- N.B.: (1) Question No. 1 is compulsory.
 - (2) Attempt any four questions out of remaining six.
 - (3) Figures to the right indicates full marks.
 - (4) Assume suitable data if necessary.
- 1. (a) Compare Recurrsive and non-recurrsive filter.
 - (b) Test Linearity and time invariance of following system :--(i) y(n) = a Cos [x(n)] + b.
 (ii) y(n) = (n + 1) x(n).
 - (c) Using DIF-FFT algorithms find 1 DFT of $x(k) = \{10-2+2j, -2, -2-2j\}$.
 - (d) Find Z-transform of $x(n) = (n + 1) a^n u(n)$. Specify its ROC.
- 2. (a) Consider a simple signal processing system as shown in **figure**. The sampling period of A/D and 10 D/A convertor are T = 5 ms and T = 1 ms respectively. Determine the output $y_a(t)$ of the if input is $x_a(t) = 3 \cos 100 \pi t + 2 \sin 250 \pi t$. The post filter removes any frequency component above Fs/2.

(b) Determine the Convolution of following pairs of signals using Z-transform---

(i)
$$x_1(n) = \left(\frac{1}{4}\right)^n n(n-1)$$

 $x_2(n) = \left[1 + \left(\frac{1}{2}\right)^n\right] u(n)$
(ii) $x_1(n) = nu(n)$
 $x_2(n) = 2^n u(n-2).$

- 3. (a) Show Pole zero diagram with arbitrary pole-zero values for an IIRfilter, which has damped Sinusoidal 6 impulse response. Justify your answer.
 - (b) $x_1(n)$ and $x_2(n)$ are two 8 point real sequences. $x_2(n)$ is time-reversed version of $x_1(n)$.

Let
$$x_1(k) = x_R(k) + x_I(k)$$

where R and I represents real and imaging part of DFT.

If $x(n) = x_1(n) + x_2(n)$. Withouts performing any DFT operation, find x(k).

- (c) Let $x_1(n) = [x_0, x_1, x_2, x_3]$ and $x_1(k) = [x_1(0), x_1(1), x_1(2), x_1(3)]$. If $x_2(n) = [x_0, 0, x_1, 0, x_2, 0, x_3, 0]$. 6 Find $x_2(k)$ using results of $x_1(k)$. State the properly used. Verify the properly.
- 4. A Discrete time LTI causal system is shown in figure.

The poles and zeros of individuals modules are tabulated below-

Module	Zero Location	Role Location	Gain
$H_1(z)$	- 0.2	- 0.4	1
$H_2(z)$	_	- 0.2	- 1/-
$H_3(z)$		0.4	4/3
			,

- (i) Find transfer function H(z) of total system.
- (ii) Find the difference Equation of system.
- (iii) Show direct form I, II and parallel form of realisation.
- (iv) Find impulse response of system.
- (v) Find step response of system.

[TURN OVER

5

3

6

3

3

10

8

-tas (NAle boirs

5. (a) Consider the system as shown in figure-

2

- (i) Determine its impulse response h(n).
- (ii) Show that h(n) is the convolution of following signals. $h_1(n) = \delta(n) + \delta(n-1)$

$$\mathbf{h}_2(\mathbf{n}) = \left(\frac{1}{2}\right)^2 \, \mathbf{u}(\mathbf{n}).$$

(b) Derive the expression for the order of Butterworth filter.

(c) Determine the order and out off frequency of lowpass Butterworth filter if.

passband attenuation = -1.5 db

stop band attenuation = 15 db

pass band frequency = 0.45π

stop band frequency = 0.65π

use impulse invariance transformation.

- 6. (a) Consider the following analog sinusoidal signal $x_a(t) = 3 Sin (100 \pi t)$
 - (i) Sketch the signal for $0 \le t \le 30$ ms.
 - (ii) The signal is sampled with a sampling period Fs = 300 samples/s. Determine the frequency of resulting discrete the signal.
 - (iii) Compute the sample value in one period of x(n). Sketch x(n) on the same diagram with $x_a(t)$. What is period of discrete time signal in milisecond.
 - (iv) Can you find a sampling rate Fs such that signal reduces to its peak value of 3? What is minimum value of Fs suitable for the same.
 - (b) Determine zero state and zero-input response for a system.

y(n) = -0.1 y(n-1) + 0.2 y(n-2) + x(n)where $x(n) = (1/3)^n u(n)$ and y(-1) = y(-2) = 1.

7. (a) Is the following filter is a Linear phase filter, if— $H(z) = 1 - z^{-1} + z^{-3} - z^{-4}$

If yes, draw the phase reponse to prove it.

- (b) Derive a relation between auto corelation of input, impulse response of system and an auto corelation 5 of output.
- (c) Design a Linear phase FIR filter with the following specifications—

 $H_d(w) = 0$ $0 \le |w| \le \pi/4$

$$= 2e^{-j3/2w} \frac{\pi}{4} < |w| < \pi$$

Use Hamming window.

12

4

8

8

5

10