Semthe COLD) ETRX EM-III 20/11/2013

QP Code : 1063

(3Hours) Total Marks: 100
N.B. (1) Question No.1 is computery.
(2) Attempt any four questions out of the remaining six questions.
(3) Figures to right indicate full marks.
Q.1
(a) Find k such that
$$\frac{1}{2} \log(x^2 + y^2) + i \tan^{-1} \frac{ix}{y}$$
 is analytic
(b) Find the Fourier series expansion for $f(x) = x$, in $(-\pi, \pi)$ 5
(c) Find the Fourier series expansion for $f(x) = x$, in $(-\pi, \pi)$ 5
(c) Find the inverse Laplace transform of $\frac{s+29}{(s+4)(s^2+9)}$
(d) if $\{f(k)\} = \frac{1}{2}0, 2^1, 2^2, \dots$ if find $Z\{f(k)\}$.
Q.2
(a) Evaluate $\int_{0}^{\infty} \frac{\cos at - \cos bt}{t}$
(b) Express the following matrices as the sum of symmetric and skew-symmetric 6
 $\int_{0}^{1} \frac{1}{-1}, \frac{5}{-2}, \frac{7}{-1}, \frac{7}{-2}, -4\frac{1}{8}, \frac{1}{2}, \frac{1}{$

Q.4

Obtain complex form of Fourier series for the functions $f(x) = e^x$ in (a) 6 $(0,2\pi)$ Determine the values of a and b for which the system 6

x+2y+3z=6, x+3y+5z=9, 2x+5y+az=b have (b) i) no solution. ii) a unique solution, iii) an infinite number of solutions?

2

Find inverse Laplace Transform of following (C)

$$\log\left(\frac{s-2}{s-3}\right)$$
 ii) $\frac{1}{(s-1)(s^2+4)}$

QP Code : 1063

8 i) lo Q.5 Find the constant 'a' so that the function $u = x^2 + a y^2$ is harmonic. (a) 6 Show that the vectors X_1, X_2, X_3 are linearly independent and vector (b) X₄ depends upon them, where $X_1 = [1, 2, 4], X_2 = [2, -1, 3], X_3 = [0, 1, 2], X_4 = [-3, 7, 2]$ Find Fourier Integral representation for $f(x) = \begin{cases} e^{ax} & x \le 0, \ a > 0 \\ e^{-ax} & x \ge 0, \ a > 0 \end{cases}$ 8 (c) Hence show that $\int_{0}^{\infty} \frac{\cos \omega x}{\omega^2 + a^2} d\omega = \frac{\pi}{2a} e^{-ax}, \quad x > 0, a > 0$ Q.6 Obtain half-range sine series for f(x) = 2x in 0 < x < 2(a) 6 Find the bilinear transformation, which maps z = 0, -i, -1 on to the (b) 6 points w = i, 1, 0. (c) Use Stoke's theorem to evaluate $\int \overline{F} d\overline{r}$ where $\overline{F} = y i + z j + xk$ and 'C' is 8 the boundary of the surface $x^2 + y^2 = 1 - z, z > 0$ Q.7 Find inverse Z-transform of $F(z) = \frac{z}{(z-1)(z-4)}, 1 < |z| < 4$ 6 (a) (b) Construct the analytic function whose real part is $e^{2x}(x\cos 2y - y\sin 2y)$ 6 Using laplace transform solve the following differential equation with the given (c) 8 condition. $(D^2 - 2D + 1)x = e^t$, with x = 2, Dx = -1, at t = 0

QP-Con. 7817-15.

-2-

27/11/1-

BEC

S.E. Sim III old ERI ETRX

QP Code; 1106

(3 Hours)

[Total Marks: 100

- N.B. (1) Question No.1 is compulsory
 - (2) Attempt any four out of remaining 6 questions
 - (3) Assume suitable data wherever required and justify the same
- 1. Attempt any four:-
 - (a) Explain the bias compensation techniques for BJT
 - (b) Prove that for a JFET the gate-source bias for zero temperature drift of drain current is at Vp-0.63 volts.
 - (c) Compare all 3 types of BJT amplifiers
 - (d) Write and explain the PIV of half wave rectifier, full wave rectifier and bridge wave rectifier circuits.
 - (e) Draw and explain hybrid model of BJT.

2.	(a)	Design a single stage BJT CE amplifier for the following requirements	10
	a >	Av 100, ZIJSK, VCC 10V	10
	(b)	Determine Av, Zi and Zo for the above designed on out.	
		The interview of a full would rectifier with an filter Derive expressions	10
3.	(a)	Draw the circuit diagram of a full wave feetiner which then. Derive expressions	
		for ripple factor. Explain the basic recurying operation?	10
	(b)	Design for full wave rectifier with LC filter which gives a de output voltage of 20 v	10
		at a load current of 200mA. The allowable ripple factor is 0.05	
			10
4.	(a)	Draw the common emitter r- π equivalent circuit of the BJT with R _e un-bypassed	10
		and derive the expression for-	
		(i) input resistance (ii) coutput resistance (iii) voltage gain	
	(b)	Draw the neat diagram of a JFET amplifier with source resistance by passed derive	10
		the expression for the voltage gain.	
5.	(a)	Explain the construction, working principle and characteristics of DMOSFET.	10
	(b)	Explain different biasing techniques for E-MOSFET	5
	(c)	Compare MOSFET and JFET.	5
	~ /		
6.	De	sign a single stage AC coupled CS amplifier using BFWl to meet the following	20
	SD	ecifications	
	•	$A_{v} = 9$ and output voltage=2.5 Vrms. With biasing circuit to give	
		(4) Zero temperature drift	
		(ii) To operate PET at Idc=Idss/2	
7	Wr	se short notes on any two:	20
	\mathbb{N}	(i) Zener as a regulator	
Q. 9	S.	(ii) Voltage multiplier	
		(iii) A valanche and Zener breakdown.	
-			

QP-Con. 8380-15.

S.E. EURX (III) (01d) (R-2007). Contrad System 16/12/15

QP Code : 1225

(OLD COURSE) (3 Hours)

ECHNOLOGY AND [Total Marks : 100

N. B.: (1) Question No. 1 is compulsory.

(2) From remaining questions solve any four.

- (3) Use suitable data, whenever required.
- 1. (a) Explain any 4 rules of Root locus plots.
- (c) List the types of damping of a second order control system with location of poles.
 (d) Differentiate between Bode plots and pole
- 2. (a) Find the transfer function of the circuit shown

- (a) Find nativral frequency, damped frequency, damping ratio and comment 3. 10 on the type of damping given error response for a unit step input. $e(0) = 5e^{-2t} \sin[50t - 50]$
 - (b) What is principle of argument? Explain in detail and how it is used to 10 obtain Nyquist plot.

[TURN OVER

10

5 ARD AR PATHINGT QP-Con. 11481-15. 4.

$$G(s)H(s) = \frac{50(s+3)}{s(s^2+5s+50)}$$

- 5.

2

 $f(x) = \frac{k(x+3)}{s(x+5)(x+6)(x^2+2x+2)}$ Also find K marginal and K critical for damping $\xi = \bigcup_{x \in I} \mathbb{R}^{2}$ $f(x) = \frac{k(x+3)}{s(x-1)}$ $f(x) = \frac{k(x+3)}{s(x-1)}$

6.

$$G(s) = \frac{k(s+3)}{s(s+5)(s+6)(s^2+2s+2)}$$

$$G(s)H(s) = \frac{10(s+2)}{s(s-1)}$$

If 10 is replaced by K. Find K marginal and Range of K from the Nyquist plot.

(a) Plot polar plot of 7.

 $\frac{10(s+3)}{s^2(s+5)(s+8)}$ G(s))))(s)

Obtain overall transfer function of the block diagram **(b)**

10

10

QP-Con. 11481-15.