SE | IT | III. (Rev.) A.M. III. 24/11/12 Con. 7330-12. KR-3113 (3 Hours) [Total Marks : 100 N.B. (1) Question No. 1 is compulsory. (2) Attempt any four out of remaining six questions. (3) Make suitable assumptions if required and justify the same. (4) A figure to right indicates the full marks. 1. (a) Find $L(te^{3t} \sin t)$ 05 (b) Use the adjoint method to find the inverse of $\begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ 05 Find p if $f(z) = r^2 \cos 2\theta + ir^2 \sin p\theta$ is analytic. (c) 05 (d) Find the Fourier Series for $f(x) = x^2$ in (-1,1)05 (a) Show that $u = \cos x \cosh y$ is harmonic function. Find its harmonic 2. conjugate and corresponding analytic function. 08 (b) Show that the set of functions $\cos x$, $\cos 2x$, $\cos 3x$,..... from a orthonormal set in the interval $(-\pi,\pi)$. 06 (c) For matrix A verify that A(adj.A) = |A|I $A = \begin{bmatrix} 2 & 1 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix}$ 06 3. (a) Find the Laplace transform of each of the following:-(i) $\frac{e^{-t}\sin at}{t}$ (ii) $te^{3t}\cos t$ 06 (b) Find half range sine series for the function $f(x) = x, \qquad 0 \le x \le \frac{\pi}{2}$ $=\pi-x$, $\frac{\pi}{2}\leq x\leq \pi$ 06 Find non-singular matrices P & Q such that PAQ is normal form. (c) Hence find its rank where A is given by $A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$ 08

[TURN OVER

w-Con-2012 Con. 7330-KR-3113-12.

. 6.

7.

4. Solve the system of equations x - y + 2z = 9, 2x - 5y + 3z = 18, **(a)** 6x + 7y + 10z = 35. 06 Find the inverse Laplace transform of the following **(b)** (ii) $\frac{8e^{-3s}}{s^2+4}$ (i) - $(s+4)^{5/2}$ 06 Expand the function f(x) with period a into a Fourier Series. (c) $f(x) = x^2$ $0 \le x \le a$ Using Convolution theorem, Find the inverse Laplace transform of the **08** 5. **(a)** following $\frac{s^2 + 2s + 3}{(s^2 + 2s + 5)(s^2 + 2s + 2)}$ 06 (b) Find the analytic function and its imaginary part if real part is $\sin 2x$ $\cosh 2y - \cos 2x$ 06 Find the Fourier series for the function (c) f(x)=x, $0 \leq x \leq \pi$ $=2\pi-x$, $\pi \leq x \leq 2\pi$ **08** (a) Using Laplace transformation, solve the following equation. $(D^2 - 3D + 2)y = 4e^{2t}$, with y(0) = -3 & y'(0) = 506 (b) Find the Fourier series for the function $f(x) = \pi x$, 0 < x < 1= 0, 1 < x < 206 Determine I, m, n and find A^{-1} if $A = \begin{bmatrix} 0 & 2m & n \\ l & m & -n \\ l & -m & n \end{bmatrix}$ is orthogonal 08 (a) Evaluate the following integral by using Laplace transform $\int_{0}^{\infty} e^{-2t} \sin^2 2t dt$ 06 **(b)** If $f(a) = \int \frac{4z^2 + z + 5}{z - a} dz$ where C is |z| = 2, find the values of **08** f(1), f(i), f'(-1) & f'(-i). (c) Reduce the following matrix to normal form and find its rank. [1 _1 3 6]

$$A = \begin{bmatrix} 1 & -1 & -3 & 0 \\ 1 & 3 & -3 - 4 \\ 5 & 3 & 3 & 11 \end{bmatrix}$$
 06

2

S.E. SEM II (7.1.)

New - PLE 2012

EPLS

Con. 7345-12.

KR-3221

(3 Hours)

[Total Marks : 100

N.B.:		 Question No. 1 is compulsory. Attempt any four questions out of remaining six questions. Assume suitable data if necessary. Figure to the right indicate full marks. 			
1.	(a) (b) (c)		6 6 8		
2.	(a) (b) (c)	With the help of Block diagram explain operation of practical inverting amplifier. Draw the Ckt diagram and explain operation of wienbridge oscillator. Explain different external compensation tech.			
	(a) · (b)	Derive the frequency response of a practical differentiator and explain it's working. Draw the typical connection diagram of VCO using IC 566. State the expression for the output frequency how the output frequency can be changed.	10 10		
4.	(a) (b)	A 6 bit DAC has an input 100101 and 10V reference voltage find :	10 10		
5.	(a) (b)	Draw the Ckt diagram and explain the operation of monostable multivibrator. Derive the expression for stability factor 'S' for different BJT Biasing Ckt.	10 10		
6.	(a) (b)	What is a notch filter ? Explain it's operation with the help of neat Ckt diagram. Draw the Ckt diagram and explain the operation of triangular wave generator using OP-AMP.	10 10		
7.	(a) (b)	Write program for SPICE simulation of non-inverting amplifier. Explain various circuits used to provide constant current bias in a differential amplifier.	10 10		

S.E. Sam TIT (Rev). NID-12 am. Oct-12-84 SUB--DSA-

(3 Hours)

VT-S.H.Exam. Oct-12- 84

Con. 7367-12.

KR-3353

		(3 Hours) [Total Marks:100)
N	. B. :	 Ouestion No. 1 is compulsory. Attempt any four questions out of remaining six questions. 	
1	. (a) (b) (c) (d)	Explain Asympotic notations and write the properties of asympotic notations. What are linear and non-linear data structures ?	5 5 5 5
2	. (a) -(b)	techniques.	
3.	(a) (b)	Write an algorithm for merge sort and comment on its complexity	10 10 10
4.	(a) (b)	Write a program to implement queue using array. Explain Huffman Algorithm. Construct Huffman tree for "MAHARASHTRA" with its optimal code.	10 10
5.	(a)	Write an algorithm to traverse a graph using – (i) Breadth first search (ii) Depth first seafch.	10
	(b)	 Write an ADT for stack and implement it using array. The ADT should support following operations :- (i) Create (ii) Push (iii) POP (iv) Display 	10
6.	(a)	Write a program to implement Quick sort and show the steps to sort the following elements by Quick sort method : 19 27 5 9 86 45	10
-	(b)	 What is Doubly Linked List? Write an algorithm to implement following operations with DLL :- (i) Insertion (All Cases) (ii) Traverse (Forward and Backward) 	10
7.	(a (t) (0 (0	e short note on (any four) : a) Pattern Matching b) Expression Tree c) Red and Black Trees d) Shortest Path Algorithm e) Priority and Circular Queue	20

(f) Selection Sort.

Dec 2012

SE (IT) Sem III D-LDA ws-Sept, 2012 (a) 131 Con. 7381-12. **KR-3452** (3 Hours) [Total Marks : 100 N. B.: (1) Question No. 1 is compulsory. (2) Attempt any four questions out of the remaining questions. (3) Figures to the right indicate full marks. (4) Assume suitable data whenever necessary. 1. (a) Explain, NAND gate as a Universal Logic gate. 4 (b) Convert the following binary numbers to Decimal, Hexadecimal and octal form. 6 (i) $(101101 \cdot 1101)_2$ (ii) $(11011011 \cdot 100101)_2$ (c) Encode the binary word 1011 into seven bit even parity Hamming code. (d) State and explain De Morgan's theorms. 2. (a) Reduce the following function using : (i) Karnaugh map technique and implement using basis gates 6 $f(A,B,C,D) = \overline{A} \overline{B} D + AB\overline{C} \overline{D} + \overline{A}BD + ABC\overline{D}$ (ii) Minimize the expression using K Map technique. 4 $Y = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$ (b) Simplify the following Boolean function by using a Quine-McCluskey method. 10 $F(A,B,C,D) = \sum m(0, 2, 3, 6, 7, 8, 10, 12, 13)$ 3. (a) Implement the following Boolean function using 8 : 1 multiplexer 8 $f(A,B,C,D) = \overline{A} B \overline{D} + A C D + \overline{B} C D + \overline{A} \overline{C} D$ (b) Design 2-bit comparator using gates. 12 4. (a) Convert : 10 (i) SR flip flop to D flip flop (ii) T flip flop to D flip flop (b) Explain master slave JK flip flop in detail. How race around condition is avoided. 10 5. (a) Explain 4 bit bidirectional shift register. What are uses of register ? 10 (b) Design Binary to Grey code converter. 10 6. (a) Explain parity generator and checker. 10 (b) Design 3 bit synchronous counter using JK flip flop. 10 7. Write notes on any two :-20

- (a) CAD tools
- (b) VHDL features
- (c) PAL and PLA
- (d) Mealy and Moore machines.

SE-SEMITE LAW) I.-I. 15/1000-Dec-2012 Gevil & Patabase management

19: 2nd half-12-(m) JP

Con. 10649-12.

KR-3551

20

10

10

10

[TURN OVER

(3 Hours)

- N.B.: (1) Question No. 1 is compulsory.
 - (2) Solve any four questions out of remaining six questions.
- 1. (a) What is the purpose of a database system ?
 - (b) Give difference between :---
 - (i) Listbox and combobox
 - (ii) Radio button and check button.
 - (c) Explain views in SQL.
 - (d) What do you mean by object linking and embedding ?
- 2. (a) Explain the terms :----
 - (i) Entity
 - (ii) Cardinality
 - (iii) Weak relationship
 - (iv) Composite attribute
 - (v) Recursive relationship.
 - (b) Given the following business rules, create the appropriate ER diagram :
 - (i) A company operates many departments
 - (ii) Each department employs one or more employees.
 - (iii) Each of the employees might or might not have one or more depandents.
 - (iv) Each employee might or might not have an employment history.
- 3. (a) Discuss DDL and DML with examples.
 - (b) Use the small database shown in fig1. to illustrate the natural join, and equijoin 10 and an outer join.

Stud code Stud name Subject

Table name : Student

erau_couc	Stud_name	Subject	Proi_code
1	Ashish	OS	30
2	Rahul	DBMS	10
3	Sourabh	GAP	20
4	Nitesh	DWM	10
5	Rajendra	IP	50
6	Pratik	MEIT	30

[[] Total Marks : 100

Con. 10649-KR-3551-12.

Table name : Professor

Prof_code	Prof_name	Phone
10	Savita	96191
20	Smita	98690
30	Bhavna	99543
40	Uttara	78692
70	Keerti	82240

Fig. 1 small database

- 4. (a) What do you mean by lock granularity ? Explain two-phase locking protocol with 10 an example.
 - (b) Explain with an example how a deadlock condition is created ? List the basic 10 techniques to control deadlocks.

5.	(a) Explain the statement :	10
	"A transaction is a logical unit of work."	10
	(b) Write a note on transaction support provided by SQL.	10
6.	(a) Discuss database recover management.	10
	(b) Explain how to convert an ER-scheme to relational tables with an example.	10 10
7.	Write short notes on (any four) :	
	(a) $COM - DCOM$	20
	(b) Client / server programming	-
	(c) Activex controls on the web	
	(d) GUI features	
	(e) Database Administrator	

2