B. Tech. (Information Technology)

Syllabus

(Semester V-VIII)

2020 Iteration (w.e.f. 2021-22)

			Sem V						
No.	Туре	Code	Course	L	Т	Р	0	Ε	С
1	PC	IT301	Theory of Computation	3	0	0	6	9	3
2	PC	IT302	Software Engineering	3	0	2	5	10	4
3	PC	IT303	Foundation of Signal Processing	3	0	2	5	10	4
4	PC	IT304	Distributed Computing	3	0	2	5	10	4
5	SBC	IT305	Internet Technology Lab	1	0	2	5	08	2
6	ABL	SVXX/STXX	SEVA II or III /SATVA II or III	0	0	0	2	02	1
7	HSSE	HSEX3	HSS-III	2	0	0	3	05	2
8	S/M	SCX2/MNX2	SCOPE-II/Minor-II						3
		Т	OTAL	15	0	8	31	54	20

		S	em VI For Cat 1 students (Normal S	tudent	s)				
No.	Туре	Code	Course	L	Т	Р	0	E	С
1	OE	OEXXX	Open Elective-I	2	0	2	4	08	3
2	PC	IT306	Information System Security	3	0	2	5	10	4
3	PC	IT307A/	Big Data Analytics/ Artificial	3	0	2	5	10	4
		IT307B	Intelligence and Machine Learning	5	0	2	5	10	
4	PE	IT3X1	Program Elective-I	2	0	2	4	08	3
5	PE	IT3X2	Program Elective-II	2	0	2	4	08	3
6	SBC	IT308	Mini Project-II/Ind Internship-II	0	0	0	8	08	3
7	ABL	SVXX/STX	SEVA II or III /SATVA II or III	0	0	0	3	03	1
		Х							
8	S/M	SCX3/MNX	SCOPE-III/Minor-III						3
		3							
				12	0	10	33	55	21

	Se	m VI For Cat 2 s	students (who have preferred semes	ster lo	ong in	ntern	ship)					
No.	Туре	Code	Course	L	Т	Р	0	Е	C			
1	PE*	IT3X1	Program Elective-I	ogram Elective-I 2 0 2 4 08								
2	PE*	IT3X2	Program Elective-II	ogram Elective-II 2 0 2 4 08 1								
3	SBC	IT310	ndustry Internship 0 0 0 40 40									
4	S/M*	SCXX/MNXX	SCOPE-III/Minor-III						3			
			TOTAL	4	0	4	48	56	21			
			To be completed online mode or allied courses from									
			MOOCs									

			Sem VII									
No.	Туре	Code	Course	L	Т	Р	0	Е	С			
1	OE	OEXXX	Open Elective-II	2	0	2	4	08	3			
2	2 OE OEXXX Open ElectiveIII* 2 0 2 4 08 3											
3	B PE IT4X3 Program Elective-III 2 0 2 4 08 3											
4 PE IT4X4 Program Elective-IV 2 0 2 4 08 3												
5	SBC	IT401	1 Main Project Stage-I 0 0 (
6	ABL	SVXX/STXX	SEVA-III/SATVA-III	0	0	0	4	04	2			
7	S/M/H	SCX4/MNX4 /	SCOPE-IV/Minor-IV/Honors-I						3			
		HOXX										
	*OE-III must be from Basic Science Elective or Engineering Science Elective											
			TOTAL	8	0	8	24	40	16			

			Sem VIII (Option A: Cat1/Cat2))						
No.	Туре	Code	Course	L	Т	Р	0	E	С	
1	OE*	OEHXX	Open Elective –IV	2	0	2	4	08	3	
2	PE	IT4X5	Program Elective –V	2	0	2	4	08	3	
3 PE IT4X6 Program Elective –VI 2 0 2 4 08										
4	SBC	IT402	Main Project Stage-II	0	0	0	12	12	6	
5	ABL	SVXX /	SEVA-IV/SATVA-IV	0	0	0	04	04	2	
		STXX								
6	Η	HOXX	Honors-II						3	
	*must be from Humanities and Management group, May be taken from MOOCs									
	TOTAL 6 0 6 28 40									

	Sem VIII (Option B-Only for Cat 1 students)													
No.	No.TypeCodeCourseLTPOEC													
1	SBC IT403 Main Project Stage-II 0 0 0 36 36 15													
2	ABL	SVXX /	SEVA-IV/SATVA-IV	0	0	0	04	04	2					
		STXX												
3	Н	HOXX	Honors-II						3					
			TOTAL	0	0	0	40	40	17					

Note: Please refer to the separate document for "Open Electives and Syllabus" to choose Open Electives

PE/TD	Program Elective-I	Program Elective-II	Program Elective- III	Program Elective- IV	Program Elective- V	Program Elective- VI
Machine Learning Information Security	IT311 : Machine Learning IT321: Number Theory and Cryptography	IT312: Soft Computing IT322: Digital Forensics	IT413: Natural Language Processing IT423: Security Operations Center	IT414: Deep Learning IT424: Blockchain Technology	IT311, IT312, IT321, IT322, IT331, IT332, CS331, CS332 CS311,	IT311, IT312, IT321, IT322, IT331, IT332, CS331, CS332 CS311,
General	IT331 : Advanced Database Systems IT312, IT321, IT322, IT332, CS331, CS332, CS311, CS312, CS321, CS322	IT332 : Data Science IT311, IT312, IT321, IT322, IT331, CS331, CS332, CS311, CS312, CS321, CS322	IT433 : Digital Image Processing IT413, IT423, IT434, CS413, CS423, CS423, CS431, CS432	IT434 : Project Management IT413, IT423, IT433, CS413, CS413, CS423, CS431, CS432	CS312, CS321, CS322	CS312, CS321, CS322

Table 2: Program Electives

SEMESTER V

Course (Category)	Course Name]]	Teaching Scheme (Hrs/week)						Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total		
		3	0	0	6	9	3	0	0	3		
PC	Theory of Computation		Examination				n Scheme					
		Comp	onent		ISE	I	MSE	F	ESE	Total		
IT201		The	Theory		75		75		150	300		
11301		Labor	Laboratory									

Pre-requisite Course Codes, if any. IT201: Discrete Structures and Graph Theory
Course Objective: To give an overview of the theoretical foundations of computer science from
the perspective of formal languages which provides the mathematical foundation of formal
models of computation, and fundamentals of formal grammars and languages that is used in most
areas of computer science.

Course O	utcomes (CO): At the end of the course students will be able to
IT301.1	Design finite automaton for a regular expressions and languages.
IT301.2	Apply the properties of regular languages.
IT301.3	Construct the grammar for a language and convert it into normal forms.

IT301.4 Design and Evaluate Pushdown Automata and Turing Machine for a language.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
IT301.1	3	3	2	-	1	-	-	-	1	1	-	-
IT301.2	3	2	-	-	-	-	-	-	1	1	-	-
IT301.3	2	3	-	-	1	-	-	-	1	1	-	-
IT301.4	2	2	2	-	1	-	-	-	1	1	-	-

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
IT301.1	2	1	-	-	-	-	-
IT301.2	2	1	-	-	-	-	-
IT301.3	2	1	-	-	-	-	-
IT301.4	2	1	-	-	-	-	-

Remember	Understand	Apply	Analyze	Evaluate	Create
			\checkmark		

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	Title	Sets, Relations and Languages	T1,	3
	11	Relations and functions	R3	
	1.1	Alphabets and languages		
	13	Types of proof		
2	Title	Finite Automata	T1.	7
-	11110		R1.	
	2.1	Regular languages and regular expressions	R3	
	2.2	Finite Automata, Nondeterministic Finite Automata,	_	
		Nondeterministic Finite Automata with ϵ -transitions	-	
	2.3	Kleene's theorem		
	2.4	NFA to DFA Conversion		
	2.5	Finite Automata with output (Moore and Mealy Machine)		
3	Title	Regular Languages	T1, R1	6
	3.1	The pumping lemma for regular languages, Applications of the		
	27	Closure properties for regular languages		
	3.2	Equivalance and minimization of automate: Testing		
	5.5	equivalence of states. Minimization of DEA's		
4	Titlo	Context-Free Grammars and Languages	Т1	5
-	The	Context-Free Oranimars and Languages	R3	5
	4.1	Context free grammars: Definition of context free grammars,	N U	
		Derivations using a grammar, The language of a grammar,		
		Sentential forms		
	4.2	Parse trees: Constructing parse trees, From inferences to trees,		
		From trees to derivations, From derivations to recursive		
		inferences		
	4.3	Ambiguity in grammars and languages: Ambiguous grammars,		
_		Removing ambiguity from grammars	- TE 4	
5	Title	Pushdown Automata	T1,	6
	5.1	Definition of the pushdown automaton: The formal definition	12	
		of pushdown automata, A graphical notation for PDA's,		
		Instantaneous descriptions of a PDA		
	5.2	The languages of a PDA: Acceptance by final state,		
		Acceptance by empty stack, From empty stack to final state,		
		From final state to empty stack		
	5.3	Equivalence of PDA's and CFG's: From grammars to		
		pushdown automata, From PDA's to Grammar		
	5.4	Deterministic pushdown automata: Definition of a		
		deterministic PDA, Regular languages and deterministic		
		PDA's, DPDA's and context free languages		
6	Title	Properties of Context-Free Languages	T1,	5
	6.1	Eliminating useless symbols, Computing the generating and	12, R1	
		reachable symbols, Chomsky normal form, Greibach normal		
		form		

	6.2	The Pumping lemma for context free languages: Applications of the pumping lemma for CFL's		
7	Title	Introduction to Turing Machines	T1,	6
	7.1	Turing machines: Formal definition of a Turing machine, Examples of Turing machines	- 12	
	7.2	Halting Problem, Post Correspondence Problem (PCP)		
	7.3	Variants of Turing machines: Multitape Turing Machines		
	7.4	Church-Turing hypothesis		
8	Title	Recursively Enumerable Languages	R1	4
	8.1	Recursively Enumerable and recursive		
	8.2	Enumerating a language		
	8.3	Context sensitive languages and the Chomsky hierarchy		
	Self	Tractable and Intractable Problems: Tractable and Possibly	R1	5*
	Study	Intractable Problems: P and NP, Polynomial-Time Reductions and NP-Completeness, Cook's Theorem		

Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Introduction to Automata	Third	John E. Hopcroft,	Pearson	2008
	Theory, Languages, and	Edition	Rajeev Motwani,		
	Computation		Jeffrey D. Ullman		
2	Introduction to the Theory	Third	Michael Sipser	Cengage	2013
	of computation	Edition	_		

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Introduction to Languages	Fourth	John C. Martin	McGraw-Hill	2010
	and the Theory of	Edition			
	Computation				
2	Elements of the Theory of	Second	Harry R. Lewis,	Pearson	2015
	Computation	Edition	Christos H.		
			Papadimitriou		
3	Automata and		Dexter C. Kozen	Springer	1997
	Computability				

Course (Category)	Course Name		Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total	
		3	0	2	5	10	3	0	1	4	
PC]			Examination			n Scheme		
	Software	Comp	onent]	ISE		MSE	E	ESE	Total	
IT302	Engineering	The	ory		50		50	1	100	200	
		Laboratory			50				50	100	

Pre-requisite	Course Codes, if any.	CS102: Object-oriented programming language		
_	-	IT204: Database Management Systems		
Course Object	tive: To understand the b	est practices in software engineering and gain knowledge to		
analyze, desig	n, implement and test so	ftware project.		
Course Outco	omes (CO): At the End of	of the course students will be able to		
IT302.1	Analyze software requirements.			
IT302.2	Apply UML models for	a project.		
17202 2	Evaluate system archite	ecture and develop detailed task schedule from the overall		
11302.3	estimates and planning.			
IT302.4	Illustrate different codi	ng principles with unit test process.		
IT302.5	Understand the need for	r DevOps.		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
IT302.1	-	3	-	-	I	-	-	-	2	2	-	-
IT302.2	-	2	-	-	2	-	-	-	2	2	-	-
IT302.3	-	3	2	1	2	-	-	-	2	2	2	-
IT302.4	-	-	3	-	2	-	-	-	2	-	-	-
IT302.4	-	1	1	-	-	-	-	-	-	-	-	1
	0	1-4-	N/ - 4	(2 0	4)]] .] .		XXZ I-	C	4 • • • • • •		

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
IT302.1	3	-	-	-	-	-	-
IT302.2	3	2	-	-	-	-	-
IT302.3	3	2	_	_	2	-	-
IT302.4	3	-	-	-	2	-	-
IT302.5	1	2	1	-	-		1

Remember	Understand	Apply	Analyze	Evaluate	Create
				\checkmark	

Module	Unit	Topics	Ref.	Hrs
No.	No.			•
1	Title	Introduction		06
	1.1	Software Development Challenges, Software Scope, The Human Side of Software Development	T1,T2	
	1.2	Software Methodologies and Related Process Models with	T1,T2	
		applications, Traditional Life Cycle Models, Waterfall, Incremental,	,	
		Iterative models, Agile Software Engineering Process Models,		
		SCRUM, Extreme Programming		
2	Title	Requirements Management and Project Planning		10
	2.1	Requirements Development Methodology, Specifying	T1,T2	
		Requirements, Eliciting Accurate Requirements, Documenting		
		Business Requirements, SRS, Defining User Requirements,		
		Validating Requirements, Achieving Requirements Traceability,		
		Finding Changing Requirements, Agrie Requirements		
	2.2	Scheduling Work Breakdown Structure Gantt Chart Pert Chart	Т1 Т2	
	2.2	Critical Path Earned Value Analysis Schedule and Cost slippage	11,12	
		Estimation. Decomposition techniques. Empirical estimation		
		models, Software Risk Management: Risk Identification, Risk		
		Projection, Risk Refinement, RMMM Plan		
3	Title	Software Analysis		08
	3.1	Difference between Structured and Object-Oriented analysis,	R2,R3	
		Structured Analysis, Data Flow Diagrams		
	3.2	Object Oriented Analysis, Uses Case, Class diagram, Interaction	R2,R3	
		diagrams, Activity diagram, State Chart diagram, Component and		
4	T:41a	Deployment diagram		00
4		Software Design & Development	Т1 Т)	Vð
	4.1	Model Driven Architectures	11,12	
	4.2	Software Development, Component Infrastructures, Refactoring, Test Driven Development (TDD)	T1,T2	
	4.3	DevOps, Continuous Integration, Continuous Deployment, System	R1	
		Provisioning and Configuration Management		
	4.4	Software Change Management, Change Control, Version Control	T1,T2	
5	Title	Software Quality & Testing		10
	5.1	Software Quality Concepts, Quality Assurance, Quality Control, Formal Technical Reviews	T1,T2	
	5.2	Software Metrics, Product Metrics – McCall's Quality Factor,	T1,T2	
		Metrics for Analysis Model and Design Model, Project Metrics,		
		Process Metrics, Metrics for Source Code		
	5.3	Software Testing, Unit Testing, Integration Testing, System Testing	T1,T2	
6	Title	Advance Topic in software Engineering		5*
	Self	Design Pattern		
	Stud			
	y	Total		12
		10181		44

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	Gather requirements and write a project proposal for case study.
	Prepare SRS document. (Use IEEE template)
2	Design UML diagram -Use Case, Class diagram
3	Design UML diagram -Interaction diagrams
4	Design Data flow diagram (level 0 and 1) for the case study.
5	Create work breakdown structure and schedule the activities
6	Develop Risk Mitigation, Monitoring and Management Plan for the case study.
7	Create versions of software using version control tool.
8	Implement any one Module from chosen case study.
9	Prepare test cases and perform Unit Testing (test scenario, test cases, test data)
10	Study on continuous Integration using DevOp

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Software Engineering: A	Ninth	Roger S. Pressman	McGraw-Hill	2019
	Practitioner's Approach	Edition	and Bruce Maxim		
2	Fundamentals of	Fifth	Rajib Mall	PHI Learning	2018
	Software Engineering	Edition			

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	The DevOps Handbook: How to		Gene Kin, Patrick	IT	2016
	Create World-Class Agility,		Debois, John	Revolution	
	Reliability, and Security in		Willis, Jez Humble	Press	
	Technology Organizations		and John Allspaw		
2	UML for Java Programmers		Robert C. Martin	Pearson	2006
3	UML Distilled: A Brief Guide to the	Third	Martin Fowler	Addition	2003
	Standard Object Modeling Language	Edition		Wesley	

Course (Category)	Course Name	Г	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total	
		3	0	2	5	10	3	0	1	4	
РС		Examination Scheme									
	Foundation of	Component]	ISE	Ι	MSE		SE	Total	
1000	- Signal Processing	, Theory			50		50	1	00	200	
11303		Labo		50				50	100		

Pre-requisite Course Codes, if any.						
Course Objective: Foundations of Digital S	Signal Processing! The study of digital signal					
processing explores how we transform data into new representations to better understand,						
compress, and leverage it. The course begins with a rigorous review of tools from Signals and						
Systems: sampling, convolution, Fourier representations and flow graph, fast linear filtering						
algorithms. It also comoares DSP Processor	and General Purpose Processor.					
Course Outcomes (CO): At the End of the	course students will be able to					
IT303.1 Interpret DT signal and po	erform signal manipulation in Time Domain and					
Frequency Domain						
IT303.2 Develop FFT flow-graph						
IT303.3 Implement Fast Linear filterin	g algorithms					
IT303.4 Compare the DSP processor v	vith General Purpose Processor (GPP)					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
IT303.1	2	2		-	-	-	-	-	-	-	-	-
IT303.2	-	-	3	-	-	-	-	-	-	-	-	-
IT303.3	-	-	3	-	-	-	-	-	-	-	-	-
IT303.4	-	2	-	-	-	-	-	-	-	-	-	-

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
IT303.1	-	-	-	3	-	-	-
IT303.2	-	-	-	3	3	-	-
IT303.3	-	-	-	3	3	-	-
IT303.4	-	-	-	3	-	-	-

Remember	Understand	Apply	Analyze	Evaluate	Create
		1	1	\checkmark	

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	Title	Discrete-Time Signal	T1,T2	12
	1.1	Introduction:	T1,T2	04
		Signals, Systems, and Signal, Continuous Time signal, Discrete -		
		Time signal and representation, Digital signal, The Sampling		
		theorem, Some elementary discrete time signals, Classification of		
		Discrete - Time Signals, Modifications of Discrete - Time Signals.		
	1.2	Operations on Discrete - Time Signals:	T1,T2	05
		Linear Convolution, Circular Convolution, Matrix Representation		
		of Circular Convolution, Linear Convolution using Circular		
		Convolution, Auto and Cross Correlation.		
	1.3	Discrete - Time systems:	T1,T2	03
		Static and dynamic, time variant and time invariant, linear and		
		nonlinear, causal and non causal. Representation of system using		
		impulse response, Finite Impulse Response (FIR) and Infinite		
		Impulse Response (IIR) system, Response of the FIR system using		
		convolution.		
2	Title	Discrete Fourier Transform	T1,T2	08
	2.1	Introduction to DTFT, Relation between DFT and DTFT, DFT of	T1,T2	02
		DT signal, Inverse DFT.		
	2.2	Properties of the DFT: Scaling and Linearity, Symmetry for real	T1,T2	06
		valued signal, Periodicity, Time Shift and Frequency Shift, Time		
		Reversal, Convolution Property and Parsevals Energy Theorem.		
3	Title	Fast Fourier Transform	T1,T2	08
	3.1	Fast Fourier Transform: Need of FFT, Radix-2 DIT-FFT algorithm	T1,T2	04
	3.2	Flow graph for N=4 and 8 using Radix-2 DIT-FFT, Inverse FFT	T1,T2	04
		algorithm, Comparison of complex and real, multiplication and		
		additions of DFT and FFT		
4	Title	DSP Algorithms	T1,T2	08
	4.1	Fast Circular Convolution Algorithm, Fast Linear Convolution	T1,T2	04
		Algorithm.	,	
	4.2	Linear FIR filtering using Overlap Add Algorithm and Overlap	T1,T2	04
		Save Algorithm and implementation using FFT.	,	
5	Title	DSP Processors and Applications of DSP	T3	06
	5.1	Need DSP processor, Difference between DSP processor & General	T3	02
		Purpose (GP) Processor.	-	
	5.2	Case study of DSP applications to Speech Signal Processing and	T3	04
		Biomedical Signal Processing.		
6	Self	Multi-rate Signal Processing: Up sampling and Down sampling,	T1,	02
	Study	Signal Compression, Carl Correlation Coefficient for measurement of	Τ2,	02
	*	degree of similarity between two signals.	T3,R1	01
			,R2	
		Total		42

Sr. No.	Title of the Experiment	Marks					
1	Signal Operations	5					
2	Discrete Convolution						
3	Discrete Correlation	5					
4	Discrete Fourier Transform	5					
5	Magnitude and Phase Spectrum	5					
6	Fast Fourier Transform	5					
7	Overlap Add Method using FFT	5					
8	Overlap Save Method using FFT	5					
9	Application of DSP Part I	5					
10	Application of DSP Part II	5					

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Digital Signal	Fourth	Proakis	Pearson Education, ISBN	2007
	Processing :	Edition	Manolakis	81-317-1000-9	
	Principles,				
	Algorithms and				
	Applications				
2	Digital Signal	First	S. Salivahanan,	TataMcgraw Hill	2010
	Processing	Edition	A. Vallavaraj,	ISBN 978-0-07-066924-6	
	_		C. Gnanapriya		
3	Digital Signal	First	Jonathan (Y)	Copyright © 2000 John	2000
	Processing: A	Edition	Stein	Wiley & Sons, Inc	
	Computer Science	published		Print ISBN:9780471295464	
	Perspective	on 25th		Online	
		Sept, 2000		ISBN:9780471200598	
		_		DOI:10.1002/047120059X	

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Digital Signal		Emmanuel C.	Pearson Education ISBN 0-	2001
	Processing: A		Ifeachor,	201-59619-9	
	Practical Approach		Barrie W.		
			Jervis		
2	Digital Signal	Sixth	P. Ramesh	Scitech Publication	2014
	Processing	Edition	Babu		

Course (Category)	Course Name	,	Teaching Scheme (Hrs/week)				Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total
	Distributed	3	0	2	5	10	3	0	1	4
PC			Examination Scheme							
		Component			ISE	1	MSE		SE	Total
IT304	Computing	The	Theory		75		75		.50	300
		Laboratory			50				50	100

Pre-requisite	e Course Codes, if any. IT206: Operating Systems					
	IT207: Computer Networks and Communications					
Course Obje	ective: To familiarize students with the fundamental concepts, techniques and design of					
Distributed S	ystems and use of distributed computing applications domains.					
Course Out	comes (CO): At the End of the course students will be able to					
IT304.1	Understand the principles and desired properties of distributed systems.					
IT304.2	Apply the various communication techniques for distributed communication.					
1T304 3	Apply the concepts of process, naming, consistency, replication and faults tolerance in					
11504.5	distributed environment.					
IT304 4	Apply the algorithms such as clock synchronization, election, and mutual exclusion in					
11304.4	distributed applications.					
IT304.5	Identify the challenges in developing distributed applications.					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
IT304.1	2	1	-	-	-	-	-	-	-	-	-	2
IT304.2	2	2	2	1	-	-	-	2	2	1	-	2
IT304.3	2	2	2	1	-	-	-	2	2	1	-	2
IT304.4	2	2	2	1	-	-	-	2	2	1	-	2
IT304.5	2	2	2	1	-	-	-	1	2	1	-	2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PE04	PSO1	PSO2	PS03
IT304.1	1	1	1	-	-	-	-
IT304.2	1	1	1	-	-	1	-
IT304.3	1	1	1	-	-	1	-
IT304.4	1	1	1	-	-	1	-
IT304.5	1	1	1	-	-	1	-

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
			1		

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	Title	Introduction to Distributed Systems		
	1.1	Definition, Type, Goals, Distributed Computing Models, Issues in Distributed Systems.	T1, T2	08
	1.2	Hardware Concepts, Software Concepts, The Client-Server Model,	T1,	
		Middleware, models of Distributed Algorithms and some fundamental	12	
		problems.		
2	Title	Communication In Distributed Systems		12
	2.1	Introduction to Message Passing, Desirable Features of a Good	T1,	
		Message-Passing System, Issues in IPC by Message Passing,	T2,	
		Synchronization, Buffering, Multi-datagram Messages, Group	R1	
	2.2	Remote Procedure Call (RPC): Basic RPC Operations Parameter	T1.	
		Passing, Extended RPC Models.	T2	
		Remote Object Invocation: Distributed Objects, Binding a Client to an		
		Object, Static Vs Dynamic RMI		
		Message Oriented Communication: Persistence and synchronicity in		
		communication, Message Oriented Transient and Persistent		
3	Titlo	Communications Process in Distributed Systems		6
5	31	Introduction to Threads. Threads in Distributed Systems. Clients	T1	U
	5.1	Server	T2	
	3.2	Code Migration: Approaches to Code Migration, Models	T1.	
	0.2	Migration and Local Resources. Migration in Heterogeneous	T2	
		Systems		
4	Title	Synchronization in Distributed Systems		10
	4.1	Clock Synchronization: Physical Clocks, Global Positioning	T1,	
		System, Clock Synchronization Algorithms;	T2	
		Logical Clocks: Lamport's Logical Clocks, Vector Clocks		
	4.2	Election Algorithms: Bully and Ring; Mutual Exclusion: Centralized	T1,	
		Algorithm, Decentralized Algorithm, Distributed Algorithm,	Т2,	
		Token Ring Algorithm, Comparison of Algorithms;		
		Load Balancing: Goals, Types, Strategies.		
5	Title	Consistency and Replication	T 1	6
	5.1	Reasons for Replication, Object Replication, Replication as	T1	
		Scaling Technique Data Replication in Distributed Systems,		
	5.2	Goals, Types, Schemes,	Т1	
	5.2	Data-Centric Consistency Models, Client Centric Consistency	11	
		Operations		
6	Self	Naming Entities Locating Mobile Entities Distribution Protocols	Т1	8
U	Study	Consistency Protocols, Faults Tolerance: Process Resilience.	T2	0
	Study	Distributed Commit, Recovery	R1	
			R2	
	L	Total		42

Laboratory	Component,	if any (Minim	um 10 Laborato	ry experiments a	are expected)
•	1 /	•		J 1	1 /

Sr. No.	Title of the Experiments
1	Implementation of Client Server Communication using RPC/RMI.
2	Implementation of Clock Synchronization (logical/physical).
3	Implementation of Election algorithm.
4	Implementation of Mutual Exclusion algorithm.
5	Implementation of Client Server based program to check data consistency.
6	Implement Load Balancing Algorithms.
7	Mini Project.

Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Distributed Systems-	First	Andrew S. Tanenbaum,	PHI	2004
	Principles and Paradigms.	Edition	Maarten Van Steen		
2	Distributed Operating	Second	P. K. Sinha	PHI	2010
	Systems Concepts and	Edition			
	Design				

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Distributed Systems – Concept and Design	Fourth Edition	George Coulouris, Jean Dollimore, Tim Kindberg & Gordon	Pearson	2010
2	Distributed VOD Systems	First Edition	Sudhir D. & Bandu B.M	Research India Publicatio n	2011

Course (Category)	Course(Category)Course Name			Teaching Scheme (Hrs/week)					Credits Assigned			
Code	Course Name	L	Τ	Р	0	Ε	L	Т	Р	Total		
	Internet Technology	1	0	2	5	8	1	0	1	2		
SBC		Examination Scheme										
		Comp	Component ISE			MSE		SE	Total			
IT305	Lau	Theory										
		Laboratory			100				00	200		

Pre-requisit	e Course Codes, if any. CS208/IT208 Mini Project						
Course Objective: To impart knowledge of different Internet Technologies.							
Course Out	irse Outcomes (CO): At the End of the course students will be able to						
IT305.1	Develop a sophisticated web UX						
IT305.2	Create, integrate and test REST based web services						
IT305.3	Design secured web application/ web services						
IT305.4	Demonstrate behaviour of web crawlers and testing of web application						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
IT305.1	-	-	1		3	-	-	-	-	-	-	-
IT305.2	-	-	-	2	3	-	-	-	-	-	-	-
IT305.3	-	-	-	1	3	-	-	-	-	-	-	-
IT305.4	-	-	-	1	3	-	-	-	-	-	-	-

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
IT305.1	-	-	-	-	-	-	3
IT305.2	-	-	-	-	-	-	3
IT305.3	-	-	-	-	-	-	3
IT305.4	-	-	-	-	-	-	3

Remember	Understand	Apply	Analyze	Evaluate	Create
					\checkmark

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Designing UI		
	1.1	Fundamentals of UX Design, Defining UX Solutions, Design	T1	2
		Communication and Visualizing Ideas	ļ	
2		Web content management system		1
	2.1	Introduction to Web CMS, different types of Web CMS	T2,R1	
3		Web services		2
	3.1	Introduction to web service, REST architecture	T3,R3	
4		Web mashups		1
	4.1	Introduction to web mashups, server side mashups, client side	T2	
		mashups		
5		Secured Web application		2
	5.1	Introduction to Web Tokens, Auth2.0, OAuth, Access token	T2	
6		Integration of web services		2
	6.1	Introduction to Mule ESB, Introduction to Anypoint studio,	T4,R2	
		Integrating Web Services using Any point studio		
7		Web crawlers		2
	7.1	Introduction to web crawler, role of crawler in the internet, concept of	T3	
		page ranking	· · · · ·	
8		Testing web applications	ļ	2
	8.1	Introduction to different types of testing, manual testing, automated	T2	
		testing, performance testing and functional testing, open source tools		
		used for testing		
		Total		14

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	Design web pages using HTML, CSS and javascript
2	Design UX for a given problem definition by using open source UX tools
3	Create a website using web CMS (Node Js/Angular Js/React
	Js/Flask/Django/Wordpress/Joomla etc.)
4	Create a Restful webservice to demonstrate different HTTP methods
5	Testing of restful web service using Postman/ARC
6	Create a web mashup of web services using open source framework
7	Design secured Web application using web token
8	Integration of web services using open source integration tools like Mulesoft
9	Demonstrate the behavior of Web Crawlers/ spiders (use XPATH,CSS PATH),extract
	information and store it in the database.
10	Test the web application using open source testing tools like Selenium, Test runner and Junit

Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Sketching the User	Second	Bill Buxton	Diane Cerra	2010
	experiences	Edition			
2	Rich Internet Application	Third	Dana Moore,	WROX	2017
	AJAX and Beyond	Edition	Raymond Budd,	Publisher	
			Edward Benson		
3	Web Technology	Second	Srinivasan	Pearson	2014
		Edition			
4	API Recipes with	First Edition	WHISHWORKS	White falcon	2017
	Mulesoft(r) Anypoint		Editorial Board		
	Platform				

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Internet Technology And	First	R. K. JAIN	Khanna Book	2015
	Web Design	Edition		Publishing	
				Company	
2	Understanding the Internet:	First	Keith	A Butterworth-	2016
	A Clear Guide to Internet	Edition	Sutherland	Heinemann Title	
	Technologies				
3	RESTful Web APIs:	Third	Leonard	O'REILLY	2013
-	Services for a Changing	Edition	Richardson.		
	World		Mike		
			Amundsen,		
			Sam Ruby		

SEMESTER VI

SEM VI FOR CAT 1 STUDENTS (NORMAL STUDENTS)

Course (Category)	Course Name	r	Teaching Scheme (Hrs/week)				Credits Assigned			
Code		L	Τ	Р	0	Ε	L	Τ	Р	Total
	Information System Security	3	0	2	5	10	3	0	1	4
PC		Examination Scheme								
		Comp	onent]	ISE]	MSE	E	SE	Total
IT206		The	ory		75		75	1	50	300
11306		Laboratory			50				50	100

Pre-requisit	e Course Codes, if any.	IT206:Operating System
		IT207:Computer Communications and Networks
Course Obje	ective: To analyze the use of	f different terminologies involved in information and
system secur	ity	
Course Out	comes (CO): At the End of a	the course students will be able to
IT306.1	Illustrate the different type	es of cryptographic algorithm to secure information
IT306.2	Classify the various attacks	s in each layer of TCP/IP model
IT306.3	Apply various authentication	on protocols.
IT306.4	Analyze and use the system	n security practices.
IT306.5	Select and apply the approp	priate counter measures to secure the web application.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
IT306.1	2	2	2	2	-	-	-	1	-	-	-	3
IT306.2	2	3	3	3	3	-	-	2	-	-	-	3
IT306.3	2	3	3	2	-	-	-	3	-	-	-	3
IT306.4	2	3	3	-	3	-	-	3	-	-	-	3
IT306.5	2	3	3	3	3	-	-	2	-	-	-	3

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
IT306.1	2	3	-	2	-	1	2
IT306.2	3	3	2	2	-	1	3
IT306.3	2	3	-	2	-	1	2
IT306.4	2	3	2	2	-	1	3
IT306.5	3	3	2	2	-	1	3

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
			✓		

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	Title	Cryptographic Techniques	T2,	
	1.1	Security Goals, Threats and Attack on Information, Classic	R1	11
		Cryptography. Traditional Symmetric-Key Ciphers. Block and		
		steam cipher.	 -	
	1.2	Symmetric Key Cryptography-DES, Triple DES, AES.	 -	
	1.3	Public and Private Key Cryptography – RSA, Diffie-Hellman. Hash Functions-SHA.		
2	Title	Authentication and Authorization	T1	6
	2.1	Authentication Methods and Protocols, Password based		
		authentication, Token Based Authentication, Biometric		
		Authentication. Message Authentication Code, Multi factor		
		authentication.		
	2.2	Digital Certificates, X.509 Directory Services, PKI, Needham		
		Schroeder, Kerberos.		
3	Title	Access Control	T1	4
	3.1	Access control Policies: DAC, MAC, RBAC, Access control Matrix,		
		ACLs and Capability Lists.		
	3.2	Multiple level security model: Biba and Bell La Padula Models,		
		Multilateral security, Covert channel, CAPTCHA.		
4	Title	Software security	T1,	6
	4.1	Software Flaws, Buffer Overflow, Incomplete Mediation, Race conditions. Malware: Viruses, Worms, Trojans, Logic Bomb.	R2	
	4.2	Miscellaneous Software Attacks: Salami attack. Linearization	1	
	-	Attacks, Trusted Computing: Software reverse engineering, Digital		
		Rights management.		
	4.3	System Security- Processor vulnerabilities -Melt down, spectre		
		attack		
5	Title	Network Security	T1,	12
	5.1	Network security basics, TCP/IP vulnerabilities Layer wise. Internet	T2	
		Security Protocols: SSL, TLS, IPSEC, Secure Email and S/MIME.		
	5.2	Denial of Service: Classic DOS attacks, Distributed Denial of		
		Service, Defences against Denial-of-Service Attacks. Firewalls,		
		Intrusion Detection Systems: Host Based and Network Based IDS,		
		IPS,Honey pots.		
6	Title	Web Security	T1,	3
		SQL Injection Techniques, Cross Site Scripting, Cross-Site Request	R 1	
		Forgery, Session Hijacking and Management, Phishing and		
		Pharming Techniques, Web Services Security.		
7	Self	Mathematics of Cryptography-finite fields, prime numbers,	T1,	6*
	Study	Fermat's and Euler's theorems, steganography, Md5.	T2	
1		Total		42

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment					
1	Demonstration of Symmetric Key Cryptography					
2	Demonstration of public key cryptography					
3	Use of Hashing Techniques					
4	A. Foot printing a target network.					
	B. Scanning a network using:					
	a) Nmap Network Mapper					
	b) Nessus vulnerability scanner					
5	Implementing the firewall using iptables					
6	Exploit Windows vulnerability to get unauthorized access.					
	Exploiting Client-side vulnerabilities and establishing a VNC session					
7	Implementing HIDS and NIDS					
8	Performing Man-in-the-Middle Attack using Wireshark and Ettercap					
9	A. Creating a Trojan using Social-Engineer Toolkit.					
	B. Implementing DoS attack.					
10	Performing SQL injection.					
	A. Manual SQL Injection, John the Ripper.					
	B. Automate SQL Injection with Sql Map					

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Information	Second Edition	Mark Stamp	Wiley	2011
	and Practice	Edition		publication	
2	Cryptography and Network Security	Second Edition	Behrouz A. Forouzan, Debdeep Mukhopadhyay	McGraw-Hill Education	2010

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Information	Second	Ranjan Bose	Tata McGraw	2008
	Theory, Coding	Edition		Hill	
	and Cryptography				
2	Network security	Second	Eric Cole	Wiley	2009
	bible	Edition		_	

Course (Category)	Course Name	,	Teachi (Hı	ing Sc s/wee	heme k)		C	redit	s Assig	ned
Code		L	Т	Р	0	Ε	L	Т	Р	Total
		3	0	2	5	10	3	0	1	4
PC			Examinatio				n Scheme			
	Big Data Analytics	Comp	onent		ISE		MSE	F	SE	Total
IT207A		The	eory		75		75	1	50	300
1130/A		Laboratory			50				50	100

Pre-requisit	e Course Codes, if any.	IT204:Database Management Systems			
Course Objective: To understand the concept of big data and the tools used for accessing					
data					
Course Outcomes (CO): At the End of the course students will be able to					
IT307A.1	Apply rules of linear algeb	ora for processing big data.			
IT307A.2	Choose appropriate storag	e structures to make sense out of big data.			
IT307A.3 Apply scalable algorithms based on Hadoop and Map Reduce to perform Big I Analytics.					
IT307A.4	Analyze information from	social network graphs.			

	PO1	PO2	PO 3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
			5									
1130/A.1	2	-	-	-	-	-	-	-	-	-	-	-
IT307A.2	-	-	2	-	-	-	-	-	-	-	-	-
IT307A.3	-	-	-	-	3	-	-	-	-	-	-	-
IT307A.4	-	_	-	2	-	-	-	-	-	-	-	-

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
IT307A.1	-	-	-	-	-	-	-
IT307A.2	-	-	-	-	-	-	-
IT307A.3	-	-	-	-	-	-	-
IT307A.4	-	-	-	-	-	-	-

Remember	Understand	Apply	Analyze	Evaluate	Create
			✓		

Module	Unit No	Topics	Ref.	Hrs
1	Title	Introduction to Big data and Linear Algebra		•
-	1.1	Big Data characteristics, types of Big Data, Traditional vs. Big Data,	T1,R1	
		Big data challenges		
	1.2	Matrices as linear transformations, Linear systems and vector spaces,	T3	8
		Solving linear systems, role of Eigen values and eigenvectors in data analytics, SVD - Singular Value Decomposition		
2	Title	Memory-efficient data structures		
	2.1	Introduction to data streams, problems related to handling data stream, Need of dimensionality reduction - PCA, Mining Data Streams using DGIM algorithm	T3,R1	
	2.2	Hash functions, universal / perfect hash families, Bloom filters,	T2	12
		Sketches for distinct count, Flajolet Martin Sketch, Majority		
		Algorithm, Misra-Gries sketch, Count-Min Sketch, Count Sketch, kd-		
		trees, LSH, MinHash, SimHash		
3	Title	Scaling with Big Data using Hadoop		
	3.1	HDFS - Data in Hadoop	T1	
	3.2	Hadoop Ecosystem architecture	T1	
		Hive - Architecture, various data operations using Hive		10
		HBase - Architecture, General Commands		10
		Pig - What is Pig, advantages	T 1	
	3.3	Relational Algebra using Big data framework - Map Reduce	11	
		Selection, Projections, Union, Intersection, Natural Join, Grouping and		
	Title	Aggregation by Map Reduce, Matrix Multiplication Frequent Itemsets And Clustering		
4	1 Iue 4 1	Handling Lorger Data sets in Main Memory Algorithm – Dark Chan	T1 D2	-
	4.1	and Yu Algorithm The Multi store Algorithm The Multihesh	11,63	5
		Algorithm The SON Algorithm BER clustering algorithm CURE		5
		algorithm		
5	Title	Mining Social- Network Graphs and Link Analysis		
č	51	Clustering of Social-Network Graphs - Clique Percolation	T1.R3	
		Method, counting triangles, PageRank, Efficient Computation of	11,110	7
		PageRank, Topic-Sensitive PageRank, Link Spam, Hubs and		-
		Authorities		
6	Self	Scaling with Big Data using Apache SPARK SPARK	T4	
-	Study	Ecosystem, SPARK streaming, Distributed Batch Processing		5*
	~	with Spark		
		Total ([*] Not included)		42

Sr.	Title of the Experiment
No.	
1	Installation of Hadoop and execution of HDFS commands
2	Study of any latest research paper on memory efficient data structure for big data.
3	Implement algorithms in Map-Reduce on Strings and integers
4	Implement algorithms in Map-reduce on Relational Algebra
5	Download a real world dataset and find insights using map reduce. For e.g for a movie dataset
	list all the movies and the number of ratings, list all the Movie IDs which have been rated (Movie
	Id with at least one user rating it), list all the Users who have rated the movies (Users who have
	rated at least one movie), list of all the User with the max, min, average ratings they have given
	against any movie
6	Explore and present interactive data insights from real world dataset (Dashboards) using
	Tableau
7	Extract facts in real world dataset using Hive
8	Extract sessions in real world dataset using Pig
9	Implement word count using Apache Spark.
10	Demonstrate use of modern tools like Matlab for Exploratory Data Analysis.

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Mining of Massive	Third	Anand Raja Raman and	Cambridge	2019
	Datasets	Edition	Jeff Ullman	University	
2	Algorithms and models of	First	Jeff Erickson	University of	2015
	computation	Edition		Illinois	
3	Introducing Data Science	Third	Davy Cielen, Meysman,	Dreamtech Press	2014
		Edition	Mohamed Ali		
4	Learning Apache Spark 2	Second	Muhammad Asif Abbasi	Packt Publishing	2017
	_	Edition		_	

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Data streams : Algorithms and	Second	Muthukrishnan. S.	now publishers	2005
	applications.	Edition		Inc	
2	Introducing Data Science	Third	Davy Cielen, Meysman,	Dreamtech	2015
		Edition	Mohamed Ali	Press	
3	Hadoop, the Definitive Guide	Third	Tom White	O'Reilly	2013
		Edition			

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total
	Artificial Intelligence and	3	0	2	5	10	3	0	1	4
PC		Examination Scheme								
		Component]	ISE		MSE		ESE	Total
173050	Machine Learning	Theory			75		75		150	300
11307B		Laboratory		50					50	100

Pre-requisite Cou	rse Codes, if any.	IT 202: Data Structures, MA203: Probability and Statistics						
Course Objective	: This course covers t	the fundamental concepts of Artificial Intelligence and						
machine learning.								
Course Outcomes (CO): At the End of the course students will be able to								
IT307B.1	Understand AI building	nderstand AI building blocks presented in intelligent agents						
IT307B.2	Solve the problems us	sing suitable searching methods.						
IT307B.3	Solve the problems us	sing suitable reasoning and knowledge representation methods.						
IT307B.4	Apply suitable mach	nine learning technique for a given problem						
IT307B.5	Design an intellige problems.	ent system using different AIML techniques for real life						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
IT307B.1	2	3	-	-	2	-	-	-	-	-	2	-
IT307B.2	2	3	2	2	-	-	-	-	-	-	2	-
IT307B.3	2	3	2	2	-	-	-	-	-	1	2	-
IT307B.4	2	3	-	-	2	-	-	-	-	2	2	-
IT307B.5	2	3	2	2	2	-	-	-	-	2	2	2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
IT307B.1	-	-	-	-	-	-	-
IT307B.2	-	-	-	-	-	-	-
IT307B.3	-	-	-	-	-	-	-
IT307B.4	1	1	1	-	-	-	-
IT307B.5	2	2	2	-	2	-	-

Remember	Understand	Apply	Analyze	Evaluate	Create
				1	

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	Title	Introduction to Artificial Intelligence	T1	04
	1.1	Definition of AI, History and Future of AI, Problem solving		
		Approach to Typical AI problem.		
	1.2	Intelligent Agents and Environment		
		What is an Intelligent Systems, Types of Agents, structure of agent		
	1.3	Environments and Its Properties, PEAS Representation for an Agent		
2	Title	Problem solving by Searching	T1	10
	2.1	Searching: characteristics and issues in design of search programs		
	2.2	Uninformed search techniques: State Space Search, Depth First		
		Iterative Deepening		
	2.3	Informed Search methods: Heuristic Search, Hill Climbing.		
	2.4	Adversarial Search: Game playing, Min-Max Search, Alpha-Beta		
2	T:41-	Pruning Veraminates Democratation and Descening	T 1	00
3		Knowledge Representation and Reasoning	11	Uð
	3.1	Reasoning: Representing and Reasoning with Uncertain Knowledge		
	3.2	Knowledge representation: A Knowledge-Based Agent, The Wumpus		
	22	Wolld. Propositional Logic First order predicate logic Forward and Backward		
	5.5	Chaining		
4	Title	Introduction to Machine Learning		12
	4.1	Introduction: What is Machine Learning, History and overview of	T2.T	
		machine learning,	3	
	4.2	Types of Machine Learning - Supervised, Unsupervised Semi-		
		Supervised Learning and Reinforcement Learning, Design a Learning		
		System, The curse of dimensionality		
	4.3	Evaluating a hypothesis: Model selection, training/validation/testing		
		procedures, diagnosing bias versus variance and vice versa,		
		regularization and bias/variance, learning curves		0
5	Title	Linear Models for Regression	Π4	8
	5.1	I wo Simple Approaches to Prediction: Least Squares and Nearest	14	
	5 2	Incignuous Linear Regression Multivariate Regression Subset Selection Shrinkage		
	3.4	Methods		
6	Self	Linear model for Classification : Logistic Regression. Linear	Т3.Т	5*
Ŭ	Study	Discriminant Analysis, Perceptron, Support Vector Machines, PCA	4	÷
	· · · · ·	Total		42

Sr. No.	Title of the Experiment									
1	Implement an Intelligent agent.									
2	Implement a given problem using the searching technique.									
3	Implement a given problem using knowledge representation and reasoning rules									
4	To design and implement an intelligent system, incorporating the matching algorithm									
	and the rule language.									
	1. It should provide a fact base updating function.									
	2. It should provide a function that checks the rules' LHS and return which rules were									
	matched.									
	3. It should support firing RHS according to matches.									
	Using SWISH Prolog or Java or Python or any other open-source tool									
5	Implement supervised learning algorithms.									
6	Implement unsupervised learning algorithms.									
7	Implement the regression model									
8	Minor project covering the concepts of AIML on the real life problem statements.									

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Artificial Intelligence:	Third	Stuart Russell and	Prentice-Hall	2009
	A Modern Approach	Edition	Peter Norvig		
2	Machine Learning	First	Kevin P. Murphy	Massachusetts Institute	2012
	A Probabilistic	Edition		of Technology	
	Perspective				
3	Machine Learning,	First	Tom. M. Mitchell	McGraw Hill	1997
		Edition		International Edition	
4	The Elements of	Second	Trevor Hastie,	Springer	2009
	Statistical Learning	Edition	Robert Tibshirani,		
			Jerome Friedman		

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Artificial Intelligence:	First	Nilakshi Jain	Wiley Publication	2019
	Making a System Intelligent	Edition			
2	Pattern Recognition and	First	C. M. Bishop	Springer	2013
	Machine Learning	Edition			

Course (Category)	Course Name	r	Teaching Scheme (Hrs/week)						Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total		
	Machine Learning	2	0	2	4	8	2	0	1	3		
PE		Examination Scheme										
		Comp]	ISE]	MSE		CSE	Total			
IT211		The		50		50		100	200			
11311		Labor	atory		50				50	100		

Pre-requisit	e Course Codes, if any.	IT307B: Artificial Intelligence and Machine Learning							
Course Obje	Course Objective: To learn methodology and tools to apply machine learning algorithms to real								
data and eval	data and evaluate their performance.								
Course Outcomes (CO): At the End of the course students will be able to									
IT311.1	Identify machine learning	techniques suitable for a given problem							
IT311.2	Apply Dimensionality red	luction techniques for appropriate feature selection							
IT311.3	Evaluate the performance	Evaluate the performance of various machine learning algorithms							
IT311.4	Design an application using machine learning techniques								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
IT311.1	2	2	2	2	2	1	-	-	2	2	2	2
IT311.2	2	2	2	2	2	1	-	-	2	2	2	2
IT311.3	2	2	2	2	2	1	-	-	2	2	2	2
IT311.4	2	2	2	2	2	1	-	-	2	2	2	2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
IT311.1	2	2	1	-	2	1	1
IT311.2	2	2	1	-	2	1	1
IT311.3	2	2	1	-	2	1	1
IT311.4	2	2	1	-	2	1	1

Remember	Understand	Apply	Analyze	Evaluate	Create
					✓

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Introduction	T1T,2 ,R1	2
	1.1	Introduction to Machine Learning, Supervised, Unsupervised Semi-Supervised Learning. Machine learning Models: Geometric Models, Logical Models, and Probabilistic Models		1
	1.2	Estimating Hypothesis Accuracy, Basis of Sampling theory, Hypothesis Testing.		1
2	Title	Linear Models for Classification	T1,T2	8
	2.1	Logistic Regression, K-Nearest Neighbors.	,R1	2
	2.2	Support Vector Machine: Maximum Margin Linear Separators, Kernel SVM, Kernels for learning non-linear functions, Naive Bayes.		3
	2.3	Decision Trees: Constructing Decision Trees using Gini Index, Classification and Regression Trees (CART).		3
3	Title	Linear model for Clustering	T1,T2	10
	3.1	Clustering: k-means, Derivation of K-means algorithm, Gaussian mixture model.		3
	3.2	Hypothesis testing, Ensemble Methods, Bagging Adaboost Gradient Boosting, k-Fold Cross-Validation, Grid Search, XGBoost		4
	3.3	Expectation-Maximization (EM) algorithm: Estimating means of k Gaussians.		3
4	Title	Dimensionality Reduction	T1,T2	8
	4.1	Introduction: Curse of Dimensionality, Feature selection, Feature Extraction, Subset Selection: Forward and backward selection, Univariate, Multivariate Feature selection		4
	4.2	Principal Component Analysis (PCA)		2
	4.3	Linear Discriminant Analysis (LDA)		2
5	Self	Reinforcement Learning	T1 D1	<i></i>
5	Study	deterministic rewards and actions, Temporal Difference Learning, Generalization	11,K1	3*
		Total		28

Sr. No.	Title of the Experiment
1	Implement Logistic Regression
2	Implement k-nearest Neighbors algorithm
3	Implement classification using SVM
4	Implement Decision Tree learning
5	Implement K-means/ K-Modes Clustering/ Expectation-Maximization(EM) algorithm to
	Find Natural Patterns in Data
6	Implement Principle Component Analysis for Dimensionality Reduction
7	To implement Linear Discriminant Analysis (LDA) for Dimensionality Reduction
8	Evaluating ML algorithms with balanced and unbalanced datasets Comparison of
	Machine Learning algorithms.
9	Capstone project covering the concepts of Machine Learning.
10	Capstone project covering the concepts of Machine Learning.

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Machine Learning,	First	Tom. M.	McGraw Hill	1997
		Edition	Mitchell	International	
				Edition	
2	Introduction to	Third	Ethem	MIT, PRESS	2012
	Machine Learning	Edition	Alpaydın		

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Pattern Recognition	First Edition	C. M. Bishop	Springer	2013
	and Machine				
	Learning,				
2	Machine Learning	First Edition	Peter	DreamTech	2001
	In Action		Harrington	Press	

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total
	Soft Computing	2	0	2	4	8	2	0	1	3
PE		Examinatio				n Scheme				
		Comp	onent]	ISE		MSE	E	SE	Total
IT312		The	ory		50		50	1	00	200
		Laboratory			50				50	100

Pre-requisi	te Course Codes, if any.					
Course Ob	Course Objective: This course introduces three important soft computing techniques like Neural					
network, Fu	uzzy Logic and Genetic algorithms in brief. Students will be able to understand the					
supervised a	nd unsupervised learning algorithm for real world applications. The design of fuzzy logic					
controller he	elps them to develop an adaptive control system for industrial operations. This course also					
covers the in	nportance of optimizations and its use in computer engineering fields.					
Course Out	tcomes (CO):At the End of the course students will be able to					
IT312.1	Illustrate the basic principles of soft computing techniques.					
IT212.2	Apply the supervised and unsupervised neural network learning algorithm for real					
11312.2	world applications.					
IT312.3	Design a fuzzy controller system using different FIS.					
TTO10 4						

IT312.4 Apply genetic algorithms to solve optimization problems.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
IT312.1	2	-	-	-	-	-	-	-	-	-	-	-
IT312.2	2	2	-	-	-	-	-	-	2	2	-	2
IT312.3	3	2	2	-	-	-	-	-	2	2	-	2
IT312.4	3	2	2	-	-	-	-	-	-	-	-	2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
IT312.1	1	1	1	-	-	-	-
IT312.2	2	2	2	-	-	-	-
IT312.3	2	2	2	-	-	-	-
IT312.4	2	2	2	-	_	_	-

Remember	Understand	Apply	Analyze	Evaluate	Create
		1			

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	Title	Introduction to Soft Computing		04
	1.1	Soft computing Constituents, Characteristics of Neuro	T3,T4	
		Computing and Soft Computing		
	1.2	Difference between Hard Computing and Soft Computing,		
		Concepts of Learning and Adaptation		
2	Title	Neural Networks		10
	2.1	Basics of Neural Networks: Introduction to Neural	T1,T3,R	
		Networks, Biological Neural Networks and their artificial	1,R2,R5	
		models		
	2.2	McCulloch Pitt model, Hebb Network, Linear separability		
	2.3	Supervised Learning algorithms: Perceptron (Single		
		Layer, Multilayer), Delta learning rule, Back Propagation		
		algorithm.		
	2.4	Un-Supervised Learning algorithms: Winner take all, Self-		
		Organizing Maps, Learning Vector Quantization.		
3	Title	Fuzzy Set theory		10
	3.1	Classical Sets and Fuzzy Sets, Membership functions,	T2,T3,R	
		Classical Relations and Fuzzy Relations	1,R3	
	3.2	Fuzzy Max-Min and Max-Product Composition, Fuzzy		
		extension principle		
	3.3	Fuzzy Systems- fuzzification, defuzzification methods, and		
		design of fuzzy controllers.		
4	Title	Genetic Algorithms	T3,T4,R	04
	4.1	Biological Background: The Cell, Chromosomes, Genetics,	4	
		Reproduction, Selection, Traditional Optimization and		
		Search Techniques		
	4.2	Simple GA, Operators in GA, Encoding, Selection,		
		Crossover, Mutation, Stopping Condition for GA		
	a	.Applications of GA.		
5	Self	Recurrent Neural Networks, Deep Learning: Deep Belief		04*
	Study	Network, Deep Reinforcement Learning		
		Total		28

Sr. No.	Title of the Experiment			
1	To implement (MP-Neuron) Mc-Culloch Pitts Model.			
2	To implement Transfer/Activation Functions.			
	A symmetric hard limit transfer function.			
	A Binary step activation function.			
	A Bipolar step activation function.			
	A saturating linear transfer function.			
	A hyperbolic tangent sigmoid (tansig) transfer function.			
	A log-sigmoid transfer function			
3	To implement Basic Neural Network learning rules.			
	PROBLEM TO DISTINGUISH BETWEEN APPLES AND ORANGES			
	A produce dealer has a warehouse that store a variety of fruits & vegetables. When fruit is			
	brought to the warehouse, a various types of fruits may be mixed together. The dealer			
	which the fruit is loaded. This conveyer passes through a set of sensors, which measure			
	three properties of fruits :shape texture and weight			
	Bias- < Any Value>			
	Dias= < Airy Value>			
	Type of	Output of sensor	Condition]
	sensor	Output of sensor	Condition	
	Sensor			
	Shape sensor	1	if fruit is approx. round	
		0	if fruit is elliptical.	
	Texture	1	If surface is smooth	
	Sensor			
		0	If surface is rough	
	Fruit sensor	1	Apple	
		0	Orange	
	Design a perceptron to recognize these patterns using Joone Editor.			
4	Write a program to design a perceptron to recognize these patterns for the problem statement			
	in experiment No.3.(Use any Open source tools)			
5	To implement Multilayer Perceptron Learning algorithm.(EBPTA)			
6	To implement an unsupervised learning algorithm (KSOFM) for pattern classification			
	problem.			
7	To implement an unsupervised learning algorithm (LVQ) for pattern classification problem.			
8	To implement fuzzy set and fuzzy relations for a given problem.			
9	To design and implement Fuzzy Controller for a given problem			
10	To apply genetic algorithms for a given problem.			

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)
Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Introduction to Artificial		Jacek M. Zurada	Jaico Publishing	1992
	Neural Systems			House	
2	Fuzzy Logic with	Third	Timothy J. Ross	Wiley India	1995
	Engineering Applications	Edition			
3	Principles of Soft	Second	S. N. Sivanandam	Wiley, India	2011
	Computing	Edition	and S. N. Deepa		
4	Neural Networks, Fuzzy	Kindle	S.Rajasekaran and	PHI Learning	2013
	Logic and Genetic	Edition	G.A.Vijayalaks		
	Algorithms				

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Neuro-Fuzzy and Soft	First	Jang J.S.R, Sun C.	PHI	1997
	Computing– A	Edition	T. and Mizutani		
	Computational Approach		E.		
	to Learning and Machine				
	Intelligence				
2	Fundamentals of Neural	First	Laurene Fausett	Pearson	2004
	Networks –	Edition		Education	
	Architectures,				
	Algorithms, And				
	Applications				
3	Fuzzy Set Theory and its	Second	H.J. Zimmermann	Allied	1996
	Applications	Edition		Publishers Ltd.	
4	An Introduction to	Fifth	Melanie Mitchell	The MIT Press	1999
	Genetic Algorithms	Edition			
	_				
5	Neural Network Design	Second	Hagan, Demuth,	CENGAGE	1996
		Edition	Beale	Learning, India	
				Edition	

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Τ	Р	0	Ε	L	Т	Р	Total
	Number Theory and	2	0	2	2	6	2	0	1	3
PE		Examination					1 Scheme			
	Cryptography	Component]	ISE]	MSE		SE	Total
177201		Theory			50		50		100	200
11321		Labor	ratory		50				50	100

Pre-requisit	e Course Codes, if any.	IT206: Operating systems				
	-	IT207: Computer Communications and Networks				
Course Obje	Course Objective: To understand the techniques involved in number theory, symmetric key and					
public key cr	yptography.					
Course Out	Course Outcomes (CO): At the End of the course students will be able to					
IT321.1	Explain the use of key ma	nagement and its distribution.				
IT321.2	Apply various cryptograp	hic algorithms to secure the information.				
IT321.3	Apply number theory algorithms to solve the given problem.					
IT321.4	Demonstrate the different	attacks involved in cryptanalysis.				

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
IT321.1	3	-	2	-	-	-	-	2	2	1	-	-
IT321.2	-	-	2	-	-	-	-	-	2	1	-	-
IT321.3	-	-	-	-	-	-	-	-	2	1	-	-
IT321.4	-	3	2	1	3	1	1	-	-	-	-	3

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
IT321.1	-	2	-	-	3	-	-
IT321.2	-	2	-	-	3	1	-
IT321.3	-	-	-	-	3	-	-
IT321.4	1	2	-	-	3	1	-

Remember	Understand	Apply	Analyze	Evaluate	Create
			\checkmark		

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	Title	Introduction to Number Theory	T1,	9
	1.1	Divisibility and the Division Algorithm, The Euclidean Algorithm,	R1	
		Modular Arithmetic, Prime Numbers.		
	1.2	Fermat's and Euler's Theorems, Testing for Primality, The Chinese		
		Remainder Theorem, Discrete Logarithms		
	1.3	Finite Fields - Groups, Rings, Fields, Finite Fields of the Form		
		GF(p), Polynomial Arithmetic, Finite Fields of the Form GF(2n).		
2	Title	Symmetric Ciphers	T1,	10
	2.1	Symmetric Cipher Model, Substitution techniques, Transposition	T2,	
		Techniques. Cryptanalysis.	R2	
	2.2	Block cipher and the Data Encryption Standard- Traditional Block		
		Cipher Structure, The Data Encryption Standard, Block Cipher		
		Design Principles, Advanced Encryption Standard, Electronic		
		codebook.		
3	Title	Asymmetric Ciphers	T1,	4
	3.1	Public-Key Cryptography and RSA, Diffie-Hellman Key Exchange,	T2,	
		Elgamal Cryptographic System, Elliptic Curve Arithmetic, Elliptic	R2	
		Curve Cryptography.		
4	Title	Cryptographic Data Integrity Algorithms	T1,	3
	4.1	Cryptographic Hash Functions, Applications of Cryptographic	R2	
		Hash Functions, Secure Hash Algorithm (SHA).		
	4.2	Message Authentication Codes- MAC, HMAC. Digital Signatures		
		- Elgamal Digital Signature Scheme, Elliptic Curve Digital		
		Signature Algorithm.	754	
5	Title	Key Management and Distribution	Τ1,	2
	5.1	X.509 Certificates, Public-Key Infrastructure.	R2	
6	Self-	QR code, Captcha, steganography, watermarking, Md5		6*
	study			
		Total		28

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	Implementation of Fermat's theorem and Euler's theorem
2	Implementation of Chinese remainder theorem
3	Implementation of Modular arithmetic
4	Implementation of classical cryptography
5	Implementation of hash function and digital signature
6	Implementation of RSA and ECC with comparison
7	Implementation of Diffie-hellman
8	Demonstration of Hacking Secret Ciphers using Python
9	Mini project
10	Mini project

Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	CryptographyAndNetworkSecurityPrinciples and Practice	Seven Edition	William Stallings	Pearson Education	2017
2	Cryptography and Network Security	Third Edition	Behrouz A. Forouzan and Debdeep Mukhopadhyay	McGraw Hill Education	2015

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Cryptography: Theory and	Third	Stinson. D.	Chapman &	2010
	Practice	Edition		Hall/CRC	
2	Elementary Number Theory	Second	Thomas Koshy	Elsevier	2007
	with applications				

Course (Category)	Course Name	Teach	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total	
PE	Digital forensics	2	0	2	2	6	2	0	1	3	
		Examination Scheme									
		Component			ISE]	MSE		ESE	Total	
IT322		Theory			50		50		100	200	
		Labor	ratory		50				50	100	

Pre-requisite	e Course Codes, if any.	IT206: Operating Systems						
		IT207: Computer Communications and Networks						
Course Objective: To emphasize the fundamentals and importance of digital forensics								
Course Outcomes (CO): At the End of the course students will be able to								
IT322.1	Explain the principles and	l techniques associated with the digital forensic practices.						
IT322.2	Understand the importanc	e of evidence handling and storage for various devices.						
IT322.3	Analyze the adequate applications.	perspectives of digital forensic investigation in various						
IT322.4	Analyze the Post-mortem	investigation.						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
IT322.1	3	-	-	-	-	-	-	-	3	-	-	-
IT322.2	-	3	-	3	-	-	-	-	-	-	2	-
IT322.3	-	-	3	-	3	-	-	-	-	-	-	2
IT322.4	-	-	-	-	-	3	-	3	-	-	-	-

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
IT322.1	-	-	-	-	-	-	-
IT322.2	-	-	-	-	-	-	-
IT322.3	2	-	2	-	-	-	2
IT322.4	-	-	-	-	-	-	-

Remember	Understand	Apply	Analyze	Evaluate	Create
			\checkmark		

Module	Unit	Topics	Ref.	Hrs.					
No.	No.								
1	Title	Introduction to Digital Forensics	T1,	5					
	1.1	Introduction, A brief history of digital forensics, Digital	T2,						
		forensics methodology, The need for digital forensics as	R1						
		technology advances, Commercial tools available in the field of							
		digital forensics, Lab setup for digital forensics. Operating							
		systems forensics, Anti-forensics: threats to digital forensics.							
	1.2	Understanding File systems and Storage Media, Filesystems and							
		operating systems, Data volatility ,The paging file and its							
		importance in digital forensics							
2	Title	Incident Response and Data Acquisition	T1,	7					
	2.1	Introduction, Digital evidence acquisitions and procedures,	T2						
		Incident response and first responders, Documentation and							
		evidence collection.							
	2.2	Chain of Custody ,Powered-on versus powered-off device							
		acquisition, Write blocking, Data imaging and hashing, Device							
		and data acquisition guidelines and best practices							
3	Title	Digital forensics tool	T1,	8					
	3.1	Evidence Acquisition and Preservation ,Drive and partition	R2						
		recognition in Linux, Maintaining evidence integrity, Image							
		acquisition using Guymager.							
	3.2	File Recovery and Data Carving with Foremost, Scalpel, and							
		Bulk Extractor, Forensic test images used in Foremost and							
		Scalpel, Using Foremost for file recovery and data carving,							
		Using Scalpel for data carving, Bulk extractor.							
		Memory Forensics with Volatility, About the Volatility							
		Framework, Downloading test images for use with Volatility							
4	Title	Post-mortem analysis	T1,	7					
	4.1	Autopsy – The Sleuth Kit, Kit, Sample, Digital forensics with	R2						
		Autopsy							
	4.2	Network and Internet Capture Analysis with Xplico, Software							
		required, Packet capture analysis using Xplico, Revealing							
		Evidence Using DFF, Installing DFF							
5	Self-	Use python libraries to develop forensics tools for portable	R3,	6*					
	study	devices or tiny OS. Cloud forensics, mobile and portable device	R1						
		forensics.							
		Total							

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	To acquire a disk image
2	To study the use of md5deep hashing tool to compute the hashes of the directories and
	compare them to check the integrity of the directories.
3	Imaging a disk using AccessData FTK imager on windows
4	a. To use a forensic tool Foremost in order to recover files
	b. To use Vinetto forensic tool to analyze Thumps.db files and extract data.
5	Use of Galleta tool to study cookie created in during browsing.
6	a. Use of password forensics tool to crack zip and rar password protected files
	b. Use of password forensic tool to get an access to a windows machine
7	Learn art of steganography
8	Memory forensic tool to capture and analyze RAM's image
9	Use of wireshark to do network forensics
10	Analyze a PDF file to check if its malicious or not.

Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Digital Forensics with Kali Linux	Second Edition	Shiva V. N. Parasram	Packt	2017
2	Computer Forensics: Incident Response	Essentials	First Warren G. Kruse II and Jay G. Heiser	Addison- Wesley Professional	2001

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Guide to Computer	Second	Nelson, B, Phillips, A,	Thomson	2006
	Forensics and	Edition	Enfinger, F, Stuart, C	Course	
	Investigations			Technology	
2	Computer Forensics,	First	Vacca, J	Charles River	2005
	Computer Crime Scene	Edition		Media,	
	Investigation				
3	Learning Python for	Second	Preston Miller, Chapin	Packt	2019
	Forensics	Edition	Bryce	Publishing	

Course (Category)	Course Name	r	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total	
	Advanced Database	2	0	2	4	8	2	0	1	3	
PE		Examination Scheme									
		Comp		ISE		MSE		SE	Total		
177221	Systems	Theory		Theory 50			50		100	200	
11551		Labo		50				50	100		

Pre-requis	ite Course Codes, if any.	IT204: Database Management Systems					
Course Objective: To get knowledge of Query optimization, data warehousing, data models,							
graph datab	graph databases, Parallel and distributed database systems,						
Course Outcomes (CO): At the End of the course students will be able to							
IT331 1	Evaluate the performance of	fallery					

1100101	Evaluate the performance of query.
IT331.2	Apply NO SQL, graph databases and enhanced data model concepts for a given scenario
IT331.3	Apply data warehousing concepts for a given scenario.
IT331.4	Design parallel and distributed databases.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
IT331.1	2	-	-	-	2	-	-	-	-	-	-	2
IT331.2	-	2	-	-	2	-	-	-	2	-	-	2
IT331.3	-	-	-	-	3	-	-	-	2	1	-	2
IT331.4	-	-	-	2	3	-	-	-	2	-	-	2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
IT331.1	1	-	-	-	-	-	-
IT331.2	-	2	2	2	1	-	-
IT331.3	-	-	2	2	-	-	1
IT331.4	-	-	-	1	-	-	1

Remember	Understand	Apply	Analyze	Evaluate	Create
				\checkmark	

Module	Unit	Topics	Ref.	Hrs.
No.	NO.	Devellel Detabase	T1 T2	4
1	1 itie	Parallel Database	11,12	4
	1.1	Introduction, Architectures for parallel database,		
	1.2	Parallel Query Optimization, Parallelizing individual operation,		
2	Title	Distributed Database Systems	T1.T2	8
	2.1	Distributed Database Concepts, Types of Distributed	/	-
		Database Systems, Distributed Database Architectures		
	2.2	Data Fragmentation, Replication, and Allocation Techniques		
		for Distributed Database Design, Query Processing and		
		Optimization in Distributed Databases, Overview of		
		Transaction Management in Distributed Databases, Overview		
		of Concurrency Control and Recovery in Distributed		
	75 °41	Databases, Current Trends in Distributed Databases	T 4	(
3	Title	NUSQL And Graph Databases	14	6
	3.1	No SQL, Weaknesses of the Relational Data Model,		
	2.2	Inadequate Representation of Data, Semantic Overloading.		
	5.4	Graph Model Storing Property Graphs in Polational Tables		
		Advanced Graph Models, Neo/I, Hyper Graph DB		
4	Title	Enhanced Data Models	Т1	4
-	4.1	Temporal Database Concepts Spatial Database Concepts		-
		Multimedia Database Concepts, Image database		
	4.2	Applications of Enhanced Data Models		
5	Title	Overview of Data Warehousing and OLAP	T3,R1	6
	5.1	Introduction, Definitions, and Terminology, Characteristics of		
		Data Warehouses, Data Modeling for Data Warehouses,		
		Building a Data Warehouse,		
	5.2	Typical Functionality of a Data Warehouse, Data Warehouse		
		versus Views, Difficulties of Implementing Data		
	~ • •	Warehouses, OLTP, OLAP		
6	Self	Applications of Hyper Graph DB, cloud database, Block chain	T2,T3	5*
	Study	databases, data warehousing tools.	,14,K	
		Tatal	1	20
		1 Otai		28

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	Demonstrate the concept of deadlock in distributed systems.
2	Design a distributed database by applying the concept of horizontal fragmentation.
3	Design a distributed database by applying the concept of vertical fragmentation.
4	To implement the replication technique for a given scenario.
5	Demonstration of use of Cloud Database.
6	Demonstration of graph database.
7	Demonstration of Multimedia database
8	Build Data Warehouse and explore WEKA tool.
9	Create a data model for a given scenario.
10	Apply OLAP operations on a given scenario.

Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Fundamentals of	Seventh	Ramez Elmasri &	Pearson	2016
	Database Systems	Edition	Shamkant	Education	
			B.Navathe		
2	Principles of Distributed	Fourth	M. Tamer Ozsu	Springer	2019
	Database Systems	Edition	,Patrick Valduriez		
3	Data Warehousing, Data	Tenth	Alex Berson and	TataMc Graw Hill	2007
	Mining & OLAP	Edition	Stephen J. Smith	Edition	
4	"Advanced Data	First	Lena Wiese	De Gruyter	2015
	Management: For Sql,	Edition		Oldenburg	
	Nosql, Cloud And				
	Distributed Databases				

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Database Systems –	Ninth	Peter Rob and	Thompson	2011
	Design, Implementation	Edition	Corlos Coronel	Learning,	
	and Management			Course	
				Technology	
2	Database System	Seventh	Henry F Korth,	McGraw Hill	2010
	Concepts	Edition	Abraham		
			Silberschatz, S.		
			Sudharshan		

Course (Category)	Course Name	1	Teaching Scheme (Hrs/week)					Credits Assigned			
Code	-	L	Т	Р	0	Ε	L	Т	Р	Total	
	Data Science	2	0	2	4	8	2	0	1	3	
PE		Examination Scheme									
		Comp	onent		ISE]	MSE	E	SE	Total	
IT332		Theory			50		50		00	200	
		Laboratory			50				50	100	

Pre-requisit	e Course Codes, if any.	IT303B: Artificial Intelligence and Machine Learning			
		MA203: Probability and Statistics			
Course Obje	Course Objective: To choose and apply tools, methodologies to solve <i>data science</i> tasks.				
Course Out	Course Outcomes (CO): At the End of the course students will be able to				
IT332.1	Make use of data to perform	rm exploratory data analysis.			
IT332.2	Apply supervised and uns	upervised learning on a dataset.			
IT332.3	Apply Association rule m	ining on a dataset.			
IT332.4	Develop a data science ap	plication using ethical practices.			

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
IT332.1	-	1	2	-	2	-	-	-	-	-	-	2
IT332.2	-	1	2	-	2	-	-	-	-	-	-	2
IT332.3	-	1	2	-	2	-	-	-	-	-	-	2
IT332.4	-	1	2	-	2	-	-	2	2	-	2	2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
IT332.1	-	-	2	-	-	-	2
IT332.2	-	-	2	-	-	-	2
IT332.3	-	-	2	-	-	-	2
IT332.4	-	-	2	-	2	-	2

Remember	Understand	Apply	Analyze	Evaluate	Create
					✓

Module	Unit No	Topics	Ref.	Hrs.
1 1	110.	Introduction	T1.	04
-			T2	••
	1.1	Introduction : Data Science, data science process, stages of a data science		
		project		
	1.2	Preliminaries for Data Science: Data Cleaning, mean, median,		
		mode, standard deviation, correlation coefficient, regression coefficient		
2		Exploratory Data Analysis and Data visualization	T1,	06
			T2	
	2.1	Data Integration; Data Reduction: Attribute subset selection,		
		Dimensionality Reduction, Sampling; Data Transformation & Data		
		Discretization: Normalization, Binning, Histogram Analysis and		
		Concept hierarchy generation		
2	2.2	Visualizing Geographical data, network data, Temporal data	101	0.6
3		Supervised and Unsupervised Learning	T1, T2	06
	3.1	Supervised Learning: Basic Concepts, Statistical Model Fitting,		
		Classification using Decision Tree Induction, Attribute Selection		
		Measures, Tree pruning		
	3.2	Unsupervised Learning: Basic Concepts; Partitioning Methods: K-		
		Mediods; Hierarchical Methods: Agglomerative, Divisive, BIRCH;		
		Density-Based Methods: DBSCAN, OPTICS		
4		Association Rule Mining	T1, T2	06
	4.1	Market Basket Analysis, Frequent Item sets, Closed Item sets, and Association Rules		
	4.2	The Apriori Algorithm, The FP Growth algorithm, Introduction to		
	-	Mining Multilevel Association Rules and Multidimensional		
		Association Rules		
5		Applications and Ethics of Data Science	T1, T2	06
	5.1	Data Science for Business Applications: Recommendation Systems,		
		Text Mining, Mining Social-Network graphs, Fraud Detection, Click		
		stream Mining, Time Series, Market Segmentation, retail industry, etc.		
	5.2	Data Privacy, data security and ethics in data science. Qualities of		
		data scientist		
6	Self	Applications of data science using Neural Networks, Deep Learning	R1	04*
	Study	and Big Data		
		Total		28

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

SPIT/UG Curriculum/2020 Iteration/Information Technology/ pg. 48

Sr. No.	Title of the Experiment
1	To identify various tools and types of data
2	To perform the data exploration on a dataset
3	To Identify the data needed in terms of attributes, class inputs, training, validating, and
	testing files.
4	To perform data visualization
5	To perform supervised learning on a dataset
6	To perform unsupervised learning on a dataset
7	To perform density based clustering on a dataset
8	To perform association rule mining on a dataset
9	Mini Project Phase-I: To develop an application on a real life scenario
10	Mini Project Phase-II : To develop an application on a real life scenario

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Learning From Data	First Edition	Yaser S. Abu-	AMLBook	2012
			Mostafa,		
			Malik		
			Magdon-		
			Ismail, Husan-		
			Tien Lin		
2	Doing Data Science	First Edition	First Cathy	O'Reilly	2013
			O'Neil, Rachel		
			Schutt		

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Python Data Science	First Edition	Jake	O'Reilly	2016
	Handbook: Essential		VanderPlas	-	
	Tools for Working				
	with Data				

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	P	Total
	Mini Project-II	0	0	0	8	8	0	0	0	3
SBC			Exam	inatio	ion Scheme					
		Comp]	ISE]	MSE	I	ESE	Total	
177200		The	eory							
11308		Labor	Laboratory		200				100	300

Pre-requisite Course Codes, if any.

Course Objective: This course inculcates self-learning, research and entrepreneurship attitude in students. Students will be able to understand the formal project development process to complete a project in a team. It will help students to develop communication, organizational skills and maturity through discussion, presentation etc.

Course Out	comes (CO): At the End of the course students will be able to								
IT208 1	Conduct a survey of basic and contemporary literature in the preferred field by								
identifying problems based on societal /research needs.									
IT308.2	Formulate the problem statement by making judgments on validity of ideas.								
177208 2	Conclude suitable inferences from obtained results through								
11300.3	theoretical/experimental/simulations based analysis.								
IT308.4	Develop interpersonal skills to work as member of a team.								
IT308.5	Prepare a report of the findings for the study conducted in the preferred domain.								

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
IT308.1	2	2	-	-	-	2	1	3	3	3	-	2
IT308.2	2	3	2	2	-	-	1	3	3	3	-	2
IT308.3	2	2	2	2	2	-	-	3	3	3	-	2
IT308.4	-	-	-	-	-	-	-	3	3	3	3	2
IT308.5	2	2	-	-	-	-	-	3	3	3	2	2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
IT308.1	2	2	2	2	2	2	2
IT308.2	2	2	2	2	3	2	2
IT308.3	2	2	2	2	3	2	2
IT308.4	2	2	2	2	2	2	2
IT308.5	2	2	2	2	2	2	2

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
					1

Mini Project II is an opportunity to inculcate the research aptitude in students. It helps them to identify research gaps and come up with possible solutions. Students should be able to analyze these solutions for feasibility of their implementation. Mini project II is based on a small research project correlating scientific knowledge and day to day experience which encourages development of scientific attitude to solve real life problems among students.

Steps for Research:

- ✓ Keen observation of the surrounding/society
- ✓ Read existing Literature to understand and identify the research gaps
- ✓ Analysis of the problem
- ✓ Formulation of the problem statement
- ✓ Collection of relevant information by formulating research questions
- ✓ Suggesting plan of action
- ✓ Conducting experiments and draw conclusion
- \checkmark To find the possible solution to rectify the problem
- ✓ To execute experiments and remedial measures wherever possible

Students can seek guidance from teachers, other experts and make effective use of other sources of information available around them. Students must ensure that problem to be manageable in one semester.

Criteria of a good project:

- \checkmark Appropriate idea, clear understanding and proper presentation of the concept
- ✓ Quality of work
- ✓ Project plan and its execution
- ✓ Credibility of the work
- \checkmark Probable impact of the work on the attitude of students and society
- Scientific attitude, creativity and novelty reflected in project work and analysis of the situation
- ✓ Utility and innovation of the remedial measures
- ✓ Desirability, Feasibility and Viability in real life

The H/W and S/W resources required to complete the Mini Project II may be beyond the scope of curriculum of courses taken or may be based on the courses but thrust should be on

- ✓ Learning additional skills
- ✓ Development of ability to define and design the problem and lead to its accomplishment with proper planning
- ✓ Learn the behavioral discipline by working in a team. Students should work in groups of three on the Mini Project-II.

Evaluation:

Project report should be submitted on A-4 size pages. Use both printing. Report must carry project title, student details, certificate and acknowledgements. Other sections of the report shall be decided by the department based on projects. But it must have introduction, necessity of project, objectives, hypothesis, plan, observations, and analysis of results, conclusion and references along with other sections related to technology.

The ISE and ESE evaluation will be carried out based on the rubrics framed by the Department. ISE marks will be based on the performance of the individual student in three phases of evaluation. The evaluation of the Phase I will be based on Title approval where the domain and scope of the project will be evaluated. Phase II will be on presentation of the selected approach, justification and Design and some part of implementation. Evaluation of Phase III is based on demonstration of complete implementation, testing, presentation and technical report.

The ESE marks will be based on demonstration in front of the expert appointed by the Department. In the ESE examination each individual student would be assessed for his/her contribution in selecting the originality of the problem statement, understanding and knowledge gained about the task completed through presentation/demonstration, work done, and preparing the technical report/poster/technical paper of the project in the standard format provided by the Department.

Bhartiya Vidya Bhavan's Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) [Knowledge is Nectar]

Liberal, Pi-Model of Engineering Education @ SPIT (Department of Information Technology)

Final Year Engineering (Semester VII – VIII)

SPIT/UG Curriculum/2020 Iteration/Information Technology/ pg. 53

	Sem VII											
No	Туре	Code	Course	L	Т	Р	0	Е	С			
1	OE	OEXXX	Open Elective-II	2	0	2	4	08	3			
2	OE	OEXXX	Open ElectiveIII* 2 0 2 4 0									
3	PE	IT4X3	Program Elective-III	2	0	2	4	08	3			
4	PE	IT4X4	Program Elective-IV	2	0	2	4	08	3			
5	SBC	IT401	Main Project Stage-I	0	0	0	4	04	2			
6	ABL	SVXX/STXX	SEVA-IV/SATVA-IV	0	0	0	4	04	2			
7	S/M/H	SCX4/MNX4	SCOPE-IV/Minor-IV/Honors-I						3			
		/HOXX										
		*OE-III must be	e from Basic Science Elective or Engin	eering	g Scie	nce E	Electiv	ve				
			TOTAL	8	0	8	24	40	16			

			Sem VIII (Option A: Cat1/Cat2)					
Ν	Туре	Code	Course	L	Т	Р	0	E	С
0									
1	OE*	OEHXX	Open Elective –IV	2	0	2	4	08	3
2	PE	IT4X5	Program Elective –V	2	0	2	4	08	3
3	PE	IT4X6	Program Elective –VI	2	0	2	4	08	3
4	SBC	IT402	Main Project Stage-II	0	0	0	12	12	7
5	ABL	SVXX/STX	SEVA-IV/SATVA-IV	0	0	0	04	04	1
		Χ							
6	Н	HOXX	Honors-II						3
	*must be	e from Humani	ties and Management group, May be tak	ken fro	m MO	DOCs			
			TOTAL	6	0	6	28	40	17

Sem VIII (Option B-Only for Cat 1 students)NoTypeCodeCourseLTPOEC1SBCIT403Main Project Stage-II0003636162A BLSVXX/STXSEVA B//SATMA B/00004041										
No	Туре	Code	Course	L	Т	Р	0	E	С	
1	SBC	IT403	Main Project Stage-II	0	0	0	36	36	16	
2	ABL	SVXX/STX	SEVA-IV/SATVA-IV	0	0	0	04	04	1	
		Χ								
3	Н	HOXX	Honors-II						3	
			TOTAL	0	0	0	40	40	17	

SEMESTER VII

SPIT/UG Curriculum/2020 Iteration/Information Technology/ pg. 55

Course		Teachi	ng Scł	neme (Hrs/w	veek)	C	Credits Assigned		
(Category)	ry) Course Name		Т	Р	0	Ε	L	Т	Р	Total
Code										
	Natural Language	2	0	2	4	8	2	0	1	3
PE		Examination Scheme								
		Compo]	ISE		ISE	ES	E	Total	
IT413	Trocessing	The	Theory		50		50	10	0	200
		Laboratory			50		50)	100

Pre-requisi	te Course Codes, if any.	IT307B: Artificial Intelligence and Machine Learning						
Course Obj	jective: To understand the b	basic knowledge on various morphological, syntactic and						
semantic NLP tasks.								
Course Out	Course Outcomes (CO): At the End of the course students will be able to							
IT413.1	Apply the Natural language	Apply the Natural language processing pipeline to solve a given problem						
IT413.2	Identify use of Natural lang	guage Models						
IT413.3	Analyze Parts-Of-Speech t	agging, Parsing and Semantic Analysis models for a given						
	scenario							
IT413.4	Develop system to solve a	Natural Language Processing problem						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
IT413.1	2	-	-	-	2	-	-	-	-	-	-	2
IT413.2	2	-	-	-	2	-	-	-	-	-	-	2
IT413.3	2	-	-	-	2	-	-	-	-	-	-	2
IT413.4	2	-	-	-	2	-	-	-	-	1	1	2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
IT413.1	-	-	2	-	1	-	2
IT413.2	-	-	2	-	1	-	2
IT413.3	-	-	2	-	1	-	2
IT413.4	_	-	2	-	1	-	2

Remember	Understand	Apply	Analyze	Evaluate	Create
			\checkmark		

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Introduction	1,2	06
	1.1	Introduction: NLP tasks/pipeline, syntax, semantics, classical		
		applications in NLP, Role of Machine Learning in Natural Language		
		Processing.		
	1.2	Spelling error and Noisy Channel Model; Concepts of Parts-of-		
		speech and Formal Grammar of English.		
2		Language Modelling: N-gram and Neural Language Models	1,2	07
	2.1	Language Modelling with N-gram, Simple N-gram models,		
		Estimating parameters in Smoothing, Evaluating language models		
	2.2	Neural Networks and Neural Language Models		
3		Parts-of-speech Tagging	1,2	07
	3.1	Rule based Part of Speech Tagging, Transformation based Tagging		
		(TBL)		
	3.2	POS tagging using HMM, POS Tagging using Neural Model		
4		Parsing and Semantics	1,2	08
	4.1	Basic concepts: Grammar Formalism, Treebank, Syntactic parsing:		
		CKY parsing, Probabilistic Context Free Grammar (PCFG);		
		Probabilistic CKY Parsing of PCFGs		
	4.2	Vector Semantics, Words and Vector, Measuring Similarity,		
		Semantics with dense vectors, Embeddings from prediction: Skip-		
		gram and CBOW		
5	Self	Applications: Sentiment Analysis, Text Summarization, chatbots,	3,4	04*
	Study	Language Translation; Word Sense, WordNet		
		Total		28

Laboratory Component (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	To perform Lexical Analysis on a given text data
2	To perform Syntax Analysis on a given text data
3	To perform n-gram model on a given text data
4	To perform N-grams smoothing on a given text data
5	To perform POS Tagging using HMM and neural model
6	To apply parsing techniques on the data
7	To perform Semantic Analysis on a given text data
8	To perform word embedding on a given text data
9	Capstone Project- Phase I: To develop an application on a real life scenario
10	Capstone Project-Phase II: To develop an application on a real life scenario

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Speech and Language	Third Edition	Daniel	Prentice Hall	2018
	Processing	Jurafsky,			
			James H.		
			Martin		
2	Foundations of	First Edition	Christopher	MIT Press	1999
	Statistical Natural		D.Mannig and		
	Language Processing		Hinrich		
			Schutze,		

Sr. No.	Title		Edition	Authors	Publisher	Year
1	Natural L	Language	First Edition	Siddiqui and	Oxford	2008
	Processing	and		Tiwary U.S	University	
	Information Re	etrieval			Press	
2	Natural L	Language	First Edition	Thushan	Pakt	2018
	Processing	with		Ganegedara	Publishing	
	TensorFlow				Ltd.	

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total
	Deep Learning	2	0	2	4	8	2	0	1	3
PE		Examination Scheme								
		Component ISE]	MSE	F	ESE Total			
IT414		Theory			50		50	1	100	200
		Laboratory			50				50	100

Pre-requisite Course Codes, if any. IT312: Soft Computing

Course Objective:

To introduce the fundamental concepts of Deep learning with primary focus on the architectures and applications as appropriate to real world problems

Course Outcomes (CO): At the End of the course students will be able to

IT414.1 Interpret the mathematical foundations of Deep Learning architectures.

IT414.2 Construct deep neural networks for a given problem.

IT414.3 Analyze deep learning models for a given scenario.

IT414.4 Develop real-world applications using various deep learning techniques.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
IT414.1	2	2	2	-	3	-	-	-	-	-	-	1
IT414.2	3	2	3	-	3	-	-	-	-	-	-	1
IT414.3	3	2	3	2	3	-	-	-	-	-	-	1
IT414.4	3	3	3	2	3	-	-	-	3	3	2	2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
IT414.1	1	2	2	-	-	-	2
IT414.2	1	2	2	-	-	-	2
IT414.3	1	2	2	-	-	-	2
IT414.4	2	2	2	-	3	-	3

Remember	Understand	Apply	Analyze	Evaluate	Create
					1

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	Title	Introduction to Deep Learning	T1,T2	4
	1.1	Revision of Learning Algorithms Concepts: Capacity,		
		Overfitting and Underfitting, Hyperparameters and Validation		
		Sets, Estimators, Bias and Variance, Stochastic Gradient		
		Descent,		
	1.2	Challenges Motivating Deep Learning		
2	Title	Convolutional Neural Networks	T1,T2,	6
	2.1	The Convolution Operation, Motivation, Pooling, Convolution	T4,R2	
		and Pooling as an Infinitely Strong Prior,		
	2.2	Variants of the Basic Convolution Function, Structured Outputs,		
		Data Types, Efficient Convolution Algorithms, Random or		
		Unsupervised Features		
3	Title	Autoencoders	T1,	6
	3.1	Architecture of Autoencoder, Undercomplete v/s Overcomplete	T2,R1,	
		Autoencoder, Regularized Autoencoders,	R2	
	3.2	Representational Power, Layer Size and Depth, Applications of		
		Autoencoders		
4	Title	Sequence Modelling	T1,T2,	6
	4.1	Recurrent Neural Networks (RNN), Bidirectional RNNs	T3,T4,	
	4.2	Encoder-Decoder sequence to sequence architecture	R1,R2	
	4.3	Deep Recurrent Network, Long short term memory (LSTM) and		
		gated RNNs		
5	Title	Generative Adversarial Networks	T3,R2	6
	5.1	Introduction to GANs, The GAN Architecture: Discriminator,		
		Generator,		
	5.2	Training the GAN, Applications of GAN		
6	Self	Applications of Deep Learning: Large-Scale Deep Learning,	Т3,	4*
	Study	Computer Vision, Speech Recognition, Natural Language	R1,R2	
		Processing, Other Applications		
		Total		28

Laboratory Component: ** Lab experiments may be performed using any open-source, freely available deep learning frameworks.

Sr. No.	Title of the Experiment
1	To implement a deep feed-forward network for a given problem
2	To implement a CNN for image data.
3	To implement a CNN for textual data.
4	To implement autoencoders.
5	To implement RNN for a given problem.
6	To implement Encoder-Decoder Model for a given problem
7	To implement generative adversarial networks for a given problem
8-10	Capstone project covering the concepts of Deep Learning on real world problem
Capstone	statements.
Project	

Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Deep Learning	First Edition	Ian Goodfellow,	An MIT	2016
			Yoshua Bengio,	Press book	
			Aaron Courvile		
2	Fundamentals of Deep	First Edition	Nikhil Buduma	O'Reilly	2017
	Learning				
3	Generative Deep	First Edition	David Foster	O'Reilly	2019
	Learning				
4	Deep Learning using	First Edition	Dr. S Lovelyn	Wiley	2019
	Python		Rose, Dr. L Ashok		
			Kumar, Dr. D		
			Karthika Renuka		

Sr.	Title		Edition	Authors	Publisher	Year
INO.						
1	Deep	Learning:	First Edition	Deng & Yu	Now	2013
	Methods	and			Publishers	
	Application	S				
2	Deep	Learning	First Edition	Douwe Osinga	O'Reilly	2017
	CookBook					

Course (Category)	Course Name]	Teaching Scheme (Hrs/week)				Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total
		2	0	2	2	6	2	0	1	3
PE	G	Examination Scheme								
	Security Operations	Comp	onent]	ISE]	MSE]	ESE	Total
IT423	Center	Theory			50		50		100	200
		Laboratory			50				50	100

Pre-requisit	e Course Codes, if any.	IT206: Operating systems			
		IT207: Computer Communications and Networks			
Course Objective: To analyze the security incidents, events and respond to it.					
Course Out	comes (CO): At the End of	the course students will be able to			
IT423.1	Explain the SOC processe	es, procedures, technologies, and workflows.			
IT423.2	Identify the indicators of	compromise by recognizing the attacker tools, tactics, and			
11723.2	procedures.				
IT423.3 Analyze the logs and alerts from various technologies.		s from various technologies.			
IT423.4	Evaluate the use cases that	t are widely used across the SIEM deployment.			

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
IT423.1	3	-	-	-	-	-	-	-	-	-	-	-
IT423.2	-	3	3	3	3	-	-	-	-	-	-	-
IT423.3	-	-	-	2	3	-	-	2	-	-	-	-
IT423.4	_	_	_	_	_	2	2	_	_	_	_	3

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
IT423.1	2	-	-	-	-	-	-
IT423.2	-	-	-	-	-	-	2
IT423.3	-	-	2	2	-	-	2
IT423.4	-	-	-	2	-	-	-

Remember	Understand	Apply	Analyze	Evaluate	Create
				\checkmark	

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	Title	SOC basics	T1,	7
	1.1	Introduction to SOC, security challenges, Information assurance,	T2,	
		risk management, security incident response, SOC generations.	R1	
		A modern SOC - SecOps and next-gen tech.		
	1.2	Elements of SOC-data collection and analysis, vulnerability		
		management, threat intelligence, compliance.		
2	Title	The plan phase	T1	7
		SOC strategy – strategy element, SOC model operation, SOC		
		services, SOC capabilities road map.		
3	Title	The design phase	T1	6
	3.1	The SOC infrastructure -design consideration, model of		
		operation, facilities and active infrastructure.		
	3.2	Security event generation and collection -data collection, cloud		
		security, intrusion detection and prevention system, honeypots,		
		DNS server.		
4	Title	The build and operate phase	T1,	8
	4.1	The technology- network, security, system, storage,	R2	
		collaboration Breach detection, sandboxes.		
	4.3	Key challenges -people, process, technology. Reacting to events		
		and incidents. maintain review and improve- reviewing and		
		assessing the SOC, maintaining and improving SOC.		
5	Self-	User and Entity Behavioral Analytics, SIEM Analytics		6*
	study	and Incident Response and Automation		
		Total		28

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	To do Vulnerability Scanner set-up by Configuring nessus and OpenVAS
2	Implementation of SOC using Prelude SIEM
3	Establishing baselines of files and directories with Kali Linux and Windows 7.
4	To implement event log collection and correlation
5	To conduct log analysis and cross examination for false positives
6	To generate log event reports
7	To prioritization and escalation of incidents by generating incident ticket
8	To implement containment of incidents
9	To implement eradication of incidents
10	To recover data from the incidents and Creating report of the incident

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Security Operations Center: Building,	First	Joseph	Cisco Press	2015
	Operating, and Maintaining your SOC	Edition	Muniz		
2	Blue Team Handbook: A Condensed Field Guide for the Cyber Security Incident Responder: Incident Response Edition: A condensed field guide for the Cyber Security Incident Responder	First Edition	Don Murdoch	Lightning Source Inc	2014

Sr. No.	Title	Edition	Authors	Publisher	Year
1	The Modern Security Operations Center	First	Joseph	Addison-	2021
		Edition	Muniz	Wesley	
				Professional	
2	Security Operations Center - SIEM Use	First	Arun E	Arun E	2018
	Cases and Cyber Threat Intelligence	Edition	Thomas	Thomas	

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					C	Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total	
	Blockchain Technology	2	0	2	5	10	3	0	1	3	
PE		Examination Scheme									
		Component ISE]	MSE	E	SE	Total		
IT424		Theory 50 50		1	00	200					
		Labor	ratory		50		50	100			

Pre-requisit	e Course Codes, if any.	IT206:Operating systems		
		IT207:Computer Communications and Networks		
Course Objective: To understand and use the blockchain technology				
Course Outcomes (CO): At the End of the course students will be able to				
IT424.1	Explain the basic concepts of blockchain technology, Bitcoin and Ethereum.			
IT424.2	Apply a smart contract on	the Ethereum test network		
IT424.3	Build a Decentralized Application running on a decentralized peer-to-peer network			
IT424.4	Explain the General Data Protection Regulation for relevant blockchain application			

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
IT424.1	2	-	-	-	-	-	-	-	-	-	-	2
IT424.2	-	2	-	-	2	2	1	-	-	-	-	2
IT424.3	-	-	3	2	3	2	1	-	-	-	-	2
IT424.4	-	-	-	-	-	2	1	2	-	-	-	2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
IT424.1	-	-	-	-	-	-	-
IT424.2	2	2	2	2	-	2	2
IT424.3	2	2	2	2	-	2	2
IT424.4	2	-	-	2	-	2	-

Remember	Understand	Apply	Analyze	Evaluate	Create
					\checkmark

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	Title	Introduction to Blockchain	T1,	6
	1.1	The consensus problem - Asynchronous Byzantine Agreement - AAP protocol and its analysis - Nakamoto Consensus on permission-less, nameless, peer-to-peer network - Abstract Models for BLOCKCHAIN - GARAY model - RLA Model	T2, R1	
	1.2	Proof of Work (PoW) as random oracle - formal treatment of consistency, liveness and fairness - Proof of Stake (PoS) based Chains - Hybrid models (PoW + PoS).		
2	Title	Consensus	T1,	8
	2.1	Bitcoin - Wallet - Blocks – Merkle Tree - hardness of mining - transaction verifiability - anonymity - forks - double spending - mathematical analysis of properties of Bitcoin.	T2	
	2.2	Permissioned Blockchain: Basics, Distributed consensus, RAFT Consensus, Byzantine General Problem, Practical Byzantine Fault Tolerance.		
3	Title	Hyperledger Fabric	T1,	8
	3.1	Transaction Flow. Hyperledger Fabric Details, Fabric - Membership and Identity Management, Hyperledger Fabric Network Setup, Fabric Demo on IBM Blockchain Cloud.	T2	
	3.2	Hyperledger Composer - Application Development. Hyperledger Composer - Network Administration, Ethereum - Ethereum Virtual Machine (EVM) - Wallets for Ethereum - Solidity - Smart Contracts - some attacks on smart contracts. Blockchain: Enterprise use cases.		
4	Title	Data Protection and applications of blockchain	T1.	6
	4.1	General Data Protection Regulation (GDPR) and its relevance for Indian businesses, Internal Policy on management and sharing data, GDPR compliance between multiple organizations. Liability and indemnity under GDPR, GDPR for Entrepreneurs.	T2, T3, R2	
	4.2	Applications of blockchain - Uses of Blockchain in E-Governance, Land Registration, Medical Information Systems, and smart cities, smart industries, anomaly detections, FinTech, Shaping the Financial World, IoT.		
6	Self- study	Scaling the blockchain: payment channels and state channels Scaling the blockchain using optimism and using SNARK Privacy in public blockchain: deanonymizing the blockchain and mixing.	R1, R2	6*
		Total		28

Sr. No.	Title of the Experiment
1	Implementation of symmetric key cryptosystems – I
2	Implementation of asymmetric key cryptosystems – I
3	To implement Merkle Tree and genesis block
4	Demonstration of Bootstrapping
5	Demonstration of Hyperledger Fabric
6	Demonstration of Hyperledger Fabric – Ethereum
7	Implementation of Bitcoin
8	To implement the application: Land Registration
9	To implement the application: Smart Contract
10	To implement the application: FinTech

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Bitcoin and	Illustrated	Arvind Narayanan,	Princeton	2016
	Cryptocurrency		Joseph Bonneau,	University	
	Technologies: A		Edward Felten,	Press	
	Comprehensive		Andrew Miller and		
	Introduction		Steven Goldfeder		
2	Blockchain: Blueprint for	First	Melanie Swa	O'Reilly	2015
	a New Economy	Edition			
3	Building-Blocks of a Data	First	Shraddha Kulhari	Nomos	2018
	Protection Revolution:	Edition			
	The Uneasy Case for				
	Blockchain Technology to				
	Secure Privacy and				
	Identity				

Reference Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	The Bitcoin Standard: The Decentralized Alternative to Central Banking	First Edition	Saifedean Ammous	Wiley	2018
2	Blockchain For Dummies	Second Edition	Tiana Laurence	Wiley	2019

SPIT/UG Curriculum/2020 Iteration/Information Technology/ pg. 67

Course(Category)	Course Name	T	Teaching Scheme (Hrs/week)				C	Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total	
		2	0	2	4	8	2	0	1	3	
PE		Examination S					n Sche	eme			
	Digital Image	Component			ISE I		MSE	Ε	SE	Total	
IT433	Processing	The	Theory 50			50	1	00	200		
		Laboratory			50				50	100	

Pre-requisit	e Course Codes, if any.			
Course Objective: To Evaluate the techniques for image processing to analyze Images.				
Course Outcomes (CO): At the End of the course students will be able to				
IT433.1	Evaluate the techniques for enhancing and segmenting Images.			
IT433.2	Analyze images using various transforms.			
IT433.3	Categorize various compression techniques and standards for Images and Videos.			
IT433.4	Apply image processing algorithms in practical applications.			

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
IT433.1	3	2	2	-	2	-	-	-	-	-	-	-
IT433.2	3	2	-	-	2	-	-	-	-	-	-	-
IT433.3	3	2	2	-	2	-	-	-	-	-	-	-
IT433.4	2	1	-	-	1	-	-	-	2	2	-	_

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
IT433.1	2	-	-	-	-	-	-
IT433.2	2	-	-	-	-	-	-
IT433.3	2	-	-	-	-	-	-
IT433.4	2	2	-	1	2	-	1

Remember	Understand	Apply	Analyze	Evaluate	Create
			✓		

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Fundamentals of Image Processing		
	1.1	Structure of the Human Eye, Light, Brightness adaption and	T1	
		discrimination, Pixels, Coordinate conventions		03
	1.2	Imaging Geometry, Image acquisition, Sampling and Quantization,	T1	
		image resolution, basic relationship between pixels, color images,		
		RGB, HSI models		
2		Image Enhancement and Segmentation		
	2.1	Point Processing, Histogram processing, Smoothing and	T1	
		Sharpening Filters.		07
	2.2	Detection of discontinuities, Edge linking and Boundary detection,	T1	
		Hough transform, Thresholding, Region oriented segmentation.		
3		Image Transform and Morphology		
	3.1	Discrete Fourier Transforms, Hadamard-Walsh Transform,	T1	
		Discrete Cosine Transform, Discrete Wavelet Transform.		06
	3.2	Image Morphology: Structuring Element, Erosion & Dilation,	T1	
		Opening & Closing, Region filling.		
4	Title	Video Processing		
	4.1	Digital Video Sampling, Video Frame classifications, Moving	R1	05
		picture types, Macroblock, Motion Compensation.		
	4.2	Motion Models, 2D Apparent-Motion Estimation, 3D Motion and	T2	
		Structure Estimation.		
5	Title	Image and Video Compression		
	5.1	Redundancies, Lossy and Lossless Compression	T1	
	5.2	RLE, Huffman Coding, Arithmetic Coding, LZW, JPEG,	T1	07
		Predictive Coding		
	5.3	H.261, MPEG	R1	
6	Self	Object Representation and Object Recognition, Image Restoration,	T1	6*
	Study	Applications of Image Processing		
		Total		28

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	Image Enhancement using Point Processing Operations.
2	Smoothing and Sharpening of Images.
3	To enhance Image using Histogram equalization.
4	To segment Image using Image Segmentation.
5	To perform morphological operations on Image
6	To perform Region Filling in the Image
7	To implement transform on the Image.
8	To implement compression of the Image.
9	To detect object in the Video.
10	To Implement an application of Image Processing

SPIT/UG Curriculum/2020 Iteration/Information Technology/ pg. 69

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Digital Image Processing	Third Edition	Rafael C. Gonzalez and Richard E. Woods	Pearson Education	2010
2	Digital Video Processing	Second Edition	Murat Tekalp	Pearson Education	2010

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Multimedia Systems Design		Prabhat K Andleigh / Kiran Thakrar	Pearson	2015
2	Handbook on Image and Video Processing		A.I.Bovik	Academic Press	2009

Course(Category)	Course Name	Teaching Scheme (Hrs/week)					C	Credits Assigned							
Coue		L	Т	Р	0	Ε	L	Т	Р	Total					
		2	0	2	4	8	2	0	1	3					
PE	Project			E	xami	natio	n Sche	eme							
		Comp	onent]	ISE	I	MSE ESE Total								
IT 42.4	wianagement	The	ory		50		50	1	100 200						
11434		Labor		50				50	100						

Pre-requisit	e Course Codes, if any. IT 302: Software Engineering
Course Obje	ective: To study the fundamentals of Project Management
Course Out	comes (CO): At the End of the course students will be able to
IT434.1	Align the project to the organization's strategic plans and business justification throughout its lifecycle
IT434.2	Manage the scope, cost, timing, and quality of the project, at all times focused on project success as defined by project stakeholders
IT434.3	Identify Project constraints and justify resource utilization.
IT434.4	Adapt projects in response to issues that arise internally and externally
IT434.5	Analyze the failed projects

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
IT434.1	-	-	2	-	1	-	I	-	2	2	_	-
IT434.2	-	-	2	-	-	-	-	-	2	2	3	-
IT434.3	-	-	-	-	-	-	2	1	2	2	3	-
IT434.4	-	-	-	2		1	2	1	2	2	-	-
IT434.5	-	-	-	2	1	1	2	1	2	2	3	2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
IT434.1	3	-	-	-	2	-	-
IT434.2	3	-	-	-	2	-	-
IT434.3	-	1	-	-	-	-	-
IT434.4	-	-	2	-	-	-	1
IT434.5	-	-	2	-	-	-	1

Remember	Understand	Apply	Analyze	Evaluate	Create
				\checkmark	

Module	Unit	Topics	Ref.	Hrs.
<u>No.</u>	No.			0.4
1		Introduction	T 1 T 2	04
	1.1	Project Attributes, Project Characteristics, The Framework of	T1,T2,	
	1.0	Project Management	13	
	1.2	The Project Life Cycle, Overview of Scrum Project		
		Management		00
2	1	Project Initiation and Planning	T 1 T 2	08
	2.1	Project Initiation, Project Charter	T1,12, T3	
	2.2	Project Scope, Work Breakdown Structure, Project Schedule and Time Management, Project Costs, Make/buy/outsource decision		
3		Software Project Status Monitoring		06
	3.1	Network Scheduling technique, Earned Value Analysis,	T1,T2,	
		Schedule & Cost slippage, Critical chain project management,	T3	
		Goldratt's critical chain		
	3.2	Resource Loading and Leveling, Techniques for Managing		
		Resources		
4		Change Management		06
	4.1	Change management plan, Dealing with resistance and	T1,T2,	
		conflicts.	T3	
	4.2	Project Risk Management		
	4.3	Techniques for Quality management		
5		Project Implementation & Closure		04
	5.1	Project Implementation methods	T1,T2,	
	5.2	Administrative closure, Project evaluations	T3	
	5.3	Project audit ,Post production review		
6	Self	Case studies, Co- located and Distributed Projects, Project		8
	Stud	failures, Challenges and tools.		
	У			
Total				28

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	To design Business Case for given case study
2	Define Scope and WBS
3	To use decision making tools for Project make- buy decision
4	Project planning using MS Project or using similar tools
5	Project status reporting EVA
6	Risk assessment/ Quality Management Tools
7	Project communication Using JIRA
8	Software Contracts
9	Resource Loading and Leveling
10	Case study on conflict Management using Meyers Briggs Model

SPIT/UG Curriculum/2020 Iteration/Information Technology/ pg. 72
Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Project Management For	2021	John M.	Taylor and Francis	August
	Engineering Business And	Edition	Nicholas and		2020
	Technology		Herman Steyn		
2	Project Management		Adrienne	Creative Commons-	2015
			Watt	ShareAlike 4.0	
				International License	
3	Information Technology	Fourth	Jack T.	4th edition, Wiley	2014
	Project Management	Edition	Marchewka	India	

Reference Books

Sr.	Title	Edition	Authors	Publisher	Year
No.					
1	Managing Information	Fourth	Kathy	Cengage Learning	September
	Technology Project	Edition	Schwalbe	publication	2010
2	Effective Software Project		Robert	Wiley Publication	September
	Management		K.Wysocki		2010
	C		J		
3	Project Management in		Thomas	VDM Verlag Dr.	May
	Distributed Projects		Gollubits	Mueller E.K	2008

SEMESTER VIII

SPIT/UG Curriculum/2020 Iteration/Information Technology/ pg. 74