M.E. SemI(Rev.)

Image Processing

13/12/08

Con. 5597-08.

(REVISED COURSE)

BB-8213

(4 Hours)

[Total Marks: 100

N.B. (1) Question No. 1 is compulsory.

- (2) Attempt any four questions from remaining six questions.
- (3) Assume suitable data if necessary, with proper justification.
- 1. (a) Explain uniform and non-uniform sampling.

20

(b) List the applications of IP and explain any two in detail.

- (c) Explain with Isopreference curves 'How Quality of picture varies as a function of the number of pixels and number of gray levels that represent the picture'.
- (d) Explain Region splitting and merging.

2. (a) Suppose that 8 × 8 pixel image is represented by 4 bits/pixel has the following gray level distribution.

Gray level	0	1/7 .	2/7	3/7	4/7	5/7	6/7	7/7
No. of pixel	4	16	17	11 .	8	4	4	0

Modify the above histogram such that the desired distribution is as follows :-

Gray level	0	1/7	2/7	3/7	4/7	5/7	6/7	7/7
No. of pixel	2 .	6'	8	10	12	11	9	6

- (b) Explain convolution in the spatial domain and the frequency domain. Derive the relationship between the two domains.
- (c) Explain in brief frequency domain enhancement techniques.

10

3. (a) Using 4-point FFT algorithm, evaluate 2-D DFT of the following image:—

0	1	. 2	1
1.	0	1.	2
2	1	0	1
1	2	1	0

(b) Explain Fast Hadamard transform.

10

4. (a) Detect the boundary and segment of the given image using graph theoretical approach. 8
Also draw the graph for the given image.

Image =
$$\begin{pmatrix} 7 & 2 & 2 \\ 5 & 7 & 2 \\ 5 & 1 & 0 \end{pmatrix}$$

- (b) Write short note on Hough transform.
- (c) Explain a threshold finding algorithm for Global tresholding.

8

4

5.	(a) (b) (c)	Explain in detail image compression using LZW method. Explain Fidelity Criteria w.r.t. image compression. Briefly explain the following variable length codes: (i) Truncated Huffman (ii) B ₂ code (iii) Binary shift (iv) Huffman shift.	8 4 8			
6.	with suitable algorithm. (b) Find the medial axis of — (i) a circle (ii) an equilateral triangle.					
	(c)		8			
7.	Writ	te short notes on :— (a) Bit plane slicing with one application (b) Karhunen-Loeve Transform (c) JPEG encoder and decoder (d) Lossy predictive coding.	20			