BE ETRX III (OLD) Busics of VISI

Con. 6581-11.

(OLD COURSE)

(3 Hours)

MP-6157 [Total Marks : 100

NOTE:-(1) Que no 1 is compulsory.

(2) Out of remaining six questions solve any four.

(3) Each question carries 20 marks and sub-questions carry equal marks.

(4) Assume suitable data if required.

(5) Useful physical constants are given in following table.

Name	Symbol	Value	Units
Boltzmann's constant	k	1.38 ×10 ⁻²³	J/K
Dielectric constant of vacuum	εο	8.854 × 10 ⁻¹⁴	F/cm
Dielectric constant of Silicon	ESİ	11.7 χ εο	F/cm
Dielectric constant of SiO ₂	εοх	3.97 χεο	F/cm
Intrinsic carrier	ni	1.45 × 10 ¹⁰	cm ⁻³
concentration of silicon		at 27 °c	

Que 1. (A) Draw CMOS 2 input NOR gate and explain its working.

(B) Write short notes on Latch up in CMOS.

- Que 2. (A)Calculate the zero-bias threshold voltage for an NMOS Silicongate transistor that has well doping = 3×10^{15} , gate doping = ND = 10^{20} cm⁻³, gate- oxide thickness = 250 A° , and 3×10^{10} / cm² singly charged positive ions at the oxide-Silicon interface. Also calculate the ion- implant doses needed to achieve a threshold voltage of -1 V.
- (B) Write short notes on butting and buried contacts in NMOS circuits.
- Que3. Draw a circuit diagram, stick diagram of CMOS inverter and its mask layout considering lambda based design rules.

- (B) Write short notes on butting and buried contacts in NMOS circuits.
- Que3. Draw a circuit diagram, stick diagram of CMOS inverter and its mask layout considering lambda based design rules.
- Que4. (A) Write short notes on, "Testing of Integrated circuits".
 - (B) Explain Oxidation process in silicon semiconductor technology.
- Que5. (A) Draw CMOS transmission gate and explain its working.

(B) Explain full scaling in VLSI.

Que6. (A) Write short notes on FET capacitance.

(B) Draw circuit diagram and stick diagram of 4:1 multiplexer using enhancement mode devices and explain its operation.

Que 7. Discuss the processing sequence of a p-well CMOS inverter with the help of cross-sectional views.

16/12/11	BE ETRA I	III (OLD) Mechatronics
AGJ 2nd half (e+) 37		Mechatronics
Con. 6586-11.	(OLD COURSE)	MP-4750
	(3 Hours)	[Total Marks : 100
N.B. : (1) Question No. 1 is a (2) Attempt any four a (3) Figures to the right (4) Assume suitable a	out of remaining six questior ht indicate full marks.	NS.
 Q.1 Solve the following: a) What is range sensor and its b) Explain Mechatronics system c) Explain different types of ge d) Explain the basic principle of 	n with its key elements. ear systems.	[20]
 Q.2 (a) Explain construction of perm draw block diagram model o (b) Explain the following terms (i) Hydraulic resistance (iii) Thermal Capacitance 	of PM stepper motor : i) Hydraulic Capacitance	erive motor equations and [10] [10]
 closed for a coil to be energi pressing a spring return push spring-return push-button st (b) Device a ladder diagram that machine to switch on a pump then switch off. And switch The heater is then switched 	rate.(ii) Either of two, normally o ised and operate an actuator (iii) A ih button start switch and the moto	pen, switches have to be A motor is switched on by or remains on until another [10] ashing the machine he water. pty the water
body system.	of sensors. which is used most mechatronics lics design process with its block	[5]
system. (b) Explain the basic function of system.	s to be measured. Draw the syste ware/ software needed to impleme f the various components of Data fiber optic devices in mechatroni	ent hardware in loop of this [10] Acquisition and Control [5]
 Q.6 (a) What is adaptive control systematic types of adaptive control systematic (b) Write the steps the installation (c) Explain brushless DC Motor 	stems. on of I/O cards and software.	e of different [10] [5] [5]
 Q.7 Write short note on following: a) Components of Data acquisit b) Hardware - in - loop c) Control system design techn 		[20]

.

	28/12/2011 BE ETRX	
AGJ 2nd half (h+) 27	Elective-I	Micro Omputer system
Con. 6805-11.	(OLD COURSE)	MP-61450 (3)
	(3 Hours)	[Total Marks : 100

- Note: 1. Question no. 1 is compulsory. Answer any four questions from remaining questions.
 - 2. Âssume suitable data, if necessary.

Q.1. a. Describe Pentium Processor architecture with neat block diag				
	b. Describe SCSI bus protocol in detail.	10		
Q.2.	a. Describe code cache organization with nead diagram.	12		
	b. Describe branch prediction logic implemented on Pentium			
	processor.	08		
Q.3.	a. Describe pipelined and non-pipelined bus cycles.	12		
	b. Describe split-line access with neat diagram.	08		
Q.4.	a. Describe reflected wave switching? Explain the advantage od reflected wave switching.	10		
	b. Explain how misaligned data transfer takes place on Pentium system.	10		
Q.5.	a. Explain how interrupts are handled on PCI bus? Also, explain how interrupts are routed on PCI bus.	12		
	b. PCI bus is called as "Green Bus". Justify.	08		
Q.6.	a. Describe IDE protocols.	06		
	b. Describe SCSI bus phases in brief.	07		
	c. Explain different types of data transfers implemented on USB bus.	07		
Q.7.	Write short note on ;			
	a. USB bus topology	20		
	b. PCI interrupt chaining			
	c. Data Cache organization on Pentium			
	d. PCI Read cycle			

8/12/2011

BE ETRX III (OLD) Instrumentation Systemy

V-2nd-Hf-Ex-11-D-21

Con. 6493-11.

MP-6142

(OLD COURSE)

		(OLD COURSE)	
		(3 Hours) [Total Marks : 1	00
N.B	(2	 Question No. 1 is compulsory. Attempt any four questions out of remaining questions. Draw neat and clear circuit, block diagrams. 	
1.	(a)	Explain the 2-wire, 3-wire and 4-wire type PT-100 type temperature transducer, give all	5
	(b)	the connection diagram. What is LVDT ? What are the parameters those can be measured by this ? Explain it's	5
	(c)	I/O characteristic with the constructional details. Explain the principle of Strain-Gauge. Derive an expression for Gauge-Factor. Explain	5
	(d)	the Poisson's Ratio. Explain the operating principles of photo-conductive cell, photo-voltaic cell and photo-emissive cell. Also state their applications in Industrial field.	5
2.	(a)	Explain the Seeback effect and Peltiar effect in thermocouple type temperature	10
	(b)	measurements. Explain the 5-laws of Thermo-couples with diagrams.	10
3.	(a)	Explain the Two-types of ultrasonic type flow-measurements. Derive the equations in both	10
	(b)	the cases. Explain the Bourdon type pressure measurements, also explain how the Primary-Secondary Transducer can give pressure measurement in electrical output.	10
4.	(a)	Explain the following types of displacement transducers : * Incremental type for Angular and Linear Displacement. * Encoded type Angular and Linear Displacement.	12
	(b)	Also explain how the Direction and Magnitudes of displacement quantities are generated. Explain the following types of strain gauges. * Wire type * Foil type * Semi-conductor type.	8
5.	(a)	Explain the different types of Torque Measurements Methods. Give their constructional	10
	(b)	diagrams. Describe the Dynamic Response of 2 nd order Instrument when subjected to step-I/P. Derive the out-put response.	10
6.	(a) (b)	Explain the Hot-Wire type Anemo-meter with constructional diagram. Explain the Electro-magnetic type flowmeter with constructional details. Explain and derive the equation for electrical out put.	10 10
7.	Solv	 (a) Virtual Instrumentation with one case study. (b) The material resource measurements 	20

- (b) Flow-metering using pressure measurements.
- (c) Data Logging System for Multi-Channel Inputs.
- (d) 2-port and 3-port-type Isolation Amplifier with different types.

>**CM**:<u>VI</u>

Digital Communication

20

(3 Hours)

[Total Marks : 100

- **N. B.**: (1) Question No. 1 is compulsory.
 - (2) Attempt any four questions out of remaining six questions.
 - (3) Assume suitable data if required and mention it with justification.
- 1. Answer any four questions :---
 - (a) Define Probability. Explain Conditional and Joint Probabilities.
 - (b) Define Hamming Codes. Prove that the Hamming Code corrects only single bit error.
 - (c) Show that duobinary signalling suffers from error propagation while precoded duobinary signalling does not.
 - (d) Why MSK is called shaped QPSK ?
 - (e) What are Pseudo-noise (PN) Sequence in spread spectrum technology? Why they are used in spread spectrum modulation system?
- (a) An Analog Signal is band limited to BH_z sampled at Nyquist rate and Quantized 5 at 5 levels with probabilities 0.5, 0.125, 0.0625, 0.25 and 0.0625.
 Calculate entropy and information.
 - (b) Prove that the entropy of extremely likely and extremely unlikely message is zero. 5
 - (c) A discrete Memoryless Source has an alphabet of five symbol with these 10 probabilities as :---

Symbol	S ₁	S ₂	S ₃	S ₄	S ₅
Probability	0.40	0.19	0.16	0.10	0.15

- (i) Construct a Huffman Code.
- (ii) Calculate code efficiency η and redundancy of the code.
- 3. (a) With the help of neat block diagram and waveform, explain how a message 10 transmitted in BFSK? What type of receiver is used for BFSK reception ?
 - (b) Prove that for the 16-ary QASK digital modulation technique, the Euclidean distance **10** is given by :

$$d = 2\sqrt{0.4 \, \text{Eb}}$$

Where Eb is normalized energy per bit also draw signal constellation diagram for 16-ary QPSK and Compare with 16-ary QASK.

4. (a) For a systematic linear block codes the three parity check digits C_4 , C_5 and C_6 **10** are given by :

$$\begin{array}{rcl} \mathbf{C}_{4} &=& \mathbf{d}_{1} & \oplus & \mathbf{d}_{3} \\ \mathbf{C}_{5} &=& \mathbf{d}_{1} & \oplus & \mathbf{d}_{2} \oplus & \mathbf{d}_{3} \\ \mathbf{C}_{6} &=& \mathbf{d}_{2} & \oplus & \mathbf{d}_{3} \end{array}$$

- (i) Construct generator matrix
- (ii) Construct code generated by this matrix
- (iii) Determine error detection and correction capability
- (iv) Decode the received codeword $R(s) = 1 \ 0 \ 11 \ 00$.

Con. 6661-MP-6149-11.

(b) A convolution encoder has single shift register with two stages three Modulo-2 10 adders and an output multiplexer the following generator sequence are combined by the multiplexer to produce the encoder O/P :

2

3

 $g_1 = (1, 1, 1), g_2 = (1, 0, 1), g_3 = (1, 1, 0)$

- (i) Draw the block diagram of the encoder
- (ii) Obtain the O/P for the data :

 $D = \{1 \ 0 \ 1 \ 1 \ 0 \ LSB\}$

- (iii) Sketch the code tree and trace the path corresponding to the message sequence in (11)
- (iv) Draw the trellie diagram for the encoder.
- 5. (a) Show that for an input signal which is an sequence of rectangular positive and **10** negative pulses, the integrator is the matched filter.
 - (b) Explain 4-ary PSK alongwith the following line :---

10

20

10

- (i) Modulation and demodulation block diagram of offset QPSK.
- (ii) Plot the Power Spectral density with relevent frequencies and hence Bandwidth.
- (iii) Signal space representation hence Eucledian distance.
- 6. Differentiate between :---
 - (a) Fast frequency hopping and slow frequency hopping.
 - (b) Source Coding and Channel Coding.
 - (c) Offset QPSK and Non-Offset QPSK.
 - (d) BPSK, DPSK and DEPSK.
- (a) Draw the block diagram of DS-SSS transmitter and receiver obtain the expression 10 for the signal at the O/P of each block and show that the original sequence can be recovered at the receiver O/P.
 - (b) Write short notes on (any two) :---
 - (i) Inter Channel and Inter Symbol Interference
 - (ii) Tapped-Delay line equalizer
 - (iii) Lempel-Ziv Coding.

BE (ETRX) Sem-<u>VII</u>(OLD) FTA

ws Sept-2011-165 Con. 6318-11.

2/12/2011

(OLD COURSE)

(3 Hours)

MP-5824

[Total Marks : 100

 N.B.: 1) Question no 1 is compulsory. 2) Attempt any four questions from remaining six questions. 3) Figures to right indicate full marks 4) Assume suitable data, if any. 	
 Q1) Attempt the following ; a) Discuss the design procedure for elliptic filter design. b) Explain zero-input and over flow limit cycle oscillations due to quantizat in digital filter. c) Compare IIR filter and FIR filter. d) To design a digital band pass filter, which type of Linear Phase FIR filter be used? Why? 	
Q2) a) Design a low pass half-band filter to meet the following specifications: Pass band edge : 8 KHz Stop band edge : 16 KHz Ap = 1 dB, As = 50 dB. Use Kaiser window	(10)
b) Convert $H(s) = \frac{4}{(s+1)(s^2+4s+5)}$ to H(z), using impulse invariance, with $t_s = 0.5$ s.	(10)
 Q3) a) Derive an exact expression for the spectrum of the Blackman window. U this expression, for N ≫ 1, show that the main lobe width for the Black window is approximately 6W_s / N. b) Explain the method of matched Z-transform. 	sing man (15) (05)
Q4) a) Design a fourth-order Butterworth band pass filter with a 2 dB pass band 200 Hz and a center frequency of $f_0 = 1$ KHz.	of (10)
b) What major problem associated with designing of FIR filter using window method and frequency sampling method. How to overcome this problem?	• ? (10)
 Q5) a) Design a second order digital notch filter having a notch frequency at 60 and a 3 dB notch band width of 6 Hz. The sampling frequency employed is 400 Hz. b) Design a Chebyshev IIR digital high pass filter with the following specifications: Pass band edge : 700 Hz Stop band edge : 500 Hz 	Hz (10)
Pass band ripple : 1 dB Min. stop band attenuation : 32 dB Sampling frequency : 2 KHz Q6) a) Discuss the design procedure of Bessel filters. Obtain 5 th order normalize Bessel approximation. b) Show that the relation between analog frequency and digital frequency in	1
bilinear transformation is given by $\Omega = \frac{2}{T} \tan(\frac{w}{2})$, using relation between 'S' and 'Z' bilinear transformation.	n (10)

O7) State true or false and justify the answer :

- a) An ant symmetric second order linear phase FIR filter has one possible pole zero diagram whereas symmetric type filter has more than one possibility.
- b) The poles of the Butterworth filter lie on a circle whereas the poles of the
 - Chebyshev filter lie on an ellipse.
- c) The analog poles will not be aliased by the impulse invariant mapping if they are confined to the S- plane's primary strip.
- d) The physically realizable and stable IIR filter can have a linear phase. .

(20)