Invariant system response using Laplace Transform			
EC207.5	2207.5 Design analog Butterworth and Chebyshev filter			
EC207.6	EC207.6 Interpret system using state space model			

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC207.1	3	-			3				3	3		2
EC207.2	3	2			3				3	3		2
EC207.3	3	2			3				3	3		2
EC207.4	3	2			3				3	3		2
EC207.5	3	2			3				3	3		2
EC207.6	3	-			1				3	3		1

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC207.1	2	2				2	
EC207.2	2	2				2	
EC207.3	2	2				2	
EC207.4	2	2				2	
EC207.5	2	2				2	
EC207.6	2	2				-	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember√	Understand $$	Apply $$	Analyze√	Evaluate	Create	
-----------	---------------	----------	----------	----------	--------	--

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Overview of Continuous Time Signals and Systems	1,2	08
	1.1	Introduction: Signals, systems, elementary signals, exponential, sine, step, impulse, ramp, rectangular, triangular and operations on signals		
	1.2	Classification of signals: Continuous Signals, deterministic and non- deterministic, periodic and aperiodic, symmetric (even) and asymmetric (odd), energy and power, causal and anti-causal signals.		
	1.3	Operations of Signals: Shifting, Scaling, Time Reversal, Addition and Multiplication, Convolution, Correlation		
2	Title	Fourier Series and Fourier Transform	1,2	10
	2.1	Fourier series : Orthogonal representation of signals, Continuous Time Fourier Series (CTFS), magnitude and phase spectra, Gibbs phenomenon, Parsevel's relation,		
	2.2	Fourier Transform : Fourier Transform and Inverse Fourier Transform on periodic and non-periodic signals, Limitations of Fourier Transform and need for Laplace Transform, Properties of Fourier Transform, Parsevel's relation, Energy and Power Spectral Density and Bandwidth.		
3	Title	Laplace Transform	1,2	04
	3.1	Laplace Transform, Properties of Laplace Transform, Relation between Laplace Transform and Fourier Transform,		
	3.2	Inverse Laplace Transform using Partial Fraction method		
4	Title	Linear Time Invariant (LTI) Systems	1,2	08
	4.1	Classification of systems: Static and dynamic, time variant and time invariant, linear and nonlinear, causal and non-causal, stable and unstable systems.		
	4.2	Impulse Response, Transfer Function, Differential Equation, Stability of Systems, Frequency Response, Solution of Differential Equation using Laplace Transform		
5	Title	Analog Filter Design	1,2	12
	5.1	Design of Ideal Analog filter, Butterworth Low Pass Filter (LPF) design, Butterworth High Pass Filter (HPF) design, Butterworth Band Pass Filter (BPF) and Band Reject Filter design, Pole zero plot of Butterworth filters, Magnitude Spectrum		
	5.2	Equiripple Filters, Chebyshev Type-I LPF, HPF Design, Pole zero plot of Chebyshev filter, magnitude spectrum.		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

	5.3	Realization diagram (Form I and II)		
6	Self Study	State Space Model: Procedure to determine state equations, State equations from transfer function, Laplace transform solution of state equations		6*
		Total (*Not inclu	ıded)	42

Laboratory Component

Sr. No.	Title of the Experiment				
1	Representation of Signals				
2	Operations on Signals				
3	Convolution on Continuous Time Signals				
4	Synthesis of signals using Fourier Series				
5	Synthesis of signals using Fourier Transform				
6	Analysis of LTI system using Laplace Transform				
7	Plotting of frequency spectrum				
8	Butterworth filter design				
9	Chebyshev filter design				
10	Mini project: Analysis of real-world signals				

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Signals and Systems	3 rd	Nagoor Kani	Tata McGraw Hill	2011
2	Digital Signal Processing	4 th	Ramesh Babu	Scitech	2014

Reference Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Signals and Systems	2^{nd}	Alan V Oppenheim, Alan S, Willsky and A Hamid	Pearson	2002
			Nawab		
2	Signals and Systems	3 rd	Simon Haykin and Barry Van Veen	John Wiley & Sons	2002
3	Linear Systems and Signals	4 th	B. P. Lathi	Oxford University Press	2005
4	Signals and Systems	2^{nd}	H. P Hsu, R. Ranjan	Schaum's outlines	2006

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Teaching Scheme (Hrs/week)						Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	0	Total
	_ Mini Project-I	0	0	0	4	4	0	0	0	2	2
(SBC)		Examination Scheme									
		Component			ISE		MSE		ESE		Total
	iviini i roject-i	Theory									
EC208		Laboratory			-	-					
		Sel	f-Stu	dy	1	100				0	200

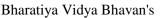
Pre-requi	isite Course Codes, if any.							
Course O	Course Objective: To apply engineering knowledge and propose innovative, sustainable solutions							
to the real	-life challenges							
Course O	outcomes (CO): At the End of the course students will be able to							
EC208.1	Discover potential research areas for addressing societal issues							
EC208.2	Conduct a survey of basic and contemporary literature in the preferred field of study.							
EC208.3	Formulate and propose a plan for creating a solution for the research plan identified.							
EC208.4	Exercise the team building, communication and management for design and							
	implementation of projects.							
EC208.5	Compare and contrast the several existing solutions for research challenge							
EC208.6	Report and present the findings of the study conducted in the preferred domain.							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC208.1												
EC208.2												
EC208.3												
EC208.4												
EC208.5												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
EC208.1						
EC208.2						
EC208.3						
EC208.4						
EC208.5						


Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

BLOOM'S Levels Targeted (Pl. appropriate)

Remember	Understand	Apply√	Analyze√	Evaluate√	Create
Pre-requisite (ourse	All the Courses ti	ll third Semester		
Codes		In the Courses th	n unite Bennester		
an attempt of se actions and dec day experience students.	cientific study of isions about it. I which encourag tives of Action I e students sensit: n scientific prince velop psycho-te esis etc.	The problem in s t is based on a sn es development of Research are: twe towards socie ples from day-to chnological skil	surrounding in ord nall project correla of scientific attitud tal issues -day experiences ls through obse	ler to guide, corre ting scientific kn de to solve real li rvation, classific	in its own way. It is ect and evaluate the lowledge and day to fe problems among ation, statement of
presenta ✓ To deve ✓ To appl challeng	ation etc. Plop ability to con y engineering kn ges	rrelate science, te owledge and pro	-	iety ustainable solutio	discussion,
-	-		2 Phases of Evalu	ation) and ESE	
		surrounding/soci	lety		
	cation of the prol	blem			
•	s of the problem	formeration has form			
			mulating research	questions	
	ing plan of actio				
	ting experiments				
	v conclusion				
	-	tion to rectify the	-		
Students ca	n seek guidance	from teachers, ot	-	ake effective use	of other sources of
in one seme		a them. Students	must ensure that	problem to be so	lved in manageable
		pelow mentioned			
		nt problem solvi	•		
	-	-	andling problems		
✓ Tea	ch how to use the	e methods and no	ot directly give sol	ution to the probl	lem.

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

 \checkmark Lead the students to the peak of their powers for improvement of better learning.

The H/W and S/W resources required to complete the Mini-Project-I may be beyond the scope of curriculum of courses taken or may be based on the courses but thrust should be on

- Learning additional skills
- Development of ability to define and design the problem and lead to its accomplishment with proper planning
- Learn the behavioral discipline by working in a team. The team may be maximum three (03) students.

Evaluation:

Project report should contain project title, student details, certificate and acknowledgements. Other sections of the report shall be decided by the department based on projects. But it must have introduction, necessity of project, objectives, hypothesis, plan, observations, and analysis of results, conclusion and references along with other sections related to technology. The ISE and ESE evaluation will be carried out based on the rubrics framed by the Department. The ESE marks will be based on final demonstration of the project and viva based on it and report/poster/technical paper of the project in the standard format provided by the Department.

Bharatiya Vidya Bhavan's Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Sem-V

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total
		3	0	2	6	11	3	0	1	4
PC		Examination Scheme								
	Analog and Digital		Component		ISE		SE	E	SE	Total
EC301	Communication	The	ory	7	75	7	'5	150		300
		Labor	atory	5	50		-	50		100

Pre-requi	site Course Codes, if any. EC202: Electronic Devices
	MA203: Probability and Stochastic Processes
	EC207: Signals and Systems
Course O	bjective: The objective is to equip the students with basic knowledge for analyzing analog
and digitation	al communication systems ranging from data networks and internet to mobile data
communic	cation systems such as cellular and Wi-Fi systems. Specifically, the students will learn how
to manage	e communication system resources including bandwidth and power by selecting a proper
signaling a	and/or analog/pulse/digital modulation scheme
Course O	utcomes (CO): At the end of the course students will be able to
EC301.1	Describe various entities of analog, pulse, and digital communication system.
EC301.2	Apply concepts of signals and systems to analyze behavior of modulated signals in time
	domain, frequency domain and signal space.
EC301.3	Analyze and computer system performance measures such as efficiency, bit rate and
	bandwidth of various analog, pulsed and digital modulation methods.
EC301.4	Analyze the behavior of a various analog, pulse, and digital modulation schemes in presence
	of noise.
EC301.5	Compare various modulation and demodulation techniques.
EC301.6	Examine various wired and wireless applications and further infer health, safety, and
	environment aspects of wired and wireless systems.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC301.1	3				-				-	-		1
EC301.2	2	2			3				3	3		
EC301.3	2	2			3				3	3		1
EC301.4	3	3			3				3	3		1
EC301.5	2	2			3				3	3		
EC301.6	1	1				1	1	1	3	3		3

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC301.1	2	2				
EC301.2	2	2		2	1	
EC301.3	2	2		2	1	
EC301.4	2	2		2	1	
EC301.5	2	2				
EC301.6	1	1				

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember✓	Understand✓	Apply✓	Analyze✓	Evaluate	Create
-----------	-------------	--------	----------	----------	--------

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Continuous-Wave Modulation	1,2	
	1.1	Review of signals and systems, Frequency domain representation of		10
		signals, classification of Frequency spectrum, Block diagram of an		
-		analog and digital communication system, Need for modulation.		
	1.2	Principles of Amplitude Modulation Systems- DSB, SSB and VSB		
		modulations, Principle of FDM.		
	1.3	Angle Modulation, Representation of FM and PM signals, Spectral		
		characteristics of angle modulated signals.		
	1.4	Super heterodyne receiver		
	1.5	Noise in amplitude modulation systems, Noise in Frequency		
		modulation systems. Pre-emphasis and De-emphasis, Threshold		
		effect in angle modulation.		
2	Title	Pulse Modulation	1,2	08
	2.1	Sampling process. Types of Pulse modulation		
	2.2	Pulse code modulation (PCM), Differential pulse code modulation.		
	2.3	Delta modulation, Noise considerations in PCM, Time Division		
		multiplexing, Digital Multiplexers		
3	Title	Baseband Pulse Transmission	1,2	10
	3.1	Baseband receiver, Probability of error of integrate and dump		
		receiver, Matched filter, optimum filter		
	3.2	Line coding and Power spectral density (PSD) of line codes, inter		
		symbol Interference and Nyquist criterion, Raised cosine filter,		
	3.3	Duobinary encoding, Introduction to linear and adaptive		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

		equalization			
4	Title	Pass band Digital Modulation schemes	2	14	
	4.1	BPSK, DPSK, QPSK, M-ary PSK, QAM, BFSK, M-ary FSK, MSK-			
	Principle of working, PSD, and Signal space analysis4.2 Digital Modulation tradeoffs, Probability of Error evaluations of				
		various modulations. (Derivation not expected)			
	4.3	Synchronization and Carrier Recovery for Digital modulation.			
	4.4	Introduction to OFDM			
5	Self-	a. Case study (anyone)		06	
	Stud	1. Effect of various Communication systems on health, safety, and			
	У	environment.			
		2. Professional engineering regulations, legislation and standards			
		related to communication.			
		3. Code of ethics for wired and wireless systems for			
		user/devices/companies			
		b. Research article (anyone)			
		1.Applications of analog and digital modulations			
		2.Digital modulations specifications and effect of various			
		parameters in wireless networks such as WLAN			
		3.Software defined radio for digital communication			
		4. Error correction codes for digital communication			
		5.Comparative analysis of analog and digital communication			
		through applications			
			Total	42+	

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Simulation and implementation of double sideband full carrier for various modulation index.
2	Implement the frequency modulation circuit to obtain FM waveforms and calculate modulation index
3	Analyze effect of pre-emphasis and de-emphasis on FM waveforms.
4	Implementation of natural sampling and reconstruction of waveforms
5	Implementation and detection of pulse amplitude modulation.
6	Implementation of Binary Phase Shift Keying.
7	Implementation of Binary Frequency shift keying.
8	Duo binary Encoder.
9	Simulation of digital modulation scheme and analysis of Power spectral density.
10	Simulation and analysis of signal space of various modulations in presence of noise.

Sardar Patel Institute of Technology (Autonomous Institute Affiliated to University of Mumbai)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

11	Signal transmission through Raised cosine filter and eye pattern analysis.
12	Simulation of OFDM.
13	Mini project in analog/pulse/digital modulation methods.

Textbooks

Sr. No	Title	Edition	Authors	Publisher	Year
1	Communications Systems	Fourth	Haykin S	John Wiley and Sons	2001
2	Principles of Communication Systems	Second	Taub H. and Schilling D. L	Tata McGraw Hill	2001

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Digital	Third	Haykin S	John Wiley and Sons	2001
	Communication.				
2.	Communication	Fourth	Proakis J. G.	Pearson Education	2002
	Systems Engineering		and Salehi M.		
3.	Digital and Analog	Fourth	B.P.Lathi	Oxford	2017
	Communication				

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	E	L	Т	Р	Total
		3	0	2	6	11	3	0	1	4
PC		Examination Scheme								
	Control Systems	Comp	Component ISE]	MSE		ESE	Total	
EC302		The	eory		75		75		150	300
		Laboratory			50				50	100

Pre-requi	site Course Codes, if any.	MA101: Engineering Calculus				
	-	MA102: Differential Equations and Complex Analysis				
		EC 101: Digital Systems and Microprocessors				
		EC 203: Probability and Stochastic Processes				
EC 204: Electronic Instruments and Measuremen						
Course O	Course Objectives: To develop a system for real life application by applying the concepts of control					
system the	eory and allied techniques fo	r system performance evaluation.				
Course O	utcomes (CO): At the end of	of the course students will be able to				
EC302.1	Classify different types of	Classify different types of control systems, component of control system and formulate				
LC302.1	mathematical modeling of the given system.					
EC302.2	Apply various methods for	representation of the given control system.				
EC302.3	Analyze the transient and steady state behavior of given system for standard test inputs.					
EC302.4	Analyze the stability of systems in time domain and frequency domain.					
EC302.5	Discuss the concept of con	trollability and observability using state variable model.				
EC302.6	Evaluate the system perform	mance with the use of compensators & controllers.				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

				0				,				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC302.1	3				2			3	3	2	2	2
EC302.2		3			2			3	3	2	2	2
EC302.3		3			2			3	3	2	2	2
EC302.4		3			2			3	3	2	2	2
EC302.5		3			2			3	3	2	2	2
EC302.6	3				2	2		3	3	2	2	2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC302.1	1	1	2		-	
EC302.2	1	1	2		-	
EC302.3	1	1	2		2	
EC302.4	1	1	2		2	
EC302.5	1	1	2		2	
EC302.6	1	1	2		2	

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Theory Component

Module	Unit	Topics	Dof	Hrs.
No.	No.	Topics	Ref.	пrs.
1	Title	Introduction to control system and system Modeling		
	1.1	Introduction to control system:	1,2	10
		Definition of system, Notion of feedback, Open loop and closed		
		loop systems; feedback and feed forward control structure;		
		Examples of control systems.		_
	1.2	Dynamic Response: Standard test signals; Transient and steady	1,2	
		state behavior of first and second order systems; Generalized error		
		coefficients, steady state errors in feedback control systems and		
		their types.		_
	1.3	Control System Modeling: Types of model's Impulse response	1,2	
		model, State variable model, Transfer function model, Modeling		
	T '41	of electrical systems and translational mechanical systems.		10
2	Title	Representation of Control System and State Space Analysis	1.0	10
	2.1	Block diagram representation of systems, Block diagram reduction	1,2	
		methods, closed loop transfer function, signal flow graph. Mason's		
	2.2	gain rule	1.0	-
	2.2	State Space Analysis: Concepts of state space, State equations,	1,2	
		State transition matrix, properties of state transition matrix,		
	2.3	Solution of homogeneous systems.	3,4	_
	2.3	Controllability and Observability: Concept of controllability, Controllability analysis of LTI systems, Concept of observability,	3,4	
		Observability analysis of LTI systems using Kalman approach.		
3	Title	Time Domain System Stability Analysis		8
5	3.1	Concepts of Stability Concept of absolute, relative and robust	1,2	0
	5.1	stability	1,2	
	3.2	Routh-Hurwitz stability criteria	1,2	-
	3.3	Root Locus Analysis: Root-locus concepts; General rules for	1,2	-
	0.0	constructing root-locus, Root-locus analysis of control systems.	-,-	
4	Title	Frequency Domain System Stability Analysis		8
-	4.1	Relation between time and frequency response	1,2	Ŭ
	4.2	Bode Plot: Magnitude and phase plot, Method of plotting Bode	1,2	-
		plot; Stability analysis by using Gain and phase margins on the	_,_	
		Bode plots		
	4.3	Polar plots, Nyquist stability criterions; Nyquist plot; Gain and	1,2	1
		phase margins.	,—	
5	Title	Compensators & Controllers		6

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

	5.1	Types of compensators, Realization of basic compensators -	1,2	
		cascade compensation in time domain and frequency domain.		
	5.2	Controllers: Concept of ON/OFF controllers; Concept of P, PI,	1,2	
		PD and PID Controllers.		
	5.3	Advanced Control Systems: Introduction to Robust Control,	3,4	
		Adaptive control and Model predictive control, Neuro- fuzzy		
		controllers.		
6	Self-	Examples on open loop and closed loop control system, Modeling	1,2,3,	
	Study	of rotational mechanical systems, Pole placement using state	4,5	
		feedback Popov-Belevitch-Hautus (PBH) test in state space,		
		Design of lag, lead and lag-lead compensator using Bode plot and		
		Root locus techniques, Design of real-life applications of control		
		system.		
			Total	42

Laboratory Component:

Exp. No.	Experiment Details	Marks CO
1	To obtain the characteristics of control system components:	05
	i. To plot the Synchro transmitter characteristics and Synchro transmitter and	CO1
	receiver as an error detector.	
	ii. To plot characteristics of Potentiometer and its loading effect for different	
	conditions of load.	0.5
2	To demonstrate the working of real-life feedback control system and obtain	05
	their characteristics:	CO1
	i. To plot Speed torque characteristic of DC servo motor.	
	ii. To determine the line and load regulation characteristics of AC servo voltage	
	stabilizer at different line and load conditions and observe the mechanism of	
	AC voltage stabilization as an example of closed control system.	
3	To develop a program in Matlab/Scilab/LabVIEW:	05
	i. To define the given closed loop transfer functions of system and plot their	CO2
	poles & zeros on s-plane.	
	ii. To reduce the given control system block diagram or signal flow graph.	
4	To develop a program in Matlab/Scilab/LabVIEW:	10
	i. To obtain the step response of a given first/second order control system and	CO3
	obtain its time domain parameters from this step response. Compare these	
	results with mathematical calculations.	
	ii. To determine step response for a Type 0, Type 1, Type 2 systems and find	
	error coefficients.	
	iii. To find solution for a given control system described by its state space	
	equation in terms of state transition matrix, zero input response, zero state	
	response, complete response.	
5	Develop a program in Matlab/Scilab/LabVIEW:	10
		CO4

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

	 i. To obtain the root locus of a system described by its Transfer Function with unity feedback, Comment on the stability of this given control system. Compare these results with mathematical calculations. ii. To find gain margin and phase margin of the system described by its Transfer Function with unity feedback using Bode/Nyquist plot. Comment on the stability of this given control system. 	
	the stability of this given control system. Compare these results with mathematical calculations.	
6	Develop a program in Matlab/Scilab/LabVIEW:	10
	i. To find whether a given control system described by its state space equation	CO5
	is controllable or not, observable or not, to find rank of matrix and using rank	
	comment on system controllability and observability.	
	ii. To design a controller and observer via state space.	
7	Evaluate the effect of Compensator/PID controller on performance of the	5
	control system.	CO6

ISE Evaluation: CO1-CO6

Mini-Project: Identify the model of control system for real life application and demonstrate controlling action for the same.

This is group activity. Students will form a group of minimum 3 students. Students will develop the block diagram of the system first, then design each block using appropriate components. Simulate the complete block diagram using any tool like Matlab, Scilab or LabVIEW. The duration of this activity is a complete semester, but evaluation will be done in phases and rubrics designed. In the first phase students will develop the block diagram for the given problem statement. In the second phase students will develop the block diagram and simulate each of the block diagrams and test it for input-output relationship. In the third phase students will interface all the designed blocks to obtain final input-output relationship of the system. Hardware implementation is optional.

Textbooks

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Control Systems	Fifth	I. J. Nagrath,	New Age International	2012
	Engineering		M. Gopal		
2	Modern Control	Fifth	Ogata. K	Prentice Hall of India	2010
	Engineering				

Reference Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Control Systems: Principle and	First	M. Gopal	Tata McGraw Hill	1998
	design				
2	Modern Control System	Eleventh	Richard C. Dorf	Pearson	2013
			and Robert H.		
			Bishop		
3	Control Systems Engineering	Sixth	Norman Nise	John Wiley & Sons	2011
4	Linear Control System	First	Constantine H.	Mcgraw-Hill	1975
	Analysis and Design:		<u>Houpis</u> and <u>Joh</u>		
	Conventional and Modern		<u>n J. D'Azzo</u>		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name Teaching Scheme (Hrs/week)				Credits Assigned					
Code		L	Т	Р	0	Е	L	Τ	Р	Total
		3	0	2	5	10	3	0	1	4
PC	Digital Signal		Examination				Scheme			
	Digital Signal Processing	Compo	nent	IS	E	Μ	ISE	ES	SE	Total
EC303		Theo	ry	7	5		75	15	50	300
		Labora	tory	5	0			5	0	100

Pre-requi	site Course Codes, if any.	EC207: Signals and Systems		
Course O	Course Objective: To develop mathematical foundation of system and design digital filters			
Course O	utcomes (CO): At the end of th	e course students will be able to		
EC303.1	Classify and perform various o	perations on signals and systems.		
EC303.2	Apply DFT properties and illus	trate FFT algorithms.		
EC303.3	Apply Z Transform on discrete	time signals.		
EC303.4	Analyze LTI System using Z T	ransform.		
EC303.5	Design and Realize Digital filte	ers.		
EC303.6	Analyze Multirate Signal Proce	essing.		

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC303.1	3	1	2		2							
EC303.2	1	1	2		2							
EC303.3	1	1	2		2							
EC303.4	1	1	2		2							
EC303.5	1	1	2		2							
EC303.6	1	1	2		2							2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC303.1		2				2	
EC303.2		2				2	
EC303.3		2				2	
EC303.4		2				2	
EC303.5		2				2	
EC303.6		1				2	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	✓ Apply	✓ Analyze	✓ Evaluate	Create
CDIT/Sullabus/202	1 DE /EVTC/mg OC				

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Theory Component

Module	Unit	Topics	Ref.	Hrs.
<u>No.</u>	No.	•		
1	Title	Overview of Discrete Time Signals	6,7,8	08
	1.1	Sampling of Continuous Time Signal, Standard Discrete Time		Uð
		Signals: Impulse Signal, Unit Step, Unit Ramp, Sinusoidal,		
	1.2	Exponential. Classification of Signals: Deterministic and non-		
	1.4	Classification of Signals: Deterministic and non- deterministic, Periodic and a periodic, Symmetric (even) and		
		Asymmetric (odd), Energy and Power, Causal and Anti-causal		
		signals.		
·	1.3	Operations of Signals: Shifting, Scaling, Time Reversal,		
	1.5	Addition and Multiplication, Convolution (Linear and		
		Circular), Correlation		
2	Title	Discrete Fourier Transform (DFT)	1, 3	12
-	2.1	Discrete Time Fourier transform (DTFT), Discrete Fourier	1, 5	14
	2.1	Transform (DFT), Properties of DFT, Inverse DFT.		
	2.2	Fast Fourier Transform: Radix-2 Decimation in Time Fast		
		Fourier Transform (DIT-FFT) and Decimation in Frequency		
		Fast Fourier Transform (DIF-FFT) algorithms, Real and		
		Complex Calculations using FFT, Linear and Circular		
		Convolution using FFT,		
	2.3	Filtering of long data sequence, Overlap Add Method, Overlap		
		Save Method		
3	Title	Z-Transform	6,7	04
	3.1	Z-Transform of discrete time signals, Properties of Z-		
		Transform, Relation between Z-Transform and DTFT,		
	3.2	Inverse Z-Transform, Long division Method, Partial Fraction		
		Expansion Method		
4	Title	Linear Time Invariant (LTI) Systems	1,4	08
	4.1	Classification of systems: Static and dynamic, time variant		
		and time invariant, linear and nonlinear, causal and non-causal,		
		stable and unstable systems.		
	4.2	Impulse Response, Transfer Function, Differential Equation,		
		Stability of Systems, Frequency Response, Solution of		
		Differential Equation using Z-Transform		-
	4.3	LTI systems as frequency-selective filters like; Low pass, High		
		pass, Band pass, Invertibility of LTI systems, Minimum-phase,		
_		Maximum-phase, Mixed-phase systems		1.0
5	Title	Design of Digital filters and Implementation	1,2	10
	5.1	Design of Infinite Impulse Response (IIR) filters using Impulse		
		Invariant Method and Bilinear Transformation Method,		
		Butterworth and Chebyshev Type I filter design.		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

	5.2	Concepts of Finite Impulse Response (FIR) filter, symmetric and anti-symmetric FIR filter, FIR filter design using Window method and Frequency sampling method.		
	5.3	Realization structures for IIR and FIR filters using direct Form		
		Realization, cascade, parallel structures; Linear Phase		
		Realization, Frequency Sampling Realization.		
6	Self-	1. Multirate Signal Processing: Down-sampling and Up-	1,5	*5
	Study	sampling by integer factors; Decimator and Interpolator,		
		Sampling rate conversion by non-integer factor.		
		2. Application of Filter: Sub-band filters.		
			Total	42+*5

Laboratory Component

Sr. No	Title of the Experiment
1	Discrete Convolution and Correlation
2	Discrete Fourier Transform
3	Fast Fourier Transform
4	Linear Filtering using Overlap Add Method/ Overlap Save Method.
5	Design of Butterworth IIR Filter using Impulse invariant method
6	Design of Butterworth IIR Filter using Bilinear Transformation method
7	Linear phase FIR Filter design using Windowing method
8	Linear phase FIR Filter design using Frequency sampling method
9	Multirate Signal Processing
10	Mini Project on real Time DTSP application

Textbooks

Sr. No	Title	Edition	Authors	Publisher	Year
1					2014
1	Digital Signal Processing:	Fourth	J. Proakis, D. G.	Pearson	2014
	Principles, Algorithms and		Manolakis, and D.	Education	
	Applications		Sharma		
2	Digital Signal Processing	Fourth	Ramesh Babu	Scitech	2014
3	Digital Signal Processing	-	S. Salivahanan, A	Tata McGraw	2010
			Vallavaraj, C Gnanapriya	Hill	

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Signals and Systems	Second	Alan V Oppenheim, Alan S,	Pearson	2002
			Willsky and A Hamid Nawab		
2	Signals and Systems	Third	Simon Haykin and Barry Van	John Wiley	2002
			Veen	& Sons	
3	Theory and Applications of	Second	L. R. Rabiner and B. Gold	Prentice-	2006
	Digital Signal Processing			Hall	
4	Multirate Systems and Filter	First	P. P. Vaidyanathan,	Pearson	1992
	Banks		-		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	8				Credits Assigned					
Code		L	Т	Р	0	Ε	L	Т	Р	Total
	- Engineering	3	0	2	5	10	3	0	1	4
PC		Examination				inatio	n Scheme			
		Comp	onent		ISE	Ι	MSE	E	SE	Total
EC304		The	ory		75		75	1	50	300
		Labor	atory		50				50	100

Pre-requi	isite Course Codes, if any.	MA101: Engineering Calculus					
		MA102: Differential Equations and Complex Analysis					
		MA201: Linear Algebra					
Course O	bjective: To teach fundamenta	ls of Electromagnetic Waves					
Course O	Course Outcomes (CO): At the end of the course students will be able to						
EC304.1	Apply basic laws of electroma	Apply basic laws of electromagnetic and Maxwell's equations.					
EC304.2	Illustrate the behavior of EM	waves and travelling of waves in free space as well as media.					
EC304.3	Solve problems related to the	propagation of electromagnetic waves.					
EC304.4	Discuss the types of antennas	and their parameters.					
EC304.5	Discuss types of radio wave p	ropagation.					
EC304.6	Design applications using Ele	ctromagnetic Waves theory.					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC304.1	1	1	2		2					3		
EC304.2	1	1	2		2							
EC304.3	1	1	2		2					3		
EC304.4	1	1	3		2					1		
EC304.5	1	1	2		2							
EC304.6	1	1	3		2					2		3

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC304.1		2			2	
EC304.2		2			2	
EC304.3		2			2	
EC304.4		2			2	
EC304.5		2			2	
EC304.6		1			1	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember√	Understand√	Apply√	Analyze√	Evaluate	Create
-----------	-------------	--------	----------	----------	--------

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Coordinate system transformation and vector calculus		
	1.1	Cartesian, cylindrical and spherical coordinate, Differential length, area and volume, line surface and volume integrals.	2	3
	1.2	Del Operator, Gradient of scalar, Divergence of a vector and		
	1.2	Divergence Theorem, Curl of a Vector and Stoke's Theorem,		
		Laplacian Theorem, Classification of a Vector Field.		
2	Title	Basic Laws of Electromagnetic and Maxwells Equations	1	9
-	2.1	Coulombs law, Electric fields due to continuous charge	-	
		distributions, Gauss law and its applications, Electric potential		
		(Magnetic vector potential and Electrical Scalar Potential),		
		relationship between E and V, Poisson and Laplace equations,		
		Bio-Savarts law, Amperes law.		
	2.2	Boundary conditions for static electric and magnetic fields		
	2.3	Faradays Law, Displacement current, Maxwells Equations:		
		Integral and differential form for static and time varying fields and		
		its interpretation		
3	Title	Electromagnetic Wave Propagation	1,2	9
	3.1	Wave equation: Derivation and its solution in Cartesian co-		
		ordinates.		
	3.2	Solution of wave equations: Partially conducting media, perfect		
		dielectrics and good conductors, Concept of Skin Depth.		
	3.3	Electromagnetic Power: Poynting Vector and power flow in free		
	2.4	space and in dielectric, conducting media.		
	3.4	Polarization of wave: Linear, Circular and Elliptical.		
	3.5	Propagation in different media: Behavior of waves for normal and		
4	Title	oblique incidence in dielectrics and conducting media.	1.2	6
4	Title 4.1	Waveguide Wave propagation in parallel plane waveguide (No derivation	1,2	0
	4.1	expected), Analysis of waveguide general approach (No		
		derivation expected), in waveguide.		
	4.2	Rectangular waveguide, Modal propagation in rectangular		
	1.2	waveguide, Surface currents on the waveguide walls, Field		
		visualization, Attenuation.		
5	Title	Transmission Lines	1,2	9
	5.1	Power frequency lines: Representation, losses and efficiency in	,	
		power lines, effect of length, calculation of inductance and		
		capacitance.		
		Radio frequency lines: Representation, propagation constant,		
		attenuation constant, phase constant, group velocity, input		
	10.00.0			

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

		impedance, characteristic impedance, trade-off between attenuation and power transfer, reflection coefficient, standing wave ratio, VSWR, ISWR, ABCD parameters of transmission						
		line.						
	5.2	Smith Chart: Impedance locus diagram, impedance matching.						
6	Title	Applications of Electromagnetics	Applications of Electromagnetics2,3					
	Self-	Xerography. Laser printer, Faraday's cage, lightning, RF MEMS,	1,2,6	06				
	Study	Magnetic levitation, Metamaterials, RFID, Stealth aircraft, remote						
		sensing, radio astronomy, EMI and Electromagnetic						
		Compatibility, Different types of antennas.						
Total				42				

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Basic operations on scalar and vectors
	Working with Numbers: Scalars and Vectors using any simulation platform or Python.
	Working with Complex Numbers using any simulation platform or Python.
	Working with Matrices using any simulation platform or Python.
2	Curl and Divergence
	Numerical Computation of Divergence and Curl.
	Numerical Computation of Divergence and Curl for a Current Carrying Wire.
3	Write a program that displays the distribution of the electric potential due to an electric
	dipole with a moment located at the origin of a spherical coordinate system.
4	Numerical Integration and Calculating the Electric Field from a Ring of Charge.
5	3-D and 2-D radiation patterns of a Hertzian dipole using MATLAB/Python.
6	Antenna parameters
	Visualization of a wireless system with two antennas.
	Radiation patterns of a small loop antenna.
	Radiation patterns of a quarter-wave monopole.
7	Waveguide: Verify the relationship between wavelength of an EM wave in air and
	inside a rectangular waveguide.
8	Simulating the Two-ray Propagation Model in any simulation platform or Python.
9	Using Virtual Lab: Introduction to Smith chart and its application for the unknown
	impedance measurement using virtual lab IIT K
10	Measurement of Frequency and wavelength of a waveguide using Microwave bench
	setup.
11	Using Virtual Lab: Study of field pattern of various modes inside a rectangular
	waveguide using virtual lab IIT K
12	Case Study- The student is required to develop a simple tool to carry out unit
	conversions that are associated with EM-related calculations.

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Textbooks:

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Electromagnetic	Third	R. K. Shevgaonkar	Tata McGraw Hill	2009
	Waves				
2	Principles of	Sixth	Matthew N.O.	Oxford International	2015
	Electromagnetics		Sadiku	Student	

Reference Books:

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Engineering	Third	W.H. Hayt, and J.A.	McGraw Hill	2006
	Electromagnetics		Buck		
2	Electromagnetic Waves and	Second	Edward C. Jordan	Pearson	2006
	Radiating Systems		and Keth G. Balmin	Publications	
3	Engineering	Third	Nathan Ida	Springer	2015
	Electromagnetics			Publications	
4	Antennas & Wave	Fourth	J.D. Kraus, R.J.	McGraw Hill	2011
	Propagation		Marhefka, and A.S.		
			Khan		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name]	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total	
	Java Programming Lab	0	1	2	2	5	0	1	1	2	
(SBC)			I	Examination			on Scheme				
		Comp]	ISE		MSE		E (%)	Total		
EC305		Theory		1	100*					100	
		Labor	ratory		50				50 [#]	100	

Pre-requi	site Course Codes, if any.	CS101: Problem Solving using Imperative Programming				
		CS102: Problem Solving using OOPs				
Course O	Course Objective: To learn Object-Oriented programming paradigm using Java programming					
	language.					
Course Outcomes (CO): At the end of the course students will be able to						
EC305.1	Demonstrate programming	using basic constructs of JAVA.				
EC305.2	Apply Inheritance and polyn	norphism for a given scenario.				
EC305.3	Apply abstraction and excep	otion handling to create an efficient program.				
EC305.4	EC305.4 Use Generic classes and collection for solving problem.					
EC305.5	Develop a mini project base	d on the real-world problem.				

Note:

*= Tutorial-50 marks and Mini Project-50 marks (Preferably based on real-world problem statement from Industry/Academia/Research)

#= oral exam-20 marks and Lab experiment-30 marks

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC305.1	3				2							2
EC305.2	2				2							2
EC305.3	2				2							2
EC305.4	2				2							2
EC305.5	2	1	1	1	2	1			2	2		2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC305.1		2		2		
EC305.2		2		2		
EC305.3		2		2		
EC305.4		2		2		
EC305.5		2		2		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understand Apply	Analyze Eva	aluate Create√
---------------------------	-------------	----------------

Theory Component

Module	Unit No	Topics	Ref.	Hrs.		
<u>No.</u>	No. Title	Introduction to JAVA	1 2 2	3		
1	1.1	Fundamentals of Java Programming: Classes, JDK, JRE, JVM, Unicode system, I/O using Scanner class and Buffered Reader class.	1,2,3	3		
	1.2	Instance variables, Methods, Constructors.				
	1.3					
2	Title	OOP Concepts Mapping to JAVA	1,2,3	4		
	 2.1 Inheritance (IS – A), Aggregation & Composition (Has – A) Method overloading & overriding, this, super, final keyword, Static. 					
	2.2	Auto boxing and Un boxing, Polymorphism.				
	2.3	Packages and Interfaces: Package concept, creating user defined package, Access control protection, Interface.				
3	Title	Exception Handling and Multithreading	1,2,3	4		
	3.1	Try and catch block, Multiple catch block, Nested try, finally block, Throw, Throws keywords, Exception propagation, Custom exception.				
	3.2	Create thread using Thread and Runnable class. Thread methods, schedule, sleep, join, Thread priority, Thread group, perform multiple tasks using multiple thread Thread synchronization.				
4	Title	Generics and Collection	1,2,3	3		
	4.1 Creating Generic Classes, Generic Methods, Bounded Type					
	4.2	Collection's framework, methods of collection interface (Array list, Linked list, Queue etc.)				
			Total	14		

Laboratory Component, if any.

Sr. No	Title of the Experiment
1	Program on I/O using command line arguments, scanner class, Buffered Reader etc.
2	Program on Constructor, types of constructors and constructor overloading.
3	Program on Polymorphism, Runtime polymorphism.
4	Program on Inheritance, Abstract Class, Interface.
5	Program on Nested Class, Aggregation, Composition.

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

6	Program on Multithreading.
7	Program on Exception Handling. (built in and User defined)
8	Program on Package and access modifiers.
9	Program on Generics
10	Program on Collection

Textbooks

Sr. No	Title Edition		Authors	Publisher	Year
1	Java Programming	<u>First</u>	Ralph Bravaco,	Tata McGraw-Hill	2009
	from the Group Up		Shai Simoson		
2	Java The Complete	Eleventh	Herbert Schildt	Tata McGraw-Hill	2019
	Reference				

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	An introduction to	An introduction to Third		Wiley Student	2008
	Programming and Object-		Frederick A.	Edition	
	Oriented Design using Java		Hosch		
2	Java Programming A	First	C Xavier	Tata McGraw-	2011
	Practical Approach			<u>Hill</u>	
3	Java TM Programming	Fourth	Ken Arnold,	The (Java	2005
	Language		James Gosling,	Series) by Sun	
			David Holmes	-	

Bharatiya Vidya Bhavan's Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Sem-VI

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Teachin	Credits Assigned							
Code		L	Т	Р	0	Ε	L	Т	Р	Total
		3	0	2	6	11	3	0	1	4
PC	Fundamentals of			Ex	amin	ation	Scheme			
	Antenna	Component		IS	ISE		MSE		ESE	Total
EC306A		Theory		75		75		5 1		300
		Laboratory		50					50	100

Pre-requisite Course Codes, if any. EC304: Electromagnetic Waves		EC304: Electromagnetic Waves				
Course Ob	Course Objective: The objective of the course is to provide a fundamental understanding of					
Antennas	Antennas					
Course Ou	Course Outcomes (CO): At the end of the course students will be able to					
EC306A.1	Calculate the fundamental p	parameters of Antenna.				
EC306A.2	Describe fundamental theory of antennas.					
EC306A.3	Select antenna based on applications.					
EC306A.4	Evaluate antenna based on a	applications.				
EC306A.5	Design Antenna Arrays.					
EC306A.6	Design antenna based on gi	ven requirements.				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC306A.1	2	3						2	2	2		
EC306A.2	2	3						2	2	2		
EC306A.3		2						2	2	2		
EC306A.4		2		2				2	2	2		
EC306A.5		2		2				2	2	2		
EC306A.6	2	1						2	2	2		

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC306A.1		2				-	
EC306A.2		2				2	
EC306A.3		2				2	
EC306A.4		2				2	
EC306A.5		2				2	
EC306A.6		1				1	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

	Remember	Understand	Apply	Analyze	Evaluate	Create	
--	----------	------------	-------	---------	----------	--------	--

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	110.	Fundamental Concepts:	1	08
(CO1)	1.1	Introduction, types of Antennas, Radiation mechanism, Poynting vector, Steradian concept, Power intensity		
	1.2	Antenna Parameter: Radiation pattern, Radiation power density, Radiation Intensity, Gain, Directivity, HPBW, FNBW, Beam efficiency, Bandwidth, Polarization, Input Impedance, Reflection coefficient, Return loss, VSWR, Antenna Efficiency, Effective Aperture, Communication link and Friis transmission equation.		
2		Radiation from wires and loops	1	10
(CO2, CO3)	2.1	Introduction, Infinitesimal dipole: Radiation zones, Total radiated power, Radiation resistance, Directivity, Effective area, short dipole, Finite-length dipole: Radiated power, Radiation resistance, Directivity, Effective area, Half-wave dipole and its properties, Loop antenna.		
3		Aperture Antennas	1	06
(CO3, CO4)	3.1	Introduction, Field equivalence principle, Love's equivalence principle, Electrical and magnetic conductor equivalence principle, Computation of field quantities of aperture antenna, Relation between wire and aperture antennas, Horn antenna design principle.		
4		Antenna Arrays	1	10
(CO5)	4.1	Introduction, Two-element array, Example problems, Pattern multiplication concept, N-element array, Uniform array, Array factor, Broad-side and end-fire arrays, Phased array, Directivity and pattern characteristic of linear uniform array, non-uniform array, Binomial array, Dolph-Chebyshev array concept, Design principle of Chebyshev array and examples, Planar arrays		
5		Microstrip Antennas		
(CO6)	3.1	Introduction: Rectangular Patch, Circular Patch, Parametric study, Circularly polarized antennas, Axial Ratio, MSA suspended Configuration.	1,4	08
	3.2	MSA Arrays and Feed Networks, Corporate and Series Feeds		
6 (Self Study)		Advanced Antennas: Reflector antenna, Dielectric Resonator antenna, Metamaterial based antennas, Wearable antenna, Reconfigurable antennas, Ultra-wideband antennas, Smart Antennas		06
			Total	42

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Sr. No	Title of the Experiment
1	Design a Dipole Antenna using HFSS
2	Design a monopole Antenna using HFSS
3	Design a Horn Antenna using HFSS
4	Design a Helical Antenna using HFSS
5	Design a Microstrip Patch Antenna
6	To calculate and infer various fundamental parameters of antenna like radiation pattern,
	Radiation power density, Radiation Intensity, Gain, Directivity, HPBW and FNBW
	using Scilab.
7	To calculate the power delivered to the Receiver Antenna.
8	To design a Pyramidal Horn Antenna in E-plane and H-plane
9	To show Pattern Multiplication phenomena in an Antenna using two infinitesimal
	dipoles.
10	To design Array factor pattern of N-element of uniform amplitude of Broadside Array.
11	To design Array factor pattern of N-element of uniform amplitude of End-fire Array
12	To design Array factor pattern of N-element of non-uniform amplitude of Broadside /
	End-fire Array using Binomial Array method.
13	To design Array factor pattern of N-element of non-uniform amplitude of Broadside
	/End-fire Array using DolphTschebyscheff Array method.

Textbooks:

S. N.	Title	Authors	Edition	Publisher	Year
1	Antenna Theory: Analysis	Constantine A.	Fourth	Wiley	1982
	and Design	Balanis			

Reference Books:

S. N.	Title	Authors	Edition	Publisher	Year
1	Antennas & Wave	J.D. Kraus, R.J.	Fourth	McGraw Hill	2011
	Propagation	Marhefka, and			
		A.S. Khan			
2	Handbook of Microstrip	R. James and P.S.	Third	Peter	1989
	Antennas	Hall		Peregrinus	
3	Antennas and Radio Wave	R. E. Collin	Fourth	McGraw-Hill	1985
	Propagation				
4	Broadband Microstrip	Girish Kumar and	First	Artech House	2003
	antennas	K. P. Ray			

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned			ned	
Code		L	Т	Р	0	Ε	L	Т	Р	Total
		3	0	2	5	10	3	0	1	4
(PC)	Dormon	Examination				n Scheme				
	Power	Component ISE		MSE		ESE	Total			
	- Electronics	Theory			75		75	5	150	300
EC306B		Laboratory		5	0			50	100	

Pre-requisit	e Course Codes, if any.	Basic Electrical Engineering				
Course Obje	Course Objective: To impart knowledge on the basic topology, operation and analysis using					
performance	parameters of power electron	ic converters.				
Course Out	Course Outcomes (CO): At the end of the course students will be able to					
EC306B.1	Understand the operation of	power semiconductor switches.				
EC306B.2	Analyze various single and t	hree phase AC-DC power converter circuits				
EC306B.3	Illustrate the operating princ	iple and construct a various type of DC-DC converters.				
EC306B.4	Analyze various single and t	hree phase DC-AC power converter circuits				
EC306B.5	Understand the operation of	AC-AC voltage converters by means of circuit topology and				
EC300D.3	waveforms.					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC306B.1	2.5											
EC306B.2	2	3										
EC306B.3		2										
EC306B.4		2.5	2.5									
EC306B.5	2											

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

CO/PEO/PSO	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC306B.1	2	1				
EC306B.2	2			2		
EC306B.3	2			2		
EC306B.4	2			2		
EC306B.5						

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Unde	rstand√ Apply√	/ Analyze/	Evaluate	Create
---------------	----------------	------------	----------	--------

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Power Semiconductor Devices		
-	1.1	Principle of operation, constructional features, characteristics of:	T1,	
		SCR, GTO, MOSFET and IGBT, Si-Carbide-MOSFET and IGBT,	T3	6
		Ga-Ni Power devices, Common type of Power Modules	_	
•	1.2	Basic Gate Drive circuits for SCR, MOSFET and IGBT		
2	Title	AC to DC Converters		
	2.1	Operation and analysis of single-phase controlled rectifiers with R,	T1,	
		and RL load, freewheeling effect. Operation and analysis of three-	Τ2,	
		phase controlled rectifiers with resistive load, effect of source	R4	10
		inductance,		
	2.2	Single Phase and Three-Phase PWM Rectifier, Vienna Rectifier.	T1,	
		Power factor improvements	R4	
3	Title	DC to DC Converters		
	3.1	Switch Mode Power Converters, non-isolated and isolated	T1,	
		converters, Buck, Boost and Buck-Boost converters, flyback and	R4	
		forward converters, Hardware design of SMPS converters and their		10
		Magnetics		
	3.2	Closed loop control of Switched Mode DC-DC Converters with	R5	
		Constant Voltage and Constant Current mode of Operation		
4	Title	DC to AC Converters		
	4.1	Principle of operation of Inverters, Inverter Classification.	T1,	
	4.2	Voltage source inverters: -Principle of operation and analysis of:	Τ2,	10
		Single phase Half bridge, full bridge, and three-phase bridge	R4	10
		inverters, six step operation (R-Load), PWM control of Voltage		
		source converters. Introduction to Space Vector Modulation		
5	Title	AC-AC converters		
	5.1	Principle of on-off and phase control – single-phase half and full	T2	
		wave AC voltage controller, three-phase AC voltage controller.	R6	6
		Single Phase Bidirectional AC switches using MOSFETs, IGBTs,		
		Single-phase Bidirectional AC-AC converters		
6	Self	Comparison of Power Semiconductor Devices, Detailed analysis of		6*
	Study	minimum one application for each type of converter (AC-DC, DC-		
		AC, DC-DC)		
		Total (*not incl	uded)	42

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Laboratory Component (Indicative): To be completed minimum of 8 to 10 experiments

Sr. No	Title of the Experiment
1	Study of Characteristics and Specification of SCR, MOSFET/ IGBT
2	Gate Driver Circuits for SCR, MOSFET, IGBTs
3	Single phase Line Commutated Semi-converter and Fully controlled Converter
4	Single phase PWM Vienna Rectifier
5	Operation and analysis of single- phase bridge inverter with R Load and controllable
	Switches
6	Demonstration of PWM three phase bridge Voltage Source inverter with L-C filter
7	Design and Demonstration of a Buck-Converter and Boost Converter in CCM
8	Design and Demonstration of a flyback-Converter
9	Design and Demonstration of single-phase AC Voltage Controller using Thyristors
10	Simulation Exercise on PWM Vienna Rectifier
11	Simulation Exercise on Single-phase PWM AC-AC converters with Bidirectional switches

Textbooks

Sr. No	Title	Edition	Authors	Publisher	Year
1	Power Electronics:	Third	Ned Mohan,	John Wiley and	2003
	converters, Application, and		Undeland and	sons	
	design		Robbin		
2	Power Electronics Circuits,	Fourth	Rashid M.H.	Pearson	2004
	Devices and Applications			Education	
3	Power Electronics	Second	MD Singh and K.B	Tata McGraw	2006
			Khanchandani	Hill	

Reference Books

		1			1
Sr.	Title	Edition	Authors	Publisher	Year
No					
1	Modern Power Electronics and	First	Bimal K Bose	Pearson	2002
	AC Drives			Education Asia	
2	Modern Power Electronics	Second	P.C Sen	S.chand	2005
3	Power Electronics	Eleventh	P.S.Bimbra,	Khanna	2003
				Publishers	
4	Power Electronics	First	S. K. Mandal	McGraw Hill	2014
				Education (India)	
5	Switch-mode power converters	First	Keng C. Wu.	Elsevier Inc.	2006,
6	Advanced Power Electronics	First	EUZELI CIPRIANO	John Wiley &	2015
	Converters		DOS SANTOS JR.,	Sons	
			EDISON ROBERTO		
			CABRAL DA SILVA		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Teachir	Hrs/w	Credits Assigned						
Code		L	Т	P	0	Ε	L	Т	Р	Total
	Computer Communication	3	-	2	6	11	3	-	1	4
PC		Examination Scheme								
		Component		ISE		Μ	SE	ESE		Total
EC307	Networks	Theory		75		75		150		300
		Laboratory		50				50		100

Pre-requi	site Course Codes, if any.	EC301: Analog and Digital Communication							
Course O	bjective: The objective of the	course is to provide a fundamental understanding of							
ComputerCommunication networks.									
Course O	Course Outcomes (CO): At the end of the course students will be able to								
EC307.1	Apply Conceptual understan	ding and functional aspects of computer communication and							
EC307.1	telecom networks.								
EC307.2	Analyze design and configu	re small and medium sized computer network that meets a							
LC307.2	specific need for communica	tions.							
EC307.3	Simulate computer networks	and analyze the simulation results including troubleshoot							
EC307.5	connectivity problem occurri	ng at layers of TCP/IP model.							
EC307.4	Apply the principles behind	the Modern Network approaches such as SDN NFV and IoT							
EC307.4	and security issues.								

CO-PO Correlation Matrix: (1-Weak, 2-Medium, 3-Strong)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC307.1	3	3										
EC307.2			3	2	3							2
EC307.3			3		3	2						
EC307.4	2	2							3	3		3

CO-PEO/PSO Correlation Matrix: (1-Weak, 2-Medium 3-Strong)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC307.1		2				
EC307.2		2		3		
EC307.3		2			3	
EC307.4		2				

BLOOM'S Levels Targeted (Pl. Tick appropriate)

RememberUnderstandApply $$ Analyze $$ Evaluate $$ Create
--

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Fundamental of Computer Networks	1	08
	1.1	Basic definitions. Networking devices. Layering architecture: The		
		OSI model. Description of layers.		
	1.2	The Internet protocols TCP/IP protocol suit, IP Protocol, and address.		
		What is the Internet? Delay on the Internet (trace route and ping).		
		History of the Internet. Security on the Internet.		
2	Title	Enterprise Network Design	2	06
	2.1	Network requirements, Planning and Design, Structured Wiring and		
		Structured Network Design consist of Core Layer, Distribution		
		Layer, and Access.		
	2.2	Network Design methodology & Network Design considerations Co		
		re Layer Technologies. Investigating Server Farms and Security Inte		
		grating, Remote Sites into the Network Design.		
3	Title	Transport and Application Layer	1,3	06
-	3.1	Transport Protocols introduction. Reliable data transfer - Stop-and-		
		wait and Go-back-N design and evaluation. TCP and UDP semantics		
		and syntax. TCP RTT estimation. Principles of congestion control -		
		efficiency and fairness, reactive and proactive. Socket's		
		programming A simple client-server implementation.		
	3.2	Application layer: Application layer protocols, Client-server as a key		
		model. Web, HTTP, FTP, SMTP, POP3, and DNS. Peer-to-peer files		
		sharing networks.		
4	Title	Software Defined Network and Network Function Visualization	5	10
	4.1	Network Requirements - The SDN Approach - SDN- and NFV-		
		Related Standards - SDN Data Plane - Open Flow Logical Network		
		Device - Open Flow Protocol - SDN Control Plane Architecture -		
		REST API - SDN Application Plane Architecture.		
	4.2	NFV Concepts - NFV Reference Architecture - NFV Infrastructure -		
		Virtualized Network Functions - NFV Management and		
		Orchestration - NFV Use Cases - SDN and NFV		
5	Title	Internet of Things (IoT) SECURITY	1,3	10
	5.1	Threats and attacks. Symmetric and public key cryptography. IPsec-		
		Authentication Header-Encapsulating security payload,		
	5.2	Secure sockets-Secure Socket Layer (SSL) - Firewalls and Internet		
		access- Packet filter firewall- Proxy firewall- VPNs - Mobile IP -		
		Header Compression – Voice over IP –		
	Title	Networks		5
6	Self-	Types of Networks, Transmission media, Network Topologies		
	Study			
	J		Total	42

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Network Lab set up
2	IP Networking & Network Commands: ipconfig, ping, trace route, net stat, arp, ns
	lookup dig & route etc.
3	Network Protocol Analyzers: TCPDUMP & Wire shark
4	Installation & Configuration of Web Server (at least four) using open-source tool
5	Network Socket Programming
6	Installation and configuration of open-source Network simulator software
7	Firewall Implementation (IPTABLES)
8	Implementation of SDN
9	Implementation of VPN
10	Cryptography using open-source tools/Crypt tools and open SSL

Textbooks

Sr.	Title	Edition	Authors	Publisher	Year	
No						
1	TCP/IP protocol suit	Fourth	Behrouz A.	McGraw Hill	2009	
	_		Forouzan (Author)	Education		
2	Introducing Network	-	CCNA Discovery	-	-	
	Design Concepts		Learning Guide			
3	Computer Networking: A	Fifth	J. F. Kurose and K. W.	Prentice Hall	2009	
	Top-Down Approach		Ross			
4	Data Communication and	Fourth	B. A. Forouzan	McGraw Hill	2017	
	Networking					
5	Information Security:	First	Deven Shah	Wiley	2007	
	Principles and Practice					

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Foundations of Modern Networking: SDN, NFV, QoE, IoT, and Cloud		William Stallings	Addison-Wesley ISBN: 9780134175393	2015
2	Computer Networks	Fifth	A. Tanenbaum	Pearson Education	2013
3	Data and Computer Communications	Tenth	William Stallings	Pearson Education	2013

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Teachir	Hrs/w	Credits Assigned						
Code		L	Т	P	0	Ε	L	Т	Р	Total
	Mobile and Wireless	2	-	2	2	6	2	-	1	3
PE-1		Examination Scheme								
		Component		ISE		MSE		ESE		Total
EC311	Communication	Theory		50		50		100		200
ECJII		Laboratory		50				50		100

Pre-requisite Course Codes, if any.EC307: Computer Communication NetworkCourse Objective: The objective of the course is to provide a fundamental understanding of Mobile
and Wireless Communication.

Course Outcomes (CO): At the end of the course students will be able to

EC311.1	Demonstrate the ability to discuss wireless communication concepts, system capacity and service provided.
EC311.2	Evaluate various path loss and fading effects.

EC311.3 Analyze losses, multipath effects, architecture, and protocols of 3G,4G and 5G systems.

EC311.4 Compare various operational aspects of Wireless Personal Area Networks.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC311.1	2		2									
EC311.2			2	2	2				2	2		
EC311.3	3				2				2	2		2
EC311.4	2	2										

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC311.1		2				
EC311.2		2	2			
EC311.3		2	2			
EC311.4		2				

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understand√ Appl	y√ Analyze√ Evalu	uate Create
---------------------------	-------------------	-------------

Theory Component

Module	Unit No.	Topics	Ref.	Hrs
1	Title	Introduction to mobile communication	1	5
	1.1	Frequency Division Multiple access, Time Division Multiple access, Spread Spectrum Multiple access, Space Division Multiple access, and OFDM.		
	1.2	Frequency reuse, channel assignment strategies, handoff strategies, interference and system capacity, trunking and grade of service, improving the capacity of cellular systems and related design problems		
2	Title	Mobile Radio Propagation	2,3	10
	2.1	Introduction to radio wave propagation, reflection, diffraction, scattering. Indoor and Outdoor propagation Models. Practical Link Budget Design using path loss models.		
	2.2	Small-Scale Multipath propagation, small scale multipath measurements, types of small-scale fading, fading effects due to Doppler spread. Statistical models for multipath fading channels-Clarks model,2-day Rayleigh fading model, Saleh and Valenzuela indoor model.		
3	Title	3G UMTS Network, 4G LTE and 5G Technologies	4	8
	3.1	UMTS network architecture, Protocol Structure, Channel Structure, Frame slots and symbols, modulation, coding, multiple antenna techniques, WCDMA, Modulation, Handoff and Power Control.		
	3.2	4G LTE network Architecture, LTE Radio Access, Radio- Interface Architecture, Physical Transmission Resources, Downlink and Uplink Physical-Layer Processing, Scheduling and Rate Adaptation.5G Concepts and Architectures, Network Slicing Architecture, mm Wave communication, multiple Cell Types.		
4	Title	Personal Area Network Technologies	3	5

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

	4.1	Bluetooth: concepts of Piconet, scatternet etc., protocol stack, link types, security, network connection establishments, usage models, etc.		
	4.2	Wi-Fi and ZigBee: components, architecture, network topologies, protocol stack etc.		
5	Self- Study	Rayleigh fading model, Saleh, and Valenzuela indoor model. UWB and RFID: technical requirements, components and characteristics, applications.	2,3	4*
	-	Total (* Not Inc.	luded)	28

Laboratory Components:

Sr. No	Title of the experiment
1	Study of GSM modem: i] Install and configure minicom, wvdial & AT Commandsii] Python scripting.
2	Channel Allocation Techniques
3	Modulation Techniques using GNU Radio.
4	Spread Spectrum Modulation, OFDM Modulation.
5	Wireless Path Loss Computations: I] Free-space Propagation Path Loss Model ii] Indoor Propagation Model - Okumura Model etc.
6	Wireless Path Loss Computations: iii] Outdoor Propagation Model - Hata Model etc
7	Open-Source LTE/EPC Network Simulation using NS-3, Omnet++
8	Open-Source Personal Area Network simulation using NS-3, Omnet++
9	Millimeter Wave (5G) Network, Wi-Fi Network simulation usingNS-3, Omnet++
10	Virtual Lab.

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Textbooks

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	Wireless Communications	Third	Theodore S.	Prentice Hall of India,	-
			Rappaport	PTRpublication	
2	Wireless Communications	Second	Andreas Molisch	Wiley	-
3	Wireless Network	Third	Vijay Garg	Pearson Education	
	Evolution 2G-3G				
4	4 G Roadmap and	Second	Young Kyun Kim	Artech house	
	Emerging Communication		and Ramjee		
	Technologies		Prasad		

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Wireless Communication	Second	Singhal	ТМН	
2	Mobile Communication	Second	C.Y Lee	Wiley	

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Tea	Teaching Scheme (Hrs./week)					Credits Assigned			
Code		L	Т	P	0	Ε	L	Τ	Р	Total	
	Microwave Communication	2	0	2	6	11	2	0	1	3	
PE-2		Examination Sche					chem	eme			
		Compon	ent	ISI	E	MS	E	ES	SE	Total	
		Theory		Theory 50		50 50		10	0	200	
EC312		Laboratory		50				5	0	100	

Pre-requi	isite Course Codes, if any. EC304: Electromagnetic Waves						
Course C	Course Objective: The objective of the course is to provide a fundamental understanding of						
Microway	ve Communication						
Course O	outcomes (CO): At the end of the course students will be able to						
EC312.1	Apply EM Wave theory to understand nature of Microwave Signal and their						
EC512.1	corresponding guiding structures.						
EC312.2	Identify Passive Waveguide Components, Sources and Detectors						
EC312.3	Analyze Passive Waveguide Components, Sources and Detectors						
EC312.4	Compute amplifier and filter design parameters on the basis of						
EC512.4	application/requirement.						
EC312.5	Justify choice of amplifier and filter design parameter.						
EC312.6	Design Microwave System components.						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC312.1	3	3	3	1	3					3		
EC312.2	2	2	2	2	3					3		
EC312.3	2	2	2	2	3					3		
EC312.4	2	2	2	2	3					3		
EC312.5	2	2	2	2	3					3		
EC312.6	3	3	3		3					3		

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

			ι O/			
	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC312.1		2			-	
EC312.2		2			-	
EC312.3		2			2	
EC312.4		2			2	
EC312.5		2			2	
EC312.6		1				

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember $$ Understand $$ Apply $$ Analyze $$ EvaluateCreat					ite				
Theory C	ompon	ent			-				
Module	Unit	Topics			Ref.	Hrs.			
No.	No.								
1	Introduction to Microwave Engineering								
	1.1	Lumped and Distributed Elements, Freque Application, Advantages, and disadvantage	•	racteristics,					
	1.2	Rectangular and circular waveguides: TE,	TM modes, dom	inant mode					
	1.3	Microwave Components: Resonators, re-entrant cavities, scattering parameters, tees, hybrid ring, directional couplers, phase shifters, terminations, attenuators, ferrite devices such as isolators, gyrators, and							
-		circulators.			1	1.0			
2		Microwave Tubes and semiconductor devices				10			
	2.1	Two Cavity Klystron and Reflex Klystro Tube, Cross Field Amplifier, Cylindrical M		lling Wave					
	2.2	PIN Diode, Varactor Diode, Schottky D Diode, IMPATT Diodes.	iode, Gunn Dic	de, Tunnel					
3		Microwave Amplifiers and Filters			1	08			
	3.1	Two port power gain and stability							
	3.2	Microwave Low pass Filter design							
4(Self Study)		Microwave Frequency Applications: Radars, Biomedical Devices, Drying Tomography, Satellite Communication	g materials,	Microwave		06			
					Total	28			

Laboratory Component, if any. (Minimum 10 Laboratory experiments using both hardware and software are expected)

Sr. No	Title of the Experiment
1	Model and simulate rectangular waveguide in CAD to study EM wave propagation within
	it.
2	Model and simulate circular waveguide in CAD to study EM wave propagation within it.
3	Design of Waveguide H-plane TEE using CAD
4	Design of Directional Coupler Using CAD
5	Design of Low pass Filter using CAD
6	Implementation of a technical paper using CAD
7	Microwave bench setup (CO1) A) Introduction to the lab B) Identification of waveguide
	and its components. How to determine the parameters for each component by looking at
	the data sheet. C) Klystron setup and characterization plotting Vr vs Vo D) Frequency and

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

	wavelength measurement of the signal generated by klystron
8	Determination of parameters of passive components using Bench and VNA. Analysis of
	comparative study to be submitted.
9	Determine the frequency and wavelength in a rectangular waveguide using direct and
	indirect measurement.
10	Design of Planar Hybrid Ring using CAD

Textbooks:

S. N.	Title	Authors	Edition	Publisher	Year
1	Microwave Engineering	David M Pozar	Fourth	John Wiley & Sons	2012
2	Microwave Devices and Circuits	Samuel Y Liao	Third	Pearson Education	

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	P	0	Ε	L	Т	Р	Total
	Speech and – Audio Processing –	2	0	2	8	8	2	0	1	3
PE-I		Examination Scheme								
		Compone	ent	ISE	2	MS	SE	E	SE	Total
EC321		Theory	7	50		5	0	1)0	200
		Laborato	ory	50		-	-	5	0	100

Pre-requisite Course Codes, if any. EC303: Digital Signal Processing								
Course O	Course Objective: To familiarize the basic & advance mechanisms of speech and audio							
processing	processing							
Course O	Course Outcomes (CO): At the end of the course students will be able to							
EC321.1	Apply concepts of speech coding.							
EC321.2	Analyze Audio Perception&	Analyze Audio Perception& psycho-acoustic model.						
EC321.3	Demonstrate parametric representation of speech.	Demonstrate parametric representation, time domain & frequency domain representation of speech						
EC321.4	Analysis of predictive methods of speech.							
EC321.5	Develop systems for various a	applications of speech& audio processing.						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC321.1	2											
EC321.2		2										
EC321.3			2									
EC321.4			2		2							
EC321.5					2							

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC321.1	2			2		
EC321.2	2			2		
EC321.3		2			2	
EC321.4		2			2	
EC321.5		2			2	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understand Apply√	Analyze√	Evaluate√	Create
-----------------------------------	----------	-----------	--------

SPIT/Syllabus/2021-25/EXTC/pg. 123

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Mechanics of speech		
	1.1	Speech production: Mechanism of speech production, Acoustic phonetics – Digital models for speech signals -Sampling speech signals, basics of quantization, delta modulation, and Differential PCM	1,2	8
	1.2	Signal Processing Models of Audio Perception: Basic anatomy of hearing System. Auditory Filter Banks, Psycho-acoustic analysis: Critical Band Structure, Absolute Threshold of Hearing, Simultaneous Masking, Temporal Masking, Quantization Noise Shaping, MPEG psycho-acoustic model.	1,2	
2	Title	Time domain methods for speech processing		8
	2.1	Time domain parameters of Speech signal – Methods for extracting the parameters Energy, Average Magnitude, zero crossing Rate – Silence Discrimination using ZCR and energy	1,2	
	2.2	Short Time Auto Correlation Function – Pitch period estimation using Auto Correlation Function.	4	
3	Title	Frequency domain method for speech processing	1,2	8
	3.1	Short Time Fourier analysis: Fourier transform and linear filtering interpretations.	4	
	3.2	Sampling rates - Spectrographic displays - Pitch and formant extraction - Analysis by Synthesis - Analysis synthesis systems: Phase vocoder, Channel Vocoder.	2,3	
	3.3	Homomorphic speech analysis: Cepstral analysis of Speech, Formant and Pitch Estimation, Homomorphic Vocoders, Speech coding, speech enhancement.	3,5	
4	Title	Linear predictive analysis, synthesis of speech	3,5	4
	4.1	Basic Principles of linear predictive analysis – Auto correlation method – Covariance method.		
	4.2	Solution of LPC equations – Cholesky method – Durbin's Recursive algorithm.		
	4.3	Application of LPC parameters – Pitch detection using LPC parameters – Formant analysis – VELP – CELP, Speech synthesis: basics of articulatory, source-filter, and concatenative synthesis – VOIP.		
5	Self Study	Audio compression methods, Audio quality analysis, Spatial Audio Perception and rendering, Speaker identification and verification		
	•		Total	28

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Laboratory Component

Sr No.	Experiment Title
1	Speech production
2	Analysis of speech signal
3	Short-time spectrum analysis of speech
4	Spectrographic analysis of speech
5	Linear prediction analysis of speech
6	Formant synthesis
7	Cepstral analysis of speech
8	Analysis by synthesis of speech
9	Manual speech signal-to-symbol transformation
10	Speaker Analysis /speaker recognition

Textbooks:

Sr. No	Title	Edition	Authors	Publisher	Year
1	Speech Communications: Human & Machine	Second	Douglas O'Shaughnessy	IEEE Press, Hardcover 2/e, ISBN: 0780334493.	1999
2	Discrete-Time Speech Signal Processing	First	Thomas F, Quatieri,	Prentice Hall /Pearson Education	2004

Reference Books:

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	Speech Processing and Synthesis Toolboxes	First	Donald G. Childers	John Wiley & Sons, September	1999
				ISBN:0471349593	1777
2	Fundamentals of Speech	First	L.R. Rabiner and	Prentice Hall	
	Recognition		B. H. Juang		2009
3	Speech and Audio Signal	Second	Ben Gold and	John Wiley and	2011
	Processing		Nelson Morgan	Sons Inc., Singapore	2011
4	Discrete Time	First	J.R. Deller, J.H.L.	John Wiley, IEEE Press	
	Processing of Speech		Hansen and J. G.		1999
	Signals		Proakis		
5	Digital Processing of	First	L. R. Rabiner and	Prentice Hall	1979
	Speech Signals		R. W. Schaffer .		19/9

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Cr	Credits Assigned			
Code		L	Т	P	0	Ε	L	Т	Р	Total	
		2	0	2	4	4	2	0	1	3	
PE-2		Examination Scheme									
	DSP Processors	Compone	ent	ISE		MSI	E	ESI	E	Total	
EC322		Theory	7	50 5		50		100)	200	
		Laboratory		50				50		100	

Pre-requi	isite Course Codes, if any.	EC303: Digital Signal Processing			
Course O	Course Objective: To develop implementation of DSP algorithms using DSP Processor				
Course Outcomes (CO): At the end of the course students will be able to					
EC322.1	EC322.1 Evaluate different types of errors in DSP implementation.				
EC322.2	Describe architectures of TMS320XX devices.				
EC322.3	Explore various interfacing de	evices to DSP Processors.			
EC322.4	22.4 Demonstrate Fast DSP algorithms using DSP processor				
EC322.5	Develop DSP application usin	g DSP hardware.			

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC322.1	2											
EC322.2		2	1									
EC322.3		2	1									
EC322.4	2				1							
EC322.5			2					1	1	1		1

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC322.1		2		2		
EC322.2		2		2		
EC322.3		2		2		
EC322.4		2		2		
EC322.5		2		2		

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	✓ Apply	✓ Analyze	✓ Evaluate	Create

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Computational Accuracy in DSP Implementations		
1	1.1		1,2	04
	1.1	Number formats for signals and coefficients in DSP systems. Dynamic Range and Precision, Sources of error in DSP	1,2	04
		implementations, A/D Conversion errors, DSP Computational errors,		
		D/A Conversion Errors, Compensating filter.		
	1.2	Sources of error in DSP implementations, A/D Conversion errors,	1,2	ł
	1.4	DSP Computational errors, D/A Conversion Errors.	1,2	
2	Title	Programmable DSP Hardware		08
4	2.1	Processing Architectures (von Neumann, Harvard), DSP core	1,2	00
	2.1	algorithms (FIR, IIR, Convolution, Correlation, FFT).	1,2	
	2.2	IEEE standard for Fixed- and Floating-Point Computations, Special	1,2	1
	<i></i>	Architectures Modules used in Digital Signal Processors (like MAC	1,2	
		unit, Barrel shifters), On-Chip peripherals, DSP benchmarking.		
3	Title	Structural and Architectural Considerations		06
5	3.1	Parallelism in DSP processing, Texas Instruments TMS320 Digital	1,2	
	3.1	Signal Processor Families, Fixed Point &floating-Point TI DSP	1,2	
		Processors.		
	3.2	Data Addressing modes, Memory space of Processors, Program	1,2	1
	5.4	Control, instructions, and programming of TMS320XX Processors.	1,2	
	3.3	On-Chip Peripherals, Interrupts of TMS320XX processors, Pipeline	1,2	
	5.5	operation of TMS320XX Processors.	1,2	
4	Title	VLIW Architecture		06
-	4.1	Current DSP Architectures, GPUs as an alternative to DSP	1,2	
	7.1	Processors.	1,2	
	4.2	Code Composer Studio, Mixed C and Assembly Language	1,2	1
		programming, on-chip peripherals, Simple applications	1,2	
		developments as an embedded environment.		
	4.3	Peripherals to Programmable DSP Devices: Memory space	1,2	1
		organization, External bus interfacing signals, Memory interface,	-,-	
		Parallel I/O interface, Programmed I/O, Interrupts and I/O, Direct		
		memory access (DMA).		
5	Title	Hardware implementation of DSP Algorithms		04
-	5.1	The Q-notation, FIR Filters, IIR Filters, Interpolation Filters,	1,2	
	~**	Decimation Filters, PID Controller, Adaptive Filters	-,-	
	5.2	An FFT Algorithm for DFT Computation, A Butterfly Computation,	1,2	1
	- 12	Overflow and scaling, Bit-Reversed index generation	-,-	
6	Self-	A CODEC interface circuit, A CODEC-DSP interface example.		<u> </u>
v	Study			
		1	Total	28

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Laborato	ry Component
Sr. No	Title of the Experiment
1	Harmonic Generation
2	FIR Filtering
3	IIR Filtering
4	Fast Fourier Transform Algorithm
5	Linear Filtering Algorithm
6	Sensor Interface
7	ADC-DAC Interface
8	Real Time Audio Signal Processing
9	Real time Biomedical Signal Processing
10	Real Time Power Signal Processing

Textbooks:

ICAU	JUURS.				
Sr.	Title	Edition	Authors	Publisher	Year
No					
1	Digital Signal Processors, Architecture, Programming and Applications.	First	B. Venkata Ramani and M. Bhaskar	Tata McGraw Hill (TMH) Publication 2004	2004
2	DSP Implementation using DSP microprocessor with Examples from TMS32C54XX	First	Avtar Singh, S. Srinivasan	Thomson Publication	2004

Reference Books:

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	DSP Processor Fundamentals, Architectures & Features	First	<u>Phil Lapsley</u> , <u>Jeff Bier</u> , <u>AmitShoham</u> , <u>Edward A. Lee</u>	Wiley Publication	1997
2	Digital Signal Processors Architectures, Implementation and Application	First	Sen M. Kuo & WoonSergGan,	Pearson	2009
3	Architectures for Digital Signal Processing	First	Peter Pirsch,	Wiley Publication	1998
4	Digital Signal Processing	Second	S. Salivahanan A. Vallavaraj G. Gnanapriya	Tata McGraw Hill Publication	2001

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name]	Feachi (Hr	ng Sc s/wee			(Credit	ts Assi	gned
Code		L	Т	Р	0	Ε	L	Т	Р	Total
		3			5	8	3			3
PE	Distal CMOS VI SI		Examinatio				on Scheme			
	Digital CMOS VLSI					MSE	E	SE	Total	
EC331	Design	The	ory		75		75	1	50	300
		Labor	atory							

Pre-requisite Course Codes, if any.	ET101: Basic Electrical Engineering
	EC101: Digital Systems and Microprocessors
	ET202: Electronic Devices
	ET205: Analog Circuits

Course Objective: Today's growth in electronic sector is due to improvements in semiconductor chip design. VLSI course is the foundation course introduced to teach fundamentals of MOSFET based logic circuit design. The primary objective of this course is to impart basic knowledge required to study advanced courses in VLSI domain.

Course Outcomes (CO): After successful completion of the course, student will be able to

EC331.1	Discuss scaling theory for MOSFET
EC331.2	Design MOSFET based inverter circuits with given constraints
EC331.3	Analyze MOSFET based combinational and sequential logic circuits
EC331.4	Realize MOSFET based logic circuits with different design styles
EC331.5	Discuss principle of working of semiconductor memories

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

EC331	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC331.1	3											
EC331.2		3										
EC331.3			3									
EC331.4			3									
EC331.5			3									

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

EC331	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC331.1	1	2	2			
EC331.2	2	1	2		2	2
EC331.3	1	1	1		2	
EC331.4	2	2	2		2	
EC331.5	1	2	1		2	

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

BLOOM'S Levels Targeted (Pl. Tick appropriate)

ember · Understand Apply ·	Analyze $\cdot $	Evaluate	Create
----------------------------	------------------	----------	--------

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs	
1	Title	Review of MOSFET Physics		08	
	1.1	Threshold Voltage Equation, MOSFET Structure and Operation, Current-Voltage Characteristics and MOSFET Capacitances	1		
-	1.2	MOSFET Scaling, Types of scaling and small geometry effects	1		
2	Title	MOSFET Inverters		08	
-	2.1	Static Characteristics of resistive load and CMOS Inverter, comparison of all types of MOS inverters	1		
	2.2	Dynamic Characteristics of inverters, design of CMOS inverters with constraints	1		
3 Title		Combinational MOS Logic Circuits	1,2	08	
	3.1	MOS Logic Circuits with Depletion NMOS Loads and CMOS Logic Circuits			
	3.2	Complex Logic Circuits and Concept of equivalent CMOS inverter			
4	Title	Dynamic Logic Circuits	1	08	
-	4.1	Static CMOS, pass transistor logic, transmission gate			
-	4.2	Pseudo NMOS, Domino, NORA, Zipper, C ² MOS			
5	Title	Sequential MOS Logic Circuits	1,2	06	
-	5.1	Behavior of Bi-stable Elements			
-	5.2	Circuit Realization: SR Latch, JK FF, D FF, 1 Bit Shift Register, MUX, decoder			
6	Title	Semiconductor Memories	2,3	06	
	6.1	ROM Array, SRAM (operation, design strategy, leakage currents, read/write circuits),			
	6.2	DRAM (Operation 3T, 1T, operation modes, leakage currents, refresh operation, Input-Output circuits),			
	6.3	Flash (mechanism, NOR flash, NAND flash)			
ľ	6.4	Peripheral Circuits: Sense amplifier, decoder			
1		·	Total	42	

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Reference Books

Sr. No.	Title	Edition	Author	Publisher	Year
1	CMOS Digital Integrated	Third	Sung-Mo Kang,	Tata McGraw	
	Circuits Analysis and Design	Edition	Yusuf Leblebici	Hill	
2	Digital Integrated Circuits: A	Second	Jan M. Rabaey,	Pearson	
	Design Perspective	Edition	Anantha	Education	
			Chandrakasan,		
			Borivoje Nikolic		
3	Introduction to VLSI Circuits	Student	John P. Uyemura	Wiley	2013
	and Systems	Edition			

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name]	Teaching Scheme (Hrs/week)				(Credits Assigned			
Code		L	Τ	Р	0	Ε	L	Т	Р	Total	
	,	3			5	8	3			3	
PE		Examination Scheme									
		Comp	Component ISE		ISE]	MSE		SE	Total	
EC332		The	Theory		75		75	1	50	300	
		Laboratory									

Pre-requisi	te Course Codes, if any.	EC101: Digital Systems and Microprocessors			
		ET201: Computer Architecture and Organization			
		ET206: Microcontrollers			
Course Obj	jective: To empower the stu	idents in system design skills using modeling practices and			
learn key concepts in reliability of embedded systems with respect to Industrial standards.					
Course Out	Course Outcomes (CO): After successful completion of the course, student will be able to				
EC332.1 Discuss design metrics of embedded system to design real time applications to matc					
	recent trends in technology	7.			
EC332.2	Analyze the reliability of e	mbedded system with respect to fault detection and fault			
EC352.2	tolerance				
EC332.3	Apply the industry standard	ds for assessment of embedded product			
EC332.4	Analyze the given embedd	ed application with respect to security			
EC332.5	Choose suitable criteria for	selection of embedded application.			
EC332.6	Demonstrate hardware and	software skills based on embedded case studies.			

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC332.1	2	2	2									
EC332.2	2	2	2									
EC332.3	2	2	2									
EC332.4	2	2	2									
EC332.5	2	2	2									
EC332.6	2	2	2	2	2							

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

СО	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC332.1		1				
EC332.2	1		1			
EC332.3	1		1			

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

EC332.4	1	1	1		
EC332.5		1	1		
EC332.6	1		1	2	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember ·Understand ·Apply ·	Analyze $\cdot $	Evaluate	Create
-------------------------------	------------------	----------	--------

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs
1	Title	Fundamentals of Embedded System		12
	1.1	Introduction to Embedded Systems, Characteristics of Embedded System, Design Process, Design Metrics, and optimization of various parameters of embedded system. Design trade-offs due to process compatibility, thermal considerations, etc. Real time System's requirements, real time issues, interrupt latency	1,2	
	1.2	Embedded Product development lifecycle. Program Modeling concepts with design examples: DFG, FSM, Petri-net, UML, Use case, Object and Class Structuring	1,2	
	1.3	Technological aspects of embedded systems: Embedded microcontroller cores, embedded memories, interfacing between analog and digital blocks, signal conditioning, digital signal processing, sub system interfacing, interfacing with external systems and user interfacing. Introduction to real time programming languages and operating systems for embedded systems.	1,5	
2	Title	Reliable Embedded System		08
	2.1	Reliable Embedded System: Single-program, real-time embedded systems, TT vs. ET architectures, Modeling system timing characteristics, basic tick lists, determining the required tick interval, short tasks, importance of task offsets, task sequence initialization, task jitter, response times, importance of WCET/BCET information, challenges with WCET/BCET measurements, TTC scheduler, Fault-tolerance Techniques	3	
3	Title	Industry Standards		06
	3.1	Introduction to IEC 61508 standard: Organizing and managing the life cycle, Requirements involving the specification, Requirements	6,7	1

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

	T	otal		42
	5.3	Embedded systems in healthcare domain.	1,2	
		embedded communication, embedded software and development processes, Verification, Testing and Timing Analysis		
	5.2	Automotive Embedded Systems: Automotive Architectures,	1,2]
		Application Examples: Washing Machine, Auto-focusing digital camera and Air-conditioner		
		Fuzzy Logic Controller		
		tuning.		
		PID Controllers: Software Coding of a PID Controller, PID		
		Examples: Speed Control.		
	5.1	Embedded Control Applications: Introduction, Open-loop and Closed Loop Control Systems	1,2	
,			1.0	
5	Title	protocols, attacks on embedded systems and counter measures. Case Studies *		08
		secure embedded systems, The Key, Using Keys, Various		
	4.2	Security in Embedded Devices and Systems: Introduction to	4	
	4.2	Protocols. Wireless Applications: Blue tooth		4
		Protocols for industrial and control applications, Internetworking		
		Languages, Network Based Design, Internet-Enabled Systems:		
		Elements of Protocol Design, High Level Protocol Design		
		Bridges, Routers, Switches, Distributed Embedded Architectures,		
		and Protocols. Network Architectures, Network Components-		
	4.1	Networked Embedded System: Network Fundamentals, Layers	10	
4	Title	Security in Network Embedded System		08
		software tools into ISO 26262 process		
		System Level, Product Development Software Level, Fitting		
		26262), Parts of ISO 26262, ASIL Levels, Product Development		
	3.3	Introduction to IEC 26262: Introduction of ISO/DIS 26262 (ISO	9	
		transients and bursts.		
		Discharge, Radiated RF electromagnetic fields, Electrical fast		
		Protection of the Public Mains network, Immunity, Electrostatic		
	3.2	Introduction to IEC 60601 standard: Protection of radio services,	8	
		Organizing, and managing the software engineering		
		for design and development, Integration and test, Operations and maintenance, Validation, Modifications, acquired sub-systems,		

* Students are supposed to do some experiments/mini-projects as per instructions of teacher and requires individual efforts of students

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Reference Books

Sr. No.	Title	Edition	Author	Publisher	Year
1	Embedded System: Architecture,	2nd	Rajkamal	Tata McGraw-Hill	2011
	Programming and Design	edition			
2	Introduction to Embedded Systems	2nd edition	Shibu K. V	Tata McGraw-Hill	2017
3	The Engineering of Reliable systems: LPC1769	-	Pont M. J	SafeTTy Systems	2014
4	Security in Embedded Devices	2010th edition	Gebotys, Catherine H.	Springer	2010
5	Embedded Microcomputer Systems: Real time Interfacing	3rd edition	Jonathan W. Valvano	Cengage Learning	2012
6	Functional Safety, A Straightforward Guide to applying IEC 61508 and Related Standards	2nd edition	David Smith	Elsevier	2004
7	IEC 61508: IEC standard for the functional safety for electrical, electronics and programmable electronics equipment	-	-	https://www.iec.ch/s afety	-
8	IEC 60601: IEC standard on Medical Electric Equipment	-	-	https://www.iec.ch/s afety	-
9	IEC 26262: IEC standard on Road vehicles	-	-	https://www.iec.ch/s afety	
10	Embedded Systems Handbook: Networked Embedded Systems	2nd edition	Richard Zurawski	CRC Press	2009

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
(Category) Code		L	Т	Р	0	Ε	L	Т	Р	Total
	Power Electronic Converters	3	0	0	5	8	3	0	0	3
PE		Examination Scheme								
		Component		IS	SE MSI		E	ESE	Total	
EC341A	(@)	Theory		75		75		150	300	

@--> Not to be repeated if already studied as a Program Core i.e. Power Electronics

Pre-requisit	e Course Codes, if any. Basic Electrical Engineering							
Course Obj	ective: To impart knowledge on the basic topology, operation and analysis using							
performance parameters of power electronic converters.								
Course Outo	Course Outcomes (CO): At the end of the course students will be able to							
EC341A.1	Understand the operation of power semiconductor switches.							
EC341A.2	Analyze various single and three phase AC-DC power converter circuits							
EC341A.3	Illustrate the operating principle and construct a various type of DC-DC converters.							
EC341A.4	Analyze various single and three phase DC-AC power converter circuits							
EC341A.5	Understand the operation of AC-AC voltage converters by means of circuit topology and							
	waveforms.							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12
EC341A.1	2.5											
EC341A.2	2	3										
EC341A.3		2										
EC341A.4		2.5	2.5									
EC341A.5	2											

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC341A.1	2	1					
EC341A.2	2				2		
EC341A.3	2				2		
EC341A.4	2				2		
EC341A.5							

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

BLOOM'S Levels Targeted (Pl. Tick appropriate)

	Remember	Understand J	Apply J	Analyze 🗸	Evaluate	Create				
T	Theory Component									

Module	Unit	Topics	Ref.	Hrs.
No.	No.	-		
1	Title	Power Semiconductor Devices		
	1.1	Principle of operation, constructional features, characteristics of:	T1,	
		SCR, GTO, MOSFET and IGBT, Si-Carbide-MOSFET and IGBT,	T3	8
-		Ga-Ni Power devices, Common type of Power Modules		
	1.2	Basic Gate Drive circuits for SCR, MOSFET and IGBT		
2	Title	AC to DC Converters		
	2.1	Operation and analysis of single-phase controlled rectifiers with R,	T1,	
		and RL load, freewheeling effect. Operation and analysis of three-	Τ2,	
		phase controlled rectifiers with resistive load, effect of source	R4	10
		inductance.		
Ī	T1,			
		Power factor improvements	R4	
3	Title	DC to DC Converters		
-	3.1	Switch Mode Power Converters, non-isolated and isolated	T1,	
		converters, Buck, Boost and Buck-Boost converters, flyback and	R4	
		forward converters, Hardware design of SMPS converters and their		8
		Magnetics		
-	3.2	Closed loop control of Switched Mode DC-DC Converters with	R5	
		Constant Voltage and Constant Current mode of Operation		
4	Title	DC to AC Converters		
-	4.1	Principle of operation of Inverters, Inverter Classification.	T1,	
-	4.2	Voltage source inverters: -Principle of operation and analysis of:	T2,	10
		Single phase Half bridge, full bridge, and three-phase bridge	R4	10
		inverters, six step operation (R-Load), PWM control of Voltage		
		source converters. Introduction to Space Vector Modulation		
5	Title	AC–AC converters		
-	5.1	Principle of on-off and phase control – single-phase half and full	T2	
		wave AC voltage controller, three-phase AC voltage controller.	R6	6
		Single Phase Bidirectional AC switches using MOSFETs, IGBTs,		-
		Single-phase Bidirectional AC-AC converters		
6	Self	Exercise on minimum of 4 to 6 Simulations		6*
ž	Study			
	Stady	Total (*not incl	nded)	42

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

In-Semester Evaluation (Indicative): To be completed minimum of 4 to 6 Simulations

Sr. No	Title
1	Simulation Exercise on Single phase Line Commutated Semi-converter and Fully controlled
	Converter
2	Simulation Exercise on Single phase PWM Vienna Rectifier
3	Simulation Exercise on Single- phase bridge inverter with R Load and controllable Switches
4	Simulation Exercise on PWM three phase bridge Voltage Source inverter with L-C filter
5	Simulation Exercise on Buck-Converter and Boost Converter in CCM
6	Simulation Exercise on Fly-back-Converter
7	Simulation Exercise on Single-phase AC Voltage Controller using Thyristors
8	Simulation Exercise on PWM Vienna Rectifier
9	Simulation Exercise on Single-phase PWM AC-AC converters with Bidirectional switches

Textbooks

Sr. No	Title	Edition	Authors	Publisher	Year
1	Power Electronics:	Third	Ned Mohan,	John Wiley and	2003
	converters, Application and		Undeland and	sons	
	design		Robbin		
2	Power Electronics Circuits,	Fourth	Rashid M.H.	Pearson	2004
	Devices and Applications			Education	
3	Power Electronics	Second	MD Singh and K.B	Tata McGraw	2006
			Khanchandani	Hill	

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Modern Power Electronics and AC Drives	First	Bimal K Bose	Pearson Education Asia	2002
2	Modern Power Electronics	Second	P.C Sen	S. Chand	2005
3	Power Electronics	Eleventh	P. S. Bimbra	Khanna Publishers	2003
4	Power Electronics	First	S. K. Mandal	McGraw Hill Education (India)	2014
5	Switch-mode power converters	First	Keng C. Wu.	Elsevier Inc.	2006,
6	Advanced Power Electronics Converters	First	EUZELI CIPRIANO DOS SANTOS JR., EDISON ROBERTO CABRAL DA SILVA	John Wiley & Sons	2015

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	ŗ	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total	
		3	0	0	5	8	3	0	0	3	
PE-1			Examinatio						n Scheme		
	IC and MEMS	Component]	ISE		MSE	E	CSE	Total	
EC341B	Technology	Theory			50		50		100	200	
		Laboratory			50				50	100	

Pre-requi	site Course Codes, if any. ET202 Electronic Devices						
	ET205 Analog circuits						
Course O	Course Objectives: To develop a system for real life application by applying the concepts of control						
system the	eory and allied techniques for system performance evaluation.						
Course O	utcomes (CO): At the end of the course students will be able to						
CO1	Discuss integrated circuit fabrication processes						
CO2	Illustrate the sequence of process of semiconductor device fabrication						
CO3	Discuss fundamental principles of MEMS devices including physical operation and						
0.05	mathematical modeling.						
CO4	Apply various fabrication processes and materials for MEMS device fabrication and its						
04	Characteristics.						
CO6	Develop different concepts of micro system sensors and actuators for real world						
000	applications.						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	$\frac{10}{2}$	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3							3	3	3					
CO2			3					3	3	3					
CO3	3							3	3	3					
CO4				3				3	3	3					
CO6			3					3	3	3					
СО	3		3	3				3	3	3					

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
CO1	1	1	2				
CO2	1	1	2				
CO3	1	1	2			2	
CO4	1	1	2				
CO6	1	1	2				
CO1	1	1	2				

SPIT/Syllabus/2021-25/EXTC/pg. 139

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create✓
----------	------------	-------	---------	----------	---------

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	1.00	Environment and Crystal Growth for VLSI Technology		08
	1.1	Environment : Semiconductor technology trend, clean rooms, Wafer cleaning.	1,2	
	1.2	Semiconductor Substrate: Phase diagram and solid solubility, Crystal structure, Crystal defects, Czochralski growth, Bridgman growth of GaAs, Float Zone growth, Wafer Preparation and specifications.	1,2	
2		Fabrication Processes Part 1		08
	2.1	Deposition: Evaporation, Sputtering and Chemical Vapor Deposition.	1,2	
	2.2	Epitaxy: Molecular Beam Epitaxy, Vapor Phase Epitaxy, Liquid Phase Epitaxy, Evaluation of epitaxial layers	1,2,3,4	
	2.3	Silicon Oxidation: Thermal oxidation process, Kinetics of growth, Properties of Silicon Dioxide, Oxide Quality, high κ and low κ dielectrics.	1,2	
	2.4	Diffusion: Nature of diffusion, Diffusion in a concentration gradient, diffusion equation, impurity behavior, diffusion systems, problems in diffusion, evaluation of diffused layers.	1,2,3,4	
	2.5	Ion Implantation : Penetration range, ion implantation systems, process considerations, implantation damage and annealing.	1,2	
3		Fabrication Processes Part 2		08
	3.1	Etching: Wet chemical etching, dry physical etching, dry chemical	1,2	
	3.2	Lithography: Photoreactive materials, Pattern generation and mask making, pattern transfer, Electron beam, Ion beam and X-ray lithography.	1,2	
	3.3	Device Isolation, Contacts and Metallization: Junction and oxide isolation, LOCOS, trench isolation, Schottky contacts, Ohmic contacts, Metallization and Packaging: Integrated circuit packages, Electronics package reliability	1,2	
	3.4	CMOS Process Flow: N well, P-well and Twin tub	1,2	
	3.5	Design rules, Layout of MOS based circuits (gates and combinational logic), Buried and Butting Contact.	1,2	
4		Introduction to MEMS, MEMS Materials and Properties		10
	4.1	Introduction to MEMS Technology, Difference between ICT & MEMS Technology, Difference between ICs and MEMS Devices and Real-world Sensors/Actuators examples with brief description.	3,4	
	4.2	Architecture, working and basic quantitative behaviour of MEMS devices like Cantilevers, Microheaters, Accelerometers, Pressure Sensors, Micromirrors in DMD, Inkjet printer-head.	3,4	

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Study	1	(*not includ	led) Total	42				
Study		Fackaging of ics and ments devices, ic and ments kenability	1,2,3,4	05.				
Self		& importance of these measurements in studying device behavior. Packaging of ICs and MEMS devices, IC and MEMS Reliability	1,2,3,4	05*				
		resistance, TCR, Stiffness, Adhesion, Vibration, Resonant frequency,						
	5.2	MEMS Devices Characterization: MEMS Device dimensions, Piezo	3,4	02				
		given MEMS device and its intended application.						
		Selection of Fab processes and materials based on fabrication of a						
		Pressure Sensors, Micromirrors in DMD, Inkjet printer-head and						
	5.1	Understanding steps involved and materials used in Fabricating MEMS device like Cantilevers, Microheaters, Accelerometers,	3,4					
5	5.1	MEMS Devices Fabrication and Characterization	3,4	06				
	Dicing, Packaging.							
	4.3	Bulk, Surface & LIGA Micromachining, Die, Wire & Wafer Bonding,	3,4					
		coefficients, TCR, Thermal Conductivity, Material Structure.						
		properties: young modulus, Poisson's ratio, density, piezoresistive						
	4.2	Materials (eg. Si, SiO2, SiN, Cr, Au, Ti, SU8, PMMA, Pt); Important	3,4					

Textbooks:

Sr. No.	Title	Title Edition		Publisher	Year
1	Silicon VLSI Technology Fifth Jan		James D. Plummer,	Pearson,	2020
			Michael D. Deal and	Indian	
			Peter B. Griffin	Edition	
2	Micro Electromechanical System Design	First	J. Allen	CRC Press	2005
3	Microsystem Design	First	S. Senturia	Springer	2005

Reference Books:

Sr. No.	Title	Edition	Authors	Publisher	Year
1	The Science and	Second	Stephen A.	Oxford	2012
	Engineering of		Campbell	University	
	Microelectronic Fabrication			Press	
2	VLSI Fabrication Principles	First	Sorab K. Gandhi	Wiley, Student	2008
				Edition	
3	An Introduction to	Second	N. Maluf, K	Artech House	2002
	Microelectromechanical		Williams	Inc	
	Systems Engineering				
4	Practical MEMS	First	Ville Kaajakari	Small Gear	2009
				Publishing	

Bharatiya Vidya Bhavan's Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

ISE Evaluation: Simulation based work as per the indicative details given in Table 1 using open source and proprietary tools to simulate fabrication processes, MEMS devices and compare the results of simulation with analytical results. (At least 4 to 6 Simulations)

Table 1:

Sr. No.	Simulation Work
1	Use nano hub platform to simulate and analyze the Oxidation process for various process parameters and wafer specifications.
	Use nano hub platform to simulate and analyze the diffusion process for various given conditions.
2	To use Industry graded VLSI CAD tools to draw layout and analyze CMOS Inverter circuit.
	To use Industry graded VLSI CAD tools to draw layout and analyze MOS based circuit.
3	To analyze MEMS cantilever in MATLAB.
4	To model and analyze MEMS cantilever in COMSOL Multiphysics.
	To model and analyze the Hot Arm actuator in COMSOL Multiphysics.
	To model and analyze Piezoresistive Pressure Sensor in MEMS Design and Simulation FEM Tool (CoventorWare).
5	To analyze MEMS Piezoelectric Harvester model in Sugar tool.
	To analyze MEMS cantilever in Sugar Tool.

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Е	L	Т	Р	Total
	Embedded	3	0	0	5	8	3	0	0	3
(PE-2)	System Design	Examination Scheme								
	for Power					MS	SE	ESE	Total	
EC342	Converter Applications	Theory		75		75		150	300	

Course content

Digital Signal Controller (DSC: A micro-controller with a DSP engine): Architecture and real-time programming in Assembly and Embedded C. Introduction to Fixed Point Arithmetic. Understanding the constraints of program memory and execution time. Programming peripherals including GPIO, TIMERS etc. On Chip FLASH and EEPROM programming.

Field Programmable Gate Array (FPGA): Architecture and programming of digital circuits including Finite State Machines (FSM) in Verilog HDL. Understanding the CAD tool and various timing issues.

Communication-Chip level: AXI, Board level: SPI, I2C, System level: RS 232, CAN, MODBUS RTU on RS 485. Developing a GUI for supervisory control and monitoring. Introduction to different semiconductor memories: RAM, ROM, NVRAM etc. and their applications.

Analog sensing: Anti-aliasing filter design, scaling, online calibration and biasing. Continuous time feedback controller design and its discrete time implementation, D/A and A/D converters, effects of sampling, modeling the Pulse Width Modulator (PWM) etc.

Co-design: How to optimally implement an embedded task using a programmable processor (DSC) and a re-configurable hardware (FPGA). Embedded design of a typical Power Conversion System including: process control, protection, monitoring, real-time feedback control etc.

Concept of Hardware-in-the loop simulation in Power converters, Case-study: Design of Embedded system controller for (a) Induction Heating System (b) Three Phase Active Rectifier for PF Correction

Prerequisites

Undergraduate level analog electronics, digital electronics and classical feedback control theory. Familiarity with micro-processor, digital signal processing and previous experience in programming will be helpful but not a necessity.

References

(1) Fundamentals of Digital logic with Verilog Design, S Brown and Z Vranesic, McGraw Hill Education; 2nd edition (2017).

(2) PIC Micro-controllers and Embedded Systems, Using assembly and C for PIC 18 Mazidi, Mckinlay and Causey, Pearson Education India; 1st edition (2008)

(3) Feedback Control of Dynamic Systems, GF Franklin, JD Powell and Naeini, Pearson (2008) SPIT/Syllabus/2021-25/EXTC/pg. 143

Bharatiya Vidya Bhavan's Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

(4) Microelectronic Circuits: Theory and Applications, AS Sedra and K Smith, Oxford University Press (2017)

- (5) Digital Signal Processing, JG Proakis and DK Manolakis, Pearson Education India; 4th edition (2007)
- (6) Digital Control of High Frequency Switched Mode Power Converters, (IEEE Press Series on Power Engineering) Lucca Corradini, Dragan Maksimovi, Paolo Mattavelli, Regan Zane, Wiley-Blackwell (2015)

(7)A Practical Introduction to Hardware/Software Co-design, Patrick R. Schaumont Springer; 2nd edition (2014).

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	r	Teaching Scheme (Hrs/week)			Credits Assigned				
Code		L	Т	Р	0	Ε	L	Т	Р	Total
PE		2	-	2	3	7	2	-	1	3
FE	Networking			Examination Scheme						
	Fundamentals	Comp	onent		ISE		MSE	E	SE	Total
EC351	(@)	Theory			50		50		.00	200
		Laboratory			50				50	100

@--> Not to be repeated if already studied as a Programme Core i.e. Computer Communication Networks

Pre-requis	site Course Codes, if any.	ET301: Analog and Digital Communication					
Course Ob	Course Objective:						
Course Ou	Course Outcomes (CO): At the end of the successful completion of the course students will be able						
to							
E3451.1	Identify network topologies	, physical devices and standards					
E3451.2	Recognize the significanc environment.	e of multiple layers of the OSI model in networking					
E3451.3	451.3 Solve network issues by using IP addressing concepts.						
E3451.4	E3451.4 Examine the current challenges in computer security and identify possible solutions to resolve the same.						

CO-PO Correlation Matrix: (1-Weak, 2-Medium 3-Strong)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12
E3451.1	3	3										
E3451.2			3	2	3							2
E3451.3			3		3	2						
E3451.4	2	2							3	3		3

CO-PEO/PSO Correlation Matrix: (1-Weak, 2-Medium 3-Strong)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
E3451.1	2						
E3451.2						2	
E3451.3						2	
E3451.4	2					2	

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember · Understand	Apply $\cdot $	Analyze ·	Evaluate ·	Create
-----------------------	----------------	-----------	------------	--------

Theory Component

Module No.	Unit No.	Topics	СО	Ref.	Hrs
1	Title	Introduction	CO1	1,2	06
	1.1	Topologies, LAN, MAN, WAN			
	1.2	Introduction to networking devices			
	1.3	Transmission Medias: Wired and Wireless network			
2	Title	Reference Models	CO2	1,2	06
	2.1	Defining Networks with the OSI and TCP/IP Model			
3	Title	IP addressing	CO3	1,2	06
	3.1	Working with IPv4: IP addressing schemes, Subnet Masks, Subnetting, Introduction to IPv6.			
4	Title	Introduction to Network Security	CO4	3	10
	4.1	Introduction to Core Security Principles: Confidentiality, Integrity, Availability, Authentication.			
	4.2	Cryptography Threats: Malware Attacks, Social Engineering			
	4.3	Attacks, Networking-based and Server based Attacks			
5	Self Study	Fairness algorithms, Congestion Control mechanisms.			*03
		Total (*1	Not inc	luded)	28

Laboratory Component (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	Identify and observe the behavior of networking command line tools in Ubuntu/Windows OS environment.
2	To build and test straight through UTP ethernet network cables.
3	Write a program in C/C++/Python/Java/Scilab to identify the IP address, Subnet mask, DNS server address and Hardware address of the client device.
4	Write a program in C/C++/Python/Java/Scilab to determine the administrator's requirement to define the number of subnets, host/subnet, customized subnet masks and valid subnet ranges for a class C IP addressing scheme.
SPIT/Sv	llabus/2021-25/EXTC/pg 146

Bharatiya Vidya Bhavan's Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

5	Examine Data Breaches and Scan for Malware Using the Microsoft Safety Scanner
6	Handson experience on how to Write-Protect and Disable a USB Flash Drive
7	Protocol Visualization with open-source tools
8	Network Reconnaissance using open-source tools
9	Web Reconnaissance Using a Web Browser/open-source tools
10	Cryptography using open-source tools/Crypt tools and open SSL
11	Install and configure application-based server

Textbooks

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Data Communication and Networking	4 th	A.A. Forouzan	McGraw Hill	2017
2	Data and Computer Communications	10 th	William Stallings	Pearson Education	2013
3	Information Security: Principles and Practice	1 st	Deven Shah	Wiley	2007

Reference Books

Sr. No.	Title	Edition	Author	Publisher	Year
1	Computer Networking: A Top-	5 th	J. F. Kurose and	Pearson	2009
	Down Approach		K. W. Ross	Education	
2	Computer Networks	5 th	A.Tanenbaum	Pearson Education	2013
3	ComputerNetworks:Protocols,StandardsInterface	2 nd	Uyless Black	Prentice Hall	1993

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Teachin	g Sch	eme (Hrs/v	veek)	C	redits	s Assig	gned
Code		L	Т	Р	0	Ε	L	Т	Р	Total
		3	-	-	6	09	3	-	-	3
PE	Fundamentals of			Ex	kamin	ation	Schem	ie		
	Antenna	Compo	nent	IS	SE	Μ	ISE	F	ESE	Total
EC352A		Theory		75		75		150		300
		Labora	tory							

Pre-requisi	te Course Codes, if any.	EC304: Electromagnetic Waves			
Course Ob	Course Objective: The objective of the course is to provide a fundamental understanding of				
Antennas					
Course Ou	tcomes (CO): At the end of t	the course students will be able to			
EC352A.1	C352A.1 Calculate the fundamental parameters of Antenna.				
EC352A.2	Describe fundamental theory	y of antennas.			
EC352A.3	Select antenna based on app	lications.			
EC352A.4	C352A.4 Evaluate antenna based on applications.				
EC352A.5	EC352A.5 Design Antenna Arrays.				
EC352A.6	C352A.6 Design antenna based on given requirements.				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC352A.1	2	3						2	2	2		
EC352A.2	2	3						2	2	2		
EC352A.3		2						2	2	2		
EC352A.4		2		2				2	2	2		
EC352A.5		2		2				2	2	2		
EC352A.6	2	1						2	2	2		

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC352A.1		2				-	
EC352A.2		2				2	
EC352A.3		2				2	
EC352A.4		2				2	
EC352A.5		2				2	
EC352A.6		1				1	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember $$ Understand $$ Apply $$ Analyze $$ EvaluateCreate
--

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Theory Component

Module No.	Unit No.	Topics	Ref	Hrs.
1		Fundamental Concepts:	1	08
(CO1)	1.1	Introduction, types of Antennas, Radiation mechanism, Poynting vector, Steradian concept, Power intensity		
	1.2	Antenna Parameter: Radiation pattern, Radiation power density, Radiation Intensity, Gain, Directivity, HPBW, FNBW, Beam efficiency, Bandwidth, Polarization, Input Impedance, Reflection coefficient, Return loss, VSWR, Antenna Efficiency, Effective Aperture, Communication link and Friis transmission equation.		
2		Radiation from wires and loops	1	10
(CO2, CO3)	2.1	Introduction, Infinitesimal dipole: Radiation zones, Total radiated power, Radiation resistance, Directivity, Effective area, Short dipole, Finite-length dipole: Radiated power, Radiation resistance, Directivity, Effective area, Half-wave dipole and its properties, Loop antenna.		
3		Aperture Antennas	1	06
(CO3, CO4)	3.1	Introduction, Field equivalence principle, Love's equivalence principle, Electrical and magnetic conductor equivalence principle, Computation of field quantities of aperture antenna, Relation between wire and aperture antennas, Horn antenna design principle.		
4		Antenna Arrays	1	10
(CO5)	4.1	Introduction, Two-element array, Example problems, Pattern multiplication concept, N-element array, Uniform array, Array factor, Broad-side and end-fire arrays, Phased array, Directivity and pattern characteristic of linear uniform array, non-uniform array, Binomial array, Dolph-Chebyshev array concept, Design principle of Chebyshev array and examples, Planar arrays		
5		Microstrip Antennas		
(CO6)	3.1	Introduction: Rectangular Patch, Circular Patch, Parametric study, Circularly polarized antennas, Axial Ratio, MSA suspended Configuration.	1,4	08
	3.2	MSA Arrays and Feed Networks, Corporate and Series Feeds		
6 (Self Study)		Advanced Antennas: Reflector antenna, Dielectric Resonator antenna, Metamaterial based antennas, Wearable antenna, Reconfigurable antennas, Ultra-wideband antennas, Smart Antennas		06
			Total	42

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Textbooks:

S. N.	Title	Authors	Edition	Publisher	Year
1	Antenna Theory: Analysis	Constantine A.	Fourth	Wiley	1982
	and Design	Balanis			

Reference Books:

S. N.	Title	Authors	Edition	Publisher	Year
1	Antennas & Wave	J. D. Kraus, R.J.	Fourth	McGraw Hill	2011
	Propagation	Marhefka, and			
		A.S. Khan			
2	Handbook of Microstrip	R. James and P.S.	Third	Peter	1989
	Antennas	Hall		Peregrinus	
3	Antennas and Radio Wave	R. E. Collin	Fourth	McGraw-Hill	1985
	Propagation				
4	Broadband Microstrip	Girish Kumar and	First	Artech House	2003
	antennas	K.P. Ray			

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Cours (Catego		Course Name	Teach	ing Sc	heme	(Hrs/v	week)	C	redit	s Assi	igned
Cod	•		L	Т	Р	0	Ε	L	Т	Р	Total
			2	0	2	2	6	2	0	1	3
PE-2	2	Information			E	xamin	ation S	chem	e		
		Theory and	Compo	ISE		MSE		ESE		Total	
EC35	2B	Coding	Theo	ory	5	0	50		1()0	200
			Laboratory 50 50 100							100	
Pre-requis	Pre-requisite Course Codes, if any.EC301: Analog and digital communicationEC307: Computer Communication Networks										
study how i including en	nformatic	0	rms of pro	obabili	ty and	l entrop	oy. To t				
		CO): At the end of the conduct of									
EC352B.1	Interpret channels	information theor	y concep	ts and	comp	ute the	capacit	y of v	ariou	s type	es of
EC352B.2	Construc	ct various source co	des and e	rror co	rrecti	on code	es.				
EC352B.3	Examine	e information theor	ry and co	ding al	gorith	ms.					
EC352B.4	Estimate	various performan	ce param	eters o	f infoi	matior	n theory	and e	error	correc	tion
	coding a	lgorithms.									
EC352B.5	Survey v	various error correct	tion codes	s used	in wir	ed and	wireles	s appl	licatio	ons.	

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC352B.1	3											
EC352B.2	3		2		2							
EC352B.3	3		2	2	2				2	2		
EC352B.4	3	3			1							
EC352B.5	1	1			1				1	1		

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC352B.1		2				
EC352B.2		2	2			

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

EC352B.3	2	2	3	
EC352B.4	1			
EC352B.5	1			

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	\checkmark Understand	✓ Apply	✓ Analyze	Evaluate	Create
----------	-------------------------	---------	-----------	----------	--------

Theory Component

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Information theory and source coding	1,2	8
	1.1	Block diagram and sub-system description of a digital communication system, measure of information and properties, entropy and its properties, differential entropy and mutual information kraft inequality, optimal codes, bounds on optimal code length, kraft inequality for uniquely decodable codes.		
	1.2	Source Coding, Shannon's Source Coding Theorem, Huffman Source Coding and its second and third order extensions, Shannon Fano coding, Lempel Ziv coding.		
	1.3	Shannon's Channel capacity: discrete memoryless channels and capacity, examples of channel capacity, symmetric channels, AWGN channel and, fading channels, properties of channel capacity, channel coding theorem.		
2		Linear Block Codes	1,2	6
	2.1	Generator and Parity check Matrices, Encoding circuits, Syndrome and Error Detection, Minimum Distance Considerations, Error detecting and Error correcting capabilities.		
	2.2	Standard array and Syndrome decoding.		
	2.3	Hamming Codes, Reed – Muller codes, Golay code, Product codes and Interleaved codes.		
3		Cyclic Codes	1,2	6
	3.1	Introduction, Generator and Parity check. Polynomials, Systematic Cyclic codes – Encoding and decoding using Feedback shift register circuits and polynomial method.		
	3.2	Generator matrix for Cyclic codes, Syndrome computation and Error detection.		
	3.3	Meggitt decoder, Cyclic Hamming codes, Golay code, Shortened cyclic codes.		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

4		Convolutional Codes	1,2	8
	4.1	Graphical representation for encoding and decoding using code tree,		
	4.2	trellis, state diagram. Polynomial and time domain method, Viterbi decoding		
	4.3	Introduction to Turbo coding and LDPC codes		
5(Self Study)		Case study (anyone): Golay codes, turbo codes, LDPC codes, Reed Solomon codes, BCH codes		4
			Total	28

Laboratory Components:

Sr. No	Title of the Experiment
1	Write a simulation program to test shannon's source coding, channel coding and
	channel capacity theorem.
2	Write a program to encode and decode a text file and determine the code efficiency
	using Shannon – Fano coding and Huffman Coding
3	Write a program to construct Lempel Ziv Coding and decoding and examine its code
	efficiency
4	Write a program to examine BER performance of linear block code for a coded and
	uncoded BPSK communication system in AWGN channel
5	Write a program to examine BER performance of cyclic codes for a coded and
	uncoded BPSK and QPSK communication system in AWGN channel
6	Write a program to examine BER performance of BPSK modulated linear block coded
	communication system in AWGN channel and fading channel
7	Write a program to examine BER performance of convolutional encoder in a coded and
	uncoded communication system based on 802.11a standard with and without AWGN
	channel
8	Write a program to examine BER performance of convolutional encoder in a coded and
	uncoded OFDM system with and without AWGN channel
9	Write a program to examine BER performance of convolutional encoder in a coded and
	uncoded OFDM system with and without fading channels
10	Simulation either turbo codes/RS codes/ LDPC codes/BCH codes and test their error
10	
	correction capability.

Textbooks:

Sr. No	Title	Edition	Authors	Publisher	Year
1	Digital Communication Systems	Fourth	Haykin Simon	John Wiley and Sons, New Delhi	2014
2	Modern Digital and Analog Communication Systems	Fourth	Lathi B Pand Ding Z	Oxford University Press	2009

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Sr. No	Title	Edition	Authors	Publisher	Year
1	Information Theory and Reliable Communication		R. G. Gallager	Wiley, ISBN-13: 978-0471290483	1968
2	Introduction to Coding and Information Theory		Roman, Steven	Springer, ISBN 978- 0-387-94704-4	
3	Error Control Coding	Second	Shu Lin & Daniel J. Costello	Prentice Hall	2004
4	Error Control Systems for Digital Communication and Storage		S. B Wicker	Prentice Hall International	1995
5	Digital Communication: Fundamentals and applications	Second	Sklar B, and Ray P. K	Pearson, India	2009
6	Information theory, Coding and Cryptography		Ranjan Bose	TMH publication, ISBN: 978-0-07- 0669017	2008

Bharatiya Vidya Bhavan's Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Sem-VII

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	ory) Course Name (Hrs/week)				C	Credits Assigned				
Code		L	Т	Р	0	Ε	L	Т	Р	Total
		2	0	2	2	6	2	0	1	3
PE-III		Examination			Scheme					
	Wireless Sensor Network	Comp	onent	I	SE	Μ	SE	E	SE	Total
	INCLWOIK	The	ory	5	50	5	50	1	00	200
EC413		Labor	ratory	5	50			5	0	100

Pre-requisite Course Codes, if any.EC307: Computer Communication NetworksEC311: Mobile Wireless communication

Course Objective: Wide range of applications such as disaster management, military and security have fueled the interest in sensor networks during the past few years. Sensors are typically capable of wireless communication and are significantly constrained in the number of available resources such as energy, storage and computation. Such constraints make the design and operation of sensor networks considerably different from contemporary wireless networks and necessitate the development of resource conscious protocols and management techniques. This course provides a broad coverage of challenges and latest research results related to the design and management of wireless sensor networks.

Course Outcomes (CO): At the end of the course students will be able to

EC413.1 | Evaluate architecture of sensor networks and its characteristics.

EC413.2 Determine suitable medium access protocols and radio resources.

EC413.3 Devise appropriate data dissemination protocols and acquisition system.

EC413.4 Explore the design space of various supportive OS, its performance, and resources.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC413.1		2										
EC413.2				2								
EC413.3					2							
EC413.4		3			3							

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC413.1		2				
EC413.2		2				

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

EC413.3	2			
EC413.4			3	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand✓	Apply✓	Analyze	Evaluate	Create✓

Theory Component

Module	Unit	Topics	Ref.	Hrs.
<u>No.</u>	No.		1.0	07
1	Title	Characteristics Of WSN	1,2	07
	1.1	Characteristic requirements for WSN - Challenges for WSNs – WSN		
		vs. Adhoc Networks - Sensor node architecture - Commercially		
		available sensor nodes -Imote, IRIS, Mica Mote, EYES nodes,		
		BTnodes, TelosB, Sunspot -Physical layer and transceiver design		
		considerations in WSNs, Energy usage profile, Choice of		
		modulation scheme, Dynamic modulation scaling, Antenna		
		considerations, Power, signal processing transmission related		
		constraints		
2	Title	Medium Access Control Protocols	1,2	08
	2.1	Fundamentals of MAC protocols - Low duty cycle protocols and		
		wakeup concepts - Contention-based protocols -Schedule-based		
		protocols - SMAC - BMAC -, 802.11pVehicular IEE std., Traffic-		
		adaptive medium access protocol (TRAMA) - The IEEE 802.15.4		
		MAC protocol, Case Study: IEEE 802.15.4 LR-WPANs Standard -		
		Target detection and tracking - Contour/edge detection - Field		
		sampling.		
3	Title	Routing And Data Gathering/Acquisition	1,2	08
	3.1	Routing Challenges and Design Issues in Wireless Sensor Networks,		
		Flooding and gossiping – Data centric Routing – SPIN – Directed		
		Diffusion – Energy aware routing -Gradient-based routing - Rumor		
		Routing – COUGAR – ACQUIRE – Hierarchical Routing - LEACH,		
		PEGASIS –Location Based Routing – GF, GAF, GEAR, GPSR –		
		Real Time routing Protocols – TEEN, APTEEN, SPEED, RAP -		
		Data aggregation - data aggregation operations – Aggregate Queries		
		in Sensor Networks - Aggregation Techniques – TAG, Tiny DB.		
4	Title	Embedded Operating Systems	1,2	05
	4.1	Operating Systems for Wireless Sensor Networks – Introduction	,	
	-	RTOS and operation - Operating System Design Issues – Examples		
		of Operating Systems – TinyOS – Mate – MagnetOS – MANTIS -		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

			Total	28
	У	operation		l
	Stud	provisioning, Clock synchronization, Supporting fault tolerant		l
5	Self-	Security challenges, Threat and attack models, Quality of service	1,2	*05
		NesC, Emulator TOSSIM.		L
		Wiring - Generic Components -Programming in Tiny OS using		1
		to Tiny OS – NesC – Interfaces and Modules- Configurations and		l
		OSPM - EYES OS – SenOS – EMERALDS – PicOS – Introduction		1

Laboratory Components

Lab	Title of the Lab	Marks	Reference
No			
	Preparatory Lab: Study of Hardware, Software, Middleware with specifications.		1,5
1	Embedded/RTOS OS fundamentals	5	5
2	Onboard RTOS environment settings	5	
3	MAC algorithms using NS3	5	
4	MAC algorithms using NetSim, Omnet++	5	
5	Routing algorithms using NS3	5	
6	Routing algorithms using GNS3	5	
7	Virtual Lab	5	4
8	Energy management using NS3	5	
9	QoS using NS3, NetSIM, Omnet++,GNS3, Contiki	5	
10	Build the WSN application using Python Framework (Django) and Cloud environment	5	

Textbooks

Sr. No	Title	Edition	Authors	Publisher	Year
1	Wireless Sensor		Kazem Sohraby, Daniel	John Wiley	2007
	Networks Technology,		Minoli and Taieb Znati	and Sons	
	Protocols, and				
	Applications				
2	Protocols and		Holger Karl and	John Wiley	2005
	Architectures for		Andreas Willig	and Sons	
	Wireless Sensor				
	Networks				
3	Wireless Sensor		Cauligi S. Raghavendra,	Springer,	2004
	Networks		Krishna Sivalingam,	ISBN 1-4020-	
			Taieb M. Znati	7883	
4	A Guide to Wireless		A. Swapna Kumar	University	2013
	Sensor Network			Science Press	

Bharatiya Vidya Bhavan's Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	A survey of routing		K. Akkaya and	Elsevier Ad Hoc	
	protocols in wireless		M. Younis	Network Journal,	
	sensor networks			Vol. 3, no. 3, pp.	
				325—349	
2.	Tiny OS		Philip Levis.		
	Programming		-		
3.	Wireless Sensor		Edited by	INTECH	2012
	Network-		Mohammad		
	Technology and		A. Matin		
	Applications				

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total
PE-4	Next Generation	3	0	0	3	6	3	0	0	3
		Examination Scheme								
		Component		IS	ISE		SE	ESE		Total
		Theory		75		75		150		300
EC414	EC414		Laboratory				-			

Pre-requisite Course Codes, if any.EC307: Computer Communication NetworksEC311: Mobile Wireless communication

Course Objective: To provide a working knowledge of emerging network technologies, how they are used, what their advantages or disadvantages are, and what their future offers. Consider the business potential for current and future services. Summarize architecture and technology options for Multi-Service Networks. Identify the key technologies for core, access and infrastructure.

Course Outcomes (CO): At the end of the course students will be able to

EC414.1 Describe technical features and design considerations of the next generation networks.

EC414.2 Apply the concept of convergence of service.

EC414.3 Identify the NGN services in business-oriented aspects.

EC414.4 Demonstrate technologies for next generation networks.

EC414.5 | Evaluate the performance of Next Generation Networks.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC414.1	3		2									
EC414.2		2										
EC414.3		2										
EC414.4					3							
EC414.5					3							

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC414.1		2				
EC414.2		2				
EC414.3		2				
EC414.4		2			3	

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply✓	Analyze✓	Evaluate√	Create

Theory Component

Module	Unit No.	Topics	Ref.	Hrs.		
No.			1.0	12		
1	Title	Introduction to Next generation Network and ITU standards,	1,2	12		
	11	IPv6				
	1.1	Introduction Evolution of public mobile services - Main drivers				
		to Next Generation Networks – NGN, ITU NGN standards. SG13				
	1.2	All-IP network concept, Numbering, naming, and addressing				
	for all NGN, NGN control architectures and protocols,					
	Transport Stratum, Service Stratum, Service Management,					
	Application Functions. Wireless NG Technologies, 5G networks and small cell types, Integration with services.					
	1.3	Transition of IP networks to NGN, Future packet-based				
	1.0	network. IPv6 NGN implementation, NGN business challenges,				
		NGN evaluation.				
2	Title	IMS and Convergent Management IMS Architecture	2,3	08		
	2.1	IMS services, QoS Control and Authentication, Network and				
		Service management for NGN, IMS advantages				
	2.2	Next Generation OSS Architecture - standards important to OSS				
		architecture, Information framework, OSS interaction with IMS,				
		NGN OSS function/ information view reference model, DMTF				
		CIM, Push to Talk over Cellular (PoC) Service, MS-Based FMC				
		Service.				
3	Title	NGN Services: Technology, Business Aspects	2	08		
3	3.1	VoIP, IPTV, rich multimedia, future web, Quality of Service	Z	00		
	3.1	(QoS), Quality of Experience (QoE) in NGN				
	3.2	Control and Signaling protocols for NGN, NGN security, Service				
	5.4	convergence, Business, and regulatory aspects of NGN,				
		Ubiquitous Sensor Network Services-USN Functional				
		Architecture, USN Applications, Business models and regulation				
		of the NGN services.				
4	Title	MPLS and VPN Technology	1,2	07		
	4.1	MPLS & QoS, MPLS services and components – layer 2 MPLS				
		multicast, IPv6 and MPLS - Technology overview, Future of				

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

		MPLS – Integrating IP and optical networks, Future Layer2		
		layer3 services		
	4.2	VPN, layer Internetworking, VPN services, signaling, layer 3		
		VPN - Technology overview, Remote Access, and IPsec		
		integration with MPLS VPN. VPN services in NGN with		
		emerging Internet of Things (IoT) and Web of Things (WoT)		
5	Title	NGN Management and Future Evaluation	2,3	07
	5.1	Configuration, Accounting, performance, security, case study for MPLS,		
	5.2	Future enhancements – Adaptive self-healing networks, Intelligent Networks, Self-organizing Network (SON)		
6	Self-	Software Defined Networks (SDN) & NFV, Network	5,6	06
	Study	Automation and Containerized NFV, IMS Advantages, NEXT		
		GENERATION OSS ARCHITECTURE, Services Implemented on NGN		
			Total	42+6

Textbooks

Sr. No	Title	Edition	Authors	Publisher	Year
1	Next generation		Thomas Plavyk	Wiley and	2010
	Telecommunication			IEEE Press	
	Networks, Services and			Publications	
	Management				
2	NGN Architectures,		Toni Janevski	John Wiley	2014
	Protocols and Services			and Sons	
3	Next Generation		Gerardus Blokdyk	5 STAR	2018
	Network – A Complete			Cooks	
	Guide				

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Next Generation Network Services:		Neill Wilkinson	John Wiley	2002
	Technologies and Strategies			Publications	
2.	Foundations of Modern		William	Pearson	2015
	Networking-SDN, NFV and QoE,		Stallings	Publications	
	IoT and Cloud				
3.	SDN: Software Defined		Thomas D.	Oreilly	2013
	Networks: An Authoritative		Nadeau and Ken	Publications	
	Review of Network		Gray		
	Programmability Technologies		-		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total
	Image and Video Processing	2	-	2	5	8	2	-	1	3
PE-3		Examination Scheme								
		Comj	Component ISE			MSE	E	ESE	Total	
EC423		The	eory		50		50	1	100	200
		Labo	ratory	50					50	100

Pre-requi	isite Course Codes, if any.	EC207: Signals and Systems					
		EC303: Digital Signal Processing					
Course C	Course Objective: To study the image and video fundamentals and mathematical transforms						
necessary	for processing and enhancement	t techniques. To study image restoration procedures and					
compressi	ion procedures for different appli	cations.					
Course O	Course Outcomes (CO): At the end of the course students will be able to						
EC423.1	Apply the image fundamentals	and mathematical models for digital image and video					
LC423.1	processing.						
EC423.2	Analyze time and frequency do	main techniques for image enhancement.					
EC423.3	Apply segmentation and compr	ession techniques.					
EC423.4	Develop image and video proce	essing applications.					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC423.1	3	3										
EC423.2			3	2	3							2
EC423.3					3							
EC423.4	2	2			3	2			3	3		3

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC423.1		2					
EC423.2					3		
EC423.3			2				
EC423.4			2			3	

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply✓	Analyze✓	Evaluate✓	Create
----------	------------	--------	----------	-----------	--------

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Fundamental of Image and Video	1,6	04
	1.1	Structure of the Human Eye, Light, Brightness adaption and		
		discrimination, Pixels, coordinate conventions,		
	1.2	Imaging Geometry, Image acquisition, sampling and		
		quantization, image resolution, basic relationship between pixels,		
		color images, RGB, HSI and other models		
2	Title	Two Dimensional Transforms and Image Enhancement	1,5	06
	2.1	Discrete Fourier Transform, Discrete Cosine Transform, KL		
		Transform, and Discrete Wavelet Transform		
	2.2	Intensity transformations, contrast stretching, histogram		
		equalization, Correlation and convolution, smoothing filters,		
		sharpening filters, gradient and Laplacian, Frequency domain		
		filtering.		
3	Title	Image Segmentation and Compression	1,5	05
	3.1	Point, line and edge detection, edge linking using Hough transform		
		and graph theoretic approach, thresholding, and region-based		
		segmentation, Morphological operations.		
	3.2	JPEG and MPEG compression standard, H.265 video compression		
_		standard		
4	Title	Image Restoration	1,6	04
	4.1	Basic Framework, Image degradation model, Noise characterization, Noise restoration filters,		
	4.2	Adaptive filters, and Estimation of Degradation functions,		
		Restoration Techniques.		
5	Title	Video Formation and Representation	2,3	05
	5.1	Digital Video Sampling, Video Frame classifications, I, P		
		and B frames, Notation		
	5.2	Video Capture and display: Principle of color video camera, video		
		camera, digital video Sampling of video Signals: Required		
		sampling rates, sampling in two dimensions and three dimensions,		
		progressive virus interlaced scans		
6	Title	Motion Estimation	2,3	04
	6.1	Optical Flow: Motion Vs optical flow, optical flow equations,		
		motion representation, motion estimation criteria, optimization		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

		method.		
	6.2	Pixel based motion estimation, Block Matching Algorithms,		
		Multi resolution Motion Estimation: General formulation.		I
7	Self-	Study of different format of image and video, Basics of image and		
	Study	video terminology, ITU-RBT 601, Digital Video formats, Digital		
	-	video quality measure.		
	•		Total	28

Laboratory:

Sr. No	Title of the Experiment
1.	Image Enhancement
2.	Image Transformations.
3.	Image Filtering
4.	Image Segmentations
5.	Image Compression
6.	Image Restoration
7.	Object Detection in video
8.	Motion Estimation on video
9.	Color Image Segmentation
10.	Discrete Wavelet Transforms on image

Textbook

Sr. No	Title	Edition	Authors	Publisher	Year
1	Computer Vision and	First	Bernd Jahne and	Elsevier	
	applications-A Guidefor		Host Hau Becker		
	Students and Practitioners				
2	Digital Image and Video	First	Dhananjay	Pearson	2019
	Processing		Theckedath	Education	

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Digital Image Processing	Third	Rafael C. Gonzalez	Pearson	2010
			and Richard E. Woods	Education	
2	Digital Video Processing	Second	Murat Tekalp	Pearson	2010
				Education	
3	Handbook on Image and Video Processing		A. I. Bovik	Academic Press	2009

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Τ	Р	0	Ε	L	Т	Р	Total
	Principles of Soft Computing	2	0	2	6	8	2	0	1	3
PE- 4		Examination Scheme								
		Component]	ISE		MSE		ESE	Total
EC424		Theory			50		50		100	200
		Laboratory		50					50	100

Pre-requi	isite Course Codes, if any.	MA101: Engineering Calculus				
		MA102: Differential Equations and Complex Analysis				
Course O	bjective: To implement soft co	omputing-based solutions for solving real-world problems				
Course Outcomes (CO): At the end of the course students will be able to						
EC424.1	Identify soft computing techn	iques and their roles in building intelligent Machines.				
EC424.2	Apply fuzzy logic reasoning t	o build model for solving various engineering problems.				
EC424.3	Analyze optimization issues u	using Genetic Algorithm.				
EC424.4	Design various hybrid soft co	mputing models by using different techniques.				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC424.1	2	2			3							
EC424.2		2	2		3							
EC424.3			2		3							
EC424.4				2	3							

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC424.1	2			2	2	
EC424.2	2			2	2	
EC424.3	2				2	
EC424.4		3			2	3

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	✓ Apply	✓ Analyze	✓ Evaluate	Create

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Introduction To Soft Computing and Neural Networks	1,2	
	1.1	Introduction to Soft Computing, Difference between Hard and	, í	04
		Soft Computing. Conventional AI, Computational Intelligence		
2	Title	Neural Networks	1,2	10
	2.1	Biological neuron, Artificial Neuron Model, Single layer Multilayer Architecture of Neural Networks Architecture, Activation functions, <u>Learning rules.</u>		
	2.2	Supervised Learning Neural Network: Back Propagation Network, Radial Basis Function Network.		
	2.3	Unsupervised Learning Neural Network: Adaptive Resonance Architecture.		
3	Title	Fuzzy Logic	3	6
	3.1	Fuzzy Sets, Operations on Fuzzy Sets, Fuzzy Relations		
	3.2	Membership Functions, Fuzzy Rules, and Fuzzy Reasoning		
	3.3	Fuzzy Inference Systems, Fuzzy Models.		
4	Title	Genetic Algorithm	3	8
	4.1	Introduction to Genetic Algorithm, Working Principle of Genetic Algorithm.		
	4.2	Various Encoding methods, Fitness function.		
5	Self- Study	Analyse advanced soft computing techniques.		
			Total	28

Laboratory Component

Sr. No	Title of the Experiment
1	Linear & Nonlinear analysis using single & multiplayer neural network
2	Supervised learning neural network
3	Unsupervised learning neural network
4	Fuzzy logic operations
5	Fuzzy system design
6	Genetic Algorithm
7	Design Neuro-fuzzy model
8	Hybrid Design/Expert system Design

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Textbooks

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	Introduction to Artificial		Jacek M. Zurada	PWS Publishing	1995
	Neural Systems			Company	
2	Principles of Soft Computing	Third	S. N. Sivanandamand	Wiley	2018
			S. N. Deepa	Publication,	
3	Neural Networks, Fuzzy		S. Rajasekaran and G.	Prentice-Hall of	2004
	Logic, and Genetic		A. Vijayalakshami	India	
	Algorithms				

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Neural Networks: A Comprehensive Foundation		Simon Haykin	Macmillan College Publishing Company	1994
2	Neural Network Design		Martin Hagan	CENGAGE Learning, India	2008
3	Fuzzy Sets and Fuzzy Logic: Theory and Applications		George J. Klir and Bo Yuan	Prentice-Hall of India	1994

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name]	Teaching Scheme (Hrs/week)				Credits Assigned				
Code		L	Т	Р	0	Ε	L	Т	Р	Total	
		2		2	5	9	2		1	3	
PE-III			Examination S						Scheme		
	Real Time Operating	Comp	onent	ISE			MSE		SE	Total	
EC433	Systems	Theory			50		50		00	200	
		Laboratory		50					50	100	

Pre-requis	site Course Codes, if any.	ET201: Computer Architecture and Organization
		ET206: Microcontrollers
		IT12: Embedded System
Course Ol	ojective: To impart students t	he fundamentals of Operating Systems and provide the
knowledge	on the implementation aspec	ts of real time concepts.
Course Ou	utcomes (CO): After success	ful completion of the course, student will be able to
EC433.1	Demonstrate the basic conce	ept of OS and configure the System.
EC433.2	Analyze different types of s	cheduling algorithms with given application
EC433.3	Apply kernel Services and S	Synchronization
EC433.4	Evaluate memory managem	ent strategies

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC433.1	2	2	2	3				2		2		
EC433.2	2	2	2	3				2		2		
EC433.3	2	2	2	3				2		2		
EC433.4	2	2	2	3				2		2		

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

СО	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC433.1						
EC433.2		1	1			
EC433.3		1	1			
EC433.4		1	1			

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember ·Understand ·Apply ·Analyze ·EvaluateCreate
--

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Theory Component

Module	Unit	Topics	Ref.	Hrs.
No.	No.	Topics	Mei.	111.5.
1	Title	OS Fundamentals		06
	1.1	Operating system objectives and functions, Evolution of OS,	1,2	
		Characteristics of modern OS		
	1.2	Basic concepts: Task, Processes, Files, System calls, Shell, I/O	1,2	
		management, Architecture of OS (Monolithic, Microkernel,		
	1.0	Layered, Exo-kernel and Hybrid kernel structures)	1.0	
	1.3	Batch, Multi programming, Multitasking, Multiuser, parallel,	1,2	
	1.4	distributed & real –time O.S	15	
	1.4	Real time issues, soft and hard real time services	4,5	00
2	Title	Scheduling	4.5	08
	2.1	Need of scheduling, Scheduling algorithms: FCFS, SJF, Priority, Round Robin, RMS	4,5	
	2.2	UNIX Multi-level feedback queue scheduling, Thread	3	
		Scheduling, Multiprocessor Scheduling concept		
3	Title	Task / Process Management		08
	3.1	Concurrency: Principles of Concurrency, Mutual Exclusion,	4,5	
		H/W Support, software approaches, Semaphores and Mutex, Message Passing techniques		
	3.2	Deadlock: Principles of deadlock, Deadlock Detection, Deadlock	4,5	
		Prevention, Deadlock Avoidance, An Integrated Deadlock		
		Strategies.		
4	Title	Memory Management		06
	4.1	Memory Management requirements, Memory partitioning:	2,3	
		Fixed, dynamic partitioning		
	4.2	Memory allocation Strategies (First Fit, Best Fit, Worst Fit, Next	2,3	
		Fit), Fragmentation, Swapping, Segmentation, Paging, Virtual		
		Memory, Demand paging		
	4.3	Page Replacement Policies (FIFO, LRU, Optimal, clock),	2,3	
		Thrashing, Working Set Model		
5	Self Study	Case Studies		
	5.1	Comparison and study of RTOS: RT Linux, Vx works, µ COS	3,4,	
		and Free RTOS	6, 7	
	5.2	RTOS for Industrial Control System (ICS)		
			Total	28

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Laboratory Component

Sr. No.	Title of the Experiment*
1	Basic commands of LINUX, User management and Booting process
2	Process management in LINUX
3	Advanced bash Shell scripting in LINUX
4	Memory management in LINUX
5	Configure network interface in LINUX
6	Comparing Foreground background and Task management system in μ COS/ Free RTOS
7	Scheduling of Task in µ COS/ Free RTOS
8	Task Synchronization using semaphores in µ COS/ Free RTOS
9	Resource protection using mutex in μ COS/ Free RTOS
10	Task Synchronization using message queue and mailbox in μ COS/ Free RTOS

Reference Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Operating Systems: Internals	8th	William	Pearson	
	and Design Principles	Edition	Stallings		
2	Modern Operating System	4^{th}	Andrew S.	Pearson	
		Edition	Tanenbaum,		
			Herbert Bos		
3	The Design of the UNIX		Maurice J. Bach	Prentice Hall	
	Operating System				
4	Embedded System:		Rajkamal	Tata McGraw-	2011
	Architecture, Programming			Hill Education	
	and Design				
5	Introduction to Embedded		Shibu K. V.	Tata McGraw-	2017
	Systems			Hill Education	
6	Mastering the FreeRTOS [™]		Richard Barry		2016
	Real Time Kernel, A Hands-				
	On Tutorial Guide				
7	MicroC/OS-II: The Real Time		Jean J. Labrosse	CRC press	05 Feb
	Kernal			_	2002

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name]	heme k)	Credits Assigned						
Code		L	Т	Р	0	Ε	L	Т	Р	Total
	Analog CMOS VLSI Design	3			5	8	3			3
PE		Examinatio				ninatio	on Scheme			
		Comp]	ISE		MSE	E	SE	Total	
EC434		Theory			75		75		50	300
		Labor								

Pre-requisite Course Codes, if any.	ET101: Basic Electrical Engineering
	EC101: Digital Systems and Microprocessors
	ET202: Electronic Devices
	ET205: Analog Circuits
	PE-1T11: Digital CMOS VLSI Design

Course Objective: This primary goal of this course is to impart knowledge related to basic building blocks of CMOS analog circuits. This course will make students aware of technological challenges offered by scaled technologies coupled with multiple trade-offs in analog design. This course is expected to build analytical skills related to CMOS analog design among the students. Knowledge of fundamentals of MOSFET and CMOS Digital VLSI design is a must to understand this course in a better manner.

Course Out	comes (CO): After successful completion of the course, student will be able to						
EC434.1 Recognize trade-offs involved in analog VLSI Circuits							
EC434.2	Analyze current mirrors and bandgap references						
EC434.3	Analyze single stage amplifier using small signal model as well as large signal methodology						
EC434.4	Analyze MOSFET based differential and operational amplifier						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC434.1	3											
EC434.2		3										
EC434.3		3										
EC434.4		3										

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC434.1	1	2	2			
EC434.2	1	2	2			
EC434.3	1	2	2			
EC434.4	1	2	2			

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember ·	Understand	Apply ·	Analyze $\cdot $	Evaluate	Create
------------	------------	---------	------------------	----------	--------

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs
1	Title	CMOS analog building blocks	1	08
	1.1	Necessity of CMOS analog design		
	1.2	MOS Models: Structure of MOSFET, Review of characteristics		
		of MOS device, Second order effects, MOS small signal model,		
		MOS spice models		
2	Title	Current Mirrors and Bandgap References	1	08
	2.1	Passive and Active Current Mirrors: Basic current mirrors,		
		Cascode current mirrors and Active current mirrors		
	2.2	Band Gap References: General Considerations, Supply-		
		independent biasing, Temperature independent references, PTAT		
		current generation and Constant Gm biasing		
3	Title	Single Stage Amplifiers	1	10
	3.1	Basic concepts, Common source stage: resistive load, diode-		
		connected load, current-source load, triode load and source		
		degeneration		
	3.2	Source follower, Common gate stage, Cascode stage		
4	Title	Differential Amplifiers	1	06
	4.1	Single ended and differential operation, Basic differential pair,		
		Common-mode response, Differential pair with MOS loads and		
		Gilbert cell		
5	Title	MOS Operational Amplifiers	1,2,3	10
	5.1	Op-amp: General Considerations, performance parameters, One-		
		stage op-amps, Two-stage op-amps, Gain Boosting, Common-		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

	mode feedback, Input range limitations, Slew Rate, Power supply rejection		
5.2	Stability and Frequency Compensation: General		
	Considerations, Multipole systems, Phase margin, Frequency compensation, compensation of two stage op-amps		
		Total	42

Reference Books

Sr. No.	Title	Edition	Author	Publisher	Year
01	Design of Analog CMOS	1 st	B Razavi	Tata McGraw	2017
	Integrated Circuits	Edition		Hill	
02	CMOS Circuit Design, Layout,	Student	R. Jacaob Baker,	Wiley	2009
	and Simulation	Edition	Harry W. Li,		
			David E. Boyce		
03	CMOS Analog Circuit Design	3 rd	P. E. Allen and	Oxford	2016
		Edition	D. R. Holberg	University Press	

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name]	heme k)	Credits Assigned						
Code		L	Т	Р	0	Ε	L	Т	Р	Total
PE	-	2	-	2	3	7	2	-	1	3
PE	En anger Stana ga		Examinatio					on Scheme		
	Energy Storage Systems in EV	Comp]	ISE			E	SE	Total	
EC443	•	Theory			50		50		.00	200
	Applications	Labor	ratory		50				50	100

Objectives:

(1) To learn the characteristics and specifications of major Energy storage apparatus being used and explored in EV Applications such as Batteries, Super-capacitors and Fuel Cell (2) To be able to analyze and design the commonly used Battery charger circuits for EV Applications (3) To know various national and international battery charging standards and protocols.

Course Content:

Module-1 Batteries and Fuel Cells

Li-Ion Battery characterization and testing systems & Battery life cycle, Modular battery packs, design, packaging, thermal control and legislative implications. Super-capacitors : Materials and Construction, Basic Model, Specific Behavior of Supercapacitors, Hydrogen Generation and Storage of Hydrogen, Conversion from Hydrogen to Electricity, Power Needed for the Fuel Conditioning, Efficiency of the Fuel Cells, Overall Efficiency.

Module-2 Battery Management System:

Need of BMS, Concept of Battery Cell Balancing and strategies, Passive and Active cell Balancing circuits, BMS hardware Design, BMS hardware Protection, BMS Software Strategies, Intelligent Cell Balancing Algoritms, Monitoring and Protections, Charging and Discharging Management, Diagnostics and testing, Communication

Module-3: Battery Charging Standards and Protocols:

AC Charging: Bharat EV Charger AC-001, DC Charging: Bharat EV Charger DC-001, Home Charging: AC Charging with Single Phase 230V/15A supply, Public Charging AC-001: AC Charging with three Phase 415V AC supply Mains, Public Charging DC-001, Fast Charging for high voltage EVs: Combined charging system CCS-2 and CHAdeMo with ratings from 50kW to 150kW and DC voltages ranging from 400Vto 950V DC.

Course Projects and Lab Work:

(a) battery materials; (b) novel thermal management system for maintaining temperature uniformity among the cells and restrict the rise of maximum temperature above normal conditions; (c) Digital twin based on IoT; sensors; cloud computing; multi-physics modelling and machine learning for real-time monitoring of SoC and SoH of batteries under dynamic discharge conditions;(d) aging controlled fast charging of batteries by evaluation of optimal charging current, and simultaneously optimizing charging time and capacity.

Bharatiya Vidya Bhavan's Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

References:

- 1. Energy Storage by Robert A. Huggins, Springer Publication
- 2. Energy storage (A new approach) by Ralph Zito Wiley Publication
- 3. Handbook of Energy Audit, Albert Thumann P.E. CEM, William J. Younger CEM, The Fairmont Press Inc., 7th Edition.
- 4. Energy Management Handbook, Wayne C. Turner, The Fairmont Press Inc., 5th Edition, Georgia.
- 5. Energy Storage Systems, Alfred Rufer, CRC Press

Additional References:

- 1. Z. Zhang, H. Gui, D. Gu, Y. Yang and X. Ren, "A Hierarchical Active Balancing Architecture for Lithium-Ion Batteries," in *IEEE Transactions on Power Electronics*, vol. 32, no. 4, pp. 2757-2768, April 2017.
- 2. M. Daowd, N. Omar, P. Van Den Bossche and J. Van Mierlo, "Passive and active battery balancing comparison based on MATLAB simulation," *2011 IEEE Vehicle Power and Propulsion Conference*, Chicago, IL, 2011, pp. 1-7.
- 3. M. Caspar, T. Eiler and S. Hohmann, "Systematic Comparison of Active Balancing: A Model-Based Quantitative Analysis," in *IEEE Transactions on Vehicular Technology*, vol. 67, no. 2, pp. 920-934, Feb. 2018.
- Xiaoqiang Zhang[†], Weiping Zhang, and Geyang Lei," A Review of Li-ion Battery Equivalent Circuit Models," in *TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS*, Vol. 17, No. 6, pp. 311-316, December 25, 2016
- Min Chen, Student Member, IEEE, and Gabriel A. Rinc´on-Mora, Senior Member, IEEE," Accurate Electrical Battery Model Capable of Predicting Runtime and I–V Performance ",in*IEEE* TRANSACTIONS ON ENERGY CONVERSION, VOL. 21, NO. 2, JUNE 2006
- 6. Jian Cao, Nigel Schofield and Ali Emadi," Battery Balancing Methods: A Comprehensive Review ", in *IEEE Vehicle Power and Propulsion Conference* (VPPC), September 3-5, 2008

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	Г	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total	
		2	-	2	3	7	2	-	1	3	
PE	Daman Elastuaria	Examination Scheme									
	Power Electronic Converters in EV	Component			ISE		MSE		SE	Total	
EC444	Applications	The	Theory		50		50		.00	200	
	Applications	Labor	ratory	50					50	100	

Course Content:

Module-1 Battery Chargers

Types of EV Chargers, On board Chargers, DC Fast Chargers, PF Improvement strategies and Control, DC-DC Converter design and Control Scheme. Topology Selection, Control Method for Fast Charger, Charger Converter Hardware Design, Magnetics Design and Selection, Charger Converter Software Design, Enclosure and Connectors, Thermal Engineering.

Module-2 EV Traction Drive and Control

Motor Selection and types, Torque/Speed curve of different motor types and their comparison, Motor Inverter hardware Design, MOSFET/IGBT Selection, Gate Driver Circuit Design, Power Supply and Controller Hardware, Motor Inverter Software Strategies for control of BLDC Motor Drive and Induction Motor Drive, Motor Inverter Thermal Engineering, Connectors and Wiring, Active and Passive Discharge (in case of DC Bus > 60V). EMI/EMC Standards Introductions

Module-3: DC-DC converter Unit for EV Ancillary Power System

Power Converter Topology Selection, Control Method for DC-DC converter, Hardware Design, Magnetics Design and Selection, DC-DC Converter Software Design, Enclosure and Connectors, Thermal Engineering, Active and Passive Discharge, EMI/EMC Standards Introductions

Case Studies: (To be covered in Practical Session)

Design and development of high-power density power electronics converters, onboard chargers, machines for electric vehicles, power train technology and various controllers for drives and converters. Development of various novel control algorithms for converters and motor drives

References:

- 1. Chang Liang Xia,"Permanent Magnet Brushless Dc Motor Drives and Controls" Wiley 2012.
- 2. Rashid M.H., "Power Electronics Circuits, Devices and Applications", Prentice Hall India, Third Edition, New Delhi, 2011.
- 3. Bimal K Bose, "Modern Power Electronics and AC Drives", Pearson Education, second Edition, 2003.

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

- 4. Dubey. G.K., "Thyristorised power controllers", New age International, New Delhi, 2002.
- 5. Bhimbhra P.S., "Power Electronics", Khanna Publishers, New Delhi, 2005
- 6. Miller. T. J. E., "Brushless Permanent Magnet and Reluctance Motor Drives", Clarendon Press, Oxford, 1989.
- 7. Kenjo. T and Nagamori. S, "Permanent Magnet and Brushless DC Motors", Clarendon Press, Oxford, 1989.
- 8. Kenjo. T, "Stepping Motors and their Microprocessor Control", Clarendon Press, Oxford,
- 9. Robert .L.Boylsted, and Louis Nashelsky, "Electronic Devices and Circuit Theory", Pearson Education, 9th edition, 2009.
- 10. David A Bell, "Fundamentals of Electronic Devices and Circuits", Oxford University Press, 2009.
- 11. Roy Choudhury and Shail Jain, "Linear Integrated Circuits", 2nd Edition, New Age International Publishers, 2003

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course		Teachin	Teaching Scheme (Hrs./week)						Credits Assigned			
(Category) Code	Course Name	L	Т	Р	0	Ε	L	Т	Р	Total		
		2	0	2	6	11	2	0	1	3		
PE-3	Orther Fiber	Examination Scheme										
	Optical Fiber - Communication -	Component		ISE		MSE	E ESE		E	Total		
EC453		Theory		50		50		100		200		
		Laboratory		50			50		100			

Pre-requi	isite Course Codes, if any.	AS101: Engineering Physics					
		EC304: Electromagnetic Waves					
Course O	Course Objective: The objective of the course is to provide an understanding of usage of optical						
fiber for c	communication.						
Course O	Course Outcomes (CO): At the End of the course students will be able to						
EC453.1	Apply EM Wave theory to understand nature of Optical Signal and their						
LC455.1	corresponding guiding structures.						
EC453.2	Identify Passive Optical Con	Identify Passive Optical Components, Sources and Detectors.					
EC453.3	Analyze Passive Optical Components, Sources and Detectors.						
EC453.4	Evaluate losses in the optical systems.						
EC453.5	Compare different Optical Networks.						
EC453.6	Design optical Link Budget system.						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC453.1	3	3	3	1	3					3		
EC453.2	2	2	2	2	3					3		
EC453.3	2	2	2	2	3					3		
EC453.4	2	2	2	2	3					3		
EC453.5	2	2	2	2	3					3		
EC453.6	3	3	3		3					3		

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC453.1		2			2	
EC453.2		2			2	
EC453.3		2			2	
EC453.4		2			2	
EC453.5		2			2	
EC453.6		2			1	

Bharatiya Vidya Bhavan's Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember√	Understand√	Applv√	Analvze√	Evaluate	Create	
Itemperi	e nuer stanta (1-66-7	111111/20		010000	

Theory Component

Module	Unit	Topics	Ref	Hrs.
No.	No.		•	
1		Optical communication fundamentals	1	10
	1.1	Block diagram of Optical Communication system, advantages, loss and bandwidth window, ray theory transmission, total internal reflection, acceptance angle, numerical aperture, skew rays and meridional rays		
	1.2	EM waves, modes in planar guide, phase and group velocities, types of fibre according to refractive index profile and mode transmission.		
	1.3	Couplers, Isolators, circulators, multiplexers, filters, fibre gratings, Fabry Perot filters, arrayed waveguide grating, switches and wavelength converters		
2		Optical communication Components	1	08
	2.1	Sources (LED, LASER), Detectors (PIN, APD) and Amplifiers		
3		Optical Networks and losses in the system	1	10
	3.1	Attenuation, absorption, linear and nonlinear scattering losses, bending losses, modal dispersion, waveguide dispersion, dispersion and pulse broadening, dispersion shifted, and dispersion flattened fibers, and nonlinear effects Measurements of attenuation, dispersion and OTDR		
4/0 10	3.2	Optical Networks: Link budget, SONET, SDH, WDM, DWDM		06
4(Self Study)		Review of latest optical fiber application and research		06
		,	Total	28

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Setup of Optical fiber communication link and measurement of Bit Error Rate (BER)
	and Eye pattern analysis
	A) Setup of analog fiber optic communication link
	B) Setup of digital fiber optic communication link
	C)Measurement of Bit Error Rate
	D)Study and measurement of Eye pattern
2	Measurement of Numerical Aperture (NA) of optical fiber
3	Measurement of Losses in Optical Fiber
4	Study characteristic of LED and Photo detector in optical fiber communication link.
5	To verify the Brewster's law and to find the Brewster's angle

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

6	Michelson's Interferometer- Refractive index of glass plate: To determine the refractive
	index of a thin glass plate.
7	To Demonstrate the working of LASER using Phet virtual Lab
8	Measure propagation loss in plastic fiber and to measure the bending loss.
9	Plotting optical link power budget.
10	Mini project on optical network.

Textbooks:

S. N.	Title	Authors	Edition	Publisher	Year
1	Optical Fiber Communication	John M. Senior	Fourth	Prentice Hall of India Publication	2013
2	Optical Fiber Communication	Gred Keiser	Third	Mc-Graw Hill Publication	2012
3	Optical Networks: A Practical Perspective	Rajiv Ramaswamy and Kumar N. Sivarajan	Third	Elsevier Publication	2010

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Course (Category)	Course Name	T	Teaching Scheme (Hrs/week)				Credits Assigned			
Code		L	Τ	Р	0	Е	L	Τ	P	Total
	Telecom Network Operations and	2	0	2	2	6	2	0	1	3
PE-4		Examination Scheme								
		Component]	ISE		MSE		ESE	Total
EC454	Management	The	ory	50			50		100	200
		Laboratory			50				50	100

Pre-requi	isite Course Codes, if any.	EC307: Computer Communication Network					
Course (Course Objective: To develop understanding the concept of Telecommunication network						
0	management, architecture, and protocol. Appreciate the need for interoperable network						
0		a hands-on experience managing network hardware and					
		, DNS, ARP, FTP, Telnet, HTTP, SSH, SMTP, TFTP,					
	P using scripting and python pro						
Course O		e course students will be able to					
EC454.1		and apply the concept of structured wiring, structured					
LC+J+.1	U	best solutions to meet the needs of a business.					
EC454.2	Analyze the network management standards and protocols to support FCAPS Model						
LC+J+.2	of Network Management.						
EC454.3		twork Manager and show how management					
LC+J4.J	information is stored & accessed within a managed object.						
EC454.4		g and debugging techniques to resolve the network					
LC+3+.+	problems.						
EC454.5	11 5 1	s of Network Management and implement server and					
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	nd control networks, devices and applications.					
EC454.6	Develop programs in Python to	solve real problems in Network Management.					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC454.1			2	2								
EC454.2			2	2								
EC454.3					3							
EC454.4					3							
EC454.5					3							
EC454.6					3							

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC454.1			2			
EC454.2		2				
EC454.3			2			
EC454.4		2		3	2	
EC454.5			2		3	
EC454.6		2			2	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	✓ Apply	✓ Analyze	✓ Evaluate	✓ Create

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Introduction to Enterprise Network Design	2,1,3	08
	1.1	Introducing Network Design Concepts: Medium Enterprise Design Profile (MEDP)—LAN Design, LAN design principles, LAN design model for the medium enterprise, Considerations of a multi-tier LAN design model for medium enterprises, Designing network foundation services for LAN designs in medium enterprise, Scalability, Service uptime, WAN Design, Business, and network-based economy. Challenges of IT managers, Network management architecture and organization network management perspectives		
		management: Goals, organization, and functions		
2	Title	OSI Network Management	1,2,3	02
	2.1	Network management standards, Network management models, Organization model, Information model Communication model and functional model, Abstract syntax notation – encoding structure, macros, functional model CMIP/CMISE		
3	Title	Internet Management (SNMP)	1,2,3	08
	3.1	SNMP-organizational model-System overview. Information model, communication model, functional model, SNMP proxy server, Management information, Protocol SNMPv1,v2 and V3,		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

		Remote monitoring. RMON, Limitations of SNMP, Beyond		
		SNMP, NETCONF/YANG		
4	Title	Telecommunication Management Networks (TMN)	1,2.3	03
	4.1	Need for TMN, Conceptual TNM model, TMN Network		
		Management Architecture, TMN management services		
		architecture and TMN implementation		
5	Title	Network Management Tools and Applications	1,4,5	07
	5.1	System Utilities for network management, Network statistics and measurements, NMS Design, NMS components, NMS Server Architecture, Network Management Systems and FCAPS, Automatic Fault Management and Event correlation Techniques, Security Management		
6	Self	Broadband Network Management: ATM Network		04
	Study	Management and Wireless Network Management		
			Total	28

Laboratory Component

Sr. No	Title of the Experiment
1	Network Monitoring tools: a) Status b) Routec) Traffic Tools d) Audit
2	Monitoring and management network using SNMP: a) Basic SNMP b) Advanced SNMP v3
	Authentication/Encryption and ACL c) SNMP Trap Daemon Implementation
3	Configuration SNMP Protocol on Cisco Router using Packet Tracer
4	Configuration manageable Switch: L2/L3 Switch
5	LAN Troubleshooting using tcpdump and Wireshark
6	Monitoring of services and Servers using a) Observium/ Cacti b) Nagios/Icinga
7	Implementation of Centralized Logging infrastructure and security event correlation
8	Open Source SIEM Project
9	Python scripts for Network Monitoring
10	Network Management using Python

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Network Management		Mani Subramaniam	Addison Wisely,	2000
	Principles and Practice			New York	
2	Designing and		Kenneth Stewart,	Cisco Press	
	Supporting Computer		Aubrey Adams,		
	Networks, CCNA		Allan Reid, Jim		
	Discovery Learning		Lorenz		
	Guide				
3	Network Management:		J. Richard Burke	Pearson	
	Concepts and Practice, A			Publications.	
	Hands-On Approach				
4	Network Management:		Benoit Claise- CCIE	Cisco Press	
	Accounting and		No. 2686; Ralf		
	Performance Strategies		Wolter		
5	Network Management		Alexander Clemm	Cisco Press, ISBN-	2006
	Fundamentals			13: 978-158720137	
6	Python for Software		Allen B. Downey	Cambridge	2009
	Design			University Press	
				ISBN-13: 978-	
				0521725965	

Bharatiya Vidya Bhavan's Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

Sem-VIII

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Department of EXTC

PROGRAM ELECTIVE COURSES

• 4 Electives are sufficient to specialize in a particular vertical/thread/area.

TD/ PE	PE1	PE2	PE3	PE4	PE5 PE6
THREAD 1:	T11:	T12:	T13:	T14:	Two courses
Communication	Mobile and Wireless communication	Microwave Communication	Wireless Sensor Networks	Next Generation Network	from the following list T11, T12,
THREAD 2: Signal Processing	T21: Speech and Audio Processing	T22: DSP Processors	T23: Image & Video Processing	T24: Principles Soft Computing	T21, T22, T31, T32,
THREAD 3:	T31:	T32:	T33:	T34:	T41, T42, X, Y
VLSI & Embedded Systems	Digital CMOS VLSI Design	Embedded Systems	Real Time Operating Systems	Analog CMOS VLSI Design	
THREAD 4:	T41:	T42:	T43:	T44:	
Power Electronics and Energy Systems	Power Electronic Converters (Cat2) IC & MEMS Technology (Cat1)	Embedded System Design for Power Converter Applications	Energy Storage Systems in EV Applications	Power Electronic Converters in EV Applications	
GENERAL	X Network Fundamentals (Cat2) Any other PE1 (Cat1) T11, T12, T21, T22, T31, T32, T41, T42	Y: Fundamentals of Antenna (Ct2) Information Theory and Coding (Ct1) T11, T12, T21, T22, T31, T32, T41, T42	P: Optical fiber Communication	Q: Telecomm Network Operations & Management	

*For Open Elective courses refer to the document: "Open Elective Syllabus" SPIT/Syllabus/2021-25/EXTC/pg. 187