Con. 5432-07.

3

(3 Hours)

LSI Derign

N. B.: (1) Q. No. 1 is compulsory.

M.E. SemIL (Etox)

- (2) Attempt any four out of remaining six questions.
- (3) Assume any suitable data wherever required but justify the same.
- a Define Inverter Ratio. and state its significance.
 - b What is burried contact? When we use this in MOS technology
 - c Compare between Silicon and Germanium Technology..
 - d Define Sheet Resistance, What is the significance of it?
 - e Draw the Exclusive OR using minimum devices in CMOS Technology?

2 a Implement following function also draw the stick diagram

F = X + (Y. Z)

Draw Layout for the same.

- b Using nMOS devices design 4:1 MUX also draw the stick diagram. 10
- a Explain the effect of scaling on interconnect with respect to power 10 dissipation and delay
 - b Describe with neat diagram various steps involved in fabrication and 10 sketch each mask steps in cross-sectional view of wafer for nMOS device.
- 4 a Derive expression for nMOS transistor current in both regions of 10 operations.
 - Find the expression for Threshold voltage of pMOS device also 10
 explain the effect of substrate potential(Body Effect)on Threshold & overall performance of the device
- 5 a Explain following short channel effects:
 - i) Threshold voltage roll off
 - ii) Drain Punch-through
 - iii) Velocity saturation
 - iv) Hot carrier effect.
 - b Prepare a chart of CMOS Inverter characteristics in five different
 10 regions. Specify for the devices the region of operation and justify.

20

10

08/12/0

Total Marks : 100

10

- 6 a Derive Noise margin for Resistive load type of an Inverter
 - b What is total power dissipation in case of CMOS Inverter? Discuss
 10 how to approximate the estimation of total power dissipation? What
 is power budget ? how to minimize the Power Dissipation?
 - Write short notes on: (any four):
 - a CMOS Domino Logic
 - b Explain MOS Capacitor and Band Bending in P-type of Semiconductor.
 - c Need & Effect of scaling.
 - d Latch-up problem in CMOS device
 - e Electron beam lithography
 - f Super buffer and its importance in IC design

20

10

7