Sem III C.B.G.S.) MI - TIL '

05

(Revised course)

ERTR

271115

FXTO

Time :3 hours

N

Total marks :80

- N.B: (1) Question No.1 is compulsory.
 - (2) Answer any three questions from remaining.
 - (3) Assume suitable data if necessary.
- Evaluate 1. (a) $\int_{0}^{\infty} e^{-t} \left(\frac{\cos 3t - \cos 2t}{t} \right) dt$ 05
 - (b) Obtain the Fourier Series expression for f(x) = 2x 1 in (0,3)
 - (c) Find the value of 'p' such that the function $f(z) = \frac{1}{2}\log(x^2 + y^2) + i\tan^{-1}\left(\frac{py}{x}\right) \text{ is analytic.} \qquad 05$
 - (d) If $\overline{F} = (y \sin z \sin x)\hat{i} + (x \sin z + 2yz)\hat{j} + (xy \cos z + y^2)\hat{k}$. Show that \overline{F} is irrotational .Also find its scalar potential. 05
- 2. (a) Solve the differential equation using Laplace Transform 06

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + y = 3te^{-t} , \text{ given y}(0) = 4 \text{ and y'}(0) = 2$$

- (b) Prove that $J_{4}(x) = \left(\frac{48}{x^{3}} - \frac{8}{x}\right) J_{1}(x) - \left(\frac{24}{x^{2}} - 1\right) J_{0}(x)$ (6)

[TURN OVER

MD-Con. 8331 -15.

AND AND AND

06

08

06

06

08

06

06

 $f(x) = 1 + \frac{2x}{\pi}, -\pi \le x \le 0$

3. (a) Obtain the Fourier Series expansion for the function

 $= 1 - \frac{2x}{\pi}, 0 \le x \le \pi$ (b) Find an analytic function f(z) = u + iv where. $u-v = \frac{x-y}{x^2+4xy+y^2}$ (c) Find Laplace transform of i) $\cosh t \int e^u \sinh u$ ii) $t\sqrt{1+\sin t}$ 4. (a) Obtain the complex form of Fourier series for $f(x) = e^{\alpha x}$ in (-L,L) (b) Prove that $\int x^4 J_1(x) dx = x^4 J_1(x) - 2x^3 J_3(x) + c$ (c) Find i) $L^{-1}\left[\frac{2s-1}{s^2+4s+29}\right]$ ii) $L^{-1}\left[\cot^{-1}\left(\frac{s+3}{2}\right)\right]$ 5. (a) Find the Bi-linear Transformation which maps the points 1,i,-1 e£2 plane onto 0,1,∞ of w-plane (b) Using Convolution theorem find $\frac{s^2}{\left(s^2+4\right)^2}$ SA PARA **[TURN OVER** MD-Con. 8331 -15.

- (c) Verify Green's Theorem for $\int_{C} \overline{F.dr}$ where $\overline{F} = (x^2 - y^2)\hat{i} + (x + y)\hat{j}$ and C is the triangle with vertices (0,0) ,(1,1) and (2,1)
- 6. (a) Obtain half range sine series for $f(x) = x, 0 \le x \le 2$

=4-x, 2 \leq x \leq 4

- (b) Prove that the transformation $w = \frac{1}{z+i}$ transforms the real axis of the z-plane into a circle in the w-plane.
- (c) i) Use Stoke's Theorem to evaluate $\int_{C} \overline{F} \cdot dr$ where $\overline{F} = (x^2 - y^2)\hat{i} + 2xy\hat{j}$ and C is the rectangle in the plane z=0, bounded by x=0, y=0, x=a and y=b.
 - ii) Use Gauss Divergence Theorem to evaluate $\iint_{S} \overline{F.\hat{n}ds} \text{ where } \overline{F} = 4x\hat{i} + 3y\hat{j} - 2z\hat{k} \text{ and } S \text{ is the surface}$ bounded by x=0,y=0, z=0 and 2x+2y+z=4

3

MD-Con. 8331 -15.

are we have

CC' ANDINE

06

06

S.E. EXTC (III) (CBUS)

CTI-

16/12/15'

QP Code : 5262

(3 Hours)

[Total Marks : 80

N. B.: (1) Attempt question 1 and any three from remaining question.

- (2) All sub questions of the same question should be answered at one

1. or PARTIN S

- (b) Test whether $P(s) = S^5 + 12S^4 + 45S^3 + 60S_0^2 + 44S + 48$ is Hurwitz 5 polynomial.
- (c) The combined inductance of two coils connected in series is 0.6 H or 5 0.1 H depending on relative directions of currents in the two coils. If one of the coils has a self inductance of 0.2 H. Find (a) Mutual inductance (b) Coefficient of coupling.
- (d) Find Foster I and II and Cauer Fand II Circuits for the driving point idmittance

(a) Find the current in the 10 Ω resistor using Thevenin's theorem for the 2. 10 network shown in fig. 2(a)

[TURN OVER

(b) Find the value of Vx in the network shown in fig 2(b) using nodal JTH OF THE CHANG analysis. 3Vr

2

- (c) Check if the following polynomials are Hurwitz polynomials (i) $s_{1}^{5} + s_{2}^{3} + s_{3}^{5}$ (i) $S^5 + S^3 + S$ SAL (ii) $S^4 + S^3 + 2S^2 + 3S + 2$
- (a) Synthesize the driving point function 3.

$$F(s) = \frac{(S^2 + 1) (S^2 + 3)}{S(S^2 + 2)}$$
 when F(s) is a driving point (i) Impedence (ii)

40

Admittance

Test if the circuit obtained are canonic.

- (b) State and prove initial value theorem.
- (c) The parameters of a transmissionlines are $R = 6\Omega/km$, L = 2.2 mH/km G = 0.25×10^{-6} U/km, C = 0.005×10^{-6} F/km. Determine the characteristics impedence and propagation constant at a frequency of 1 GHz.

4.

[TURN OVER

MD-Con. 11525-15.

10

5

5

10

181

5

10≪ ്

(c) Find the function v(t) using the pole-zero plot of the following function.

$$V(s) = \frac{(S+2) (S+6)}{(S+1) (S+5)}$$

6. (a) A unit impulse applied to two terminal black box produces a voltage $V_0(t) = 2e^{-t} - e^{-3t}$. Determine the terminal voltage when a current pulse of 1A height and a duration of 2 seconds is applied at the terminal.

(b) Determine the driving point impedence of the network shown in 5 fig. 6(b)

24

2 F

5

24

(6)

6

Z(S)

(c) Draw the following normalized quantities on the smith chart. (i) $(2 + (j2))\Omega$ (ii) $(4 - j2)\Omega$ (iii) $(10)\Omega$ (iv) (j1.0) Ω

MD-Con. 11525-15.

S.E. EXTE Sem III (CBQJ).

3/12/15

Digital Electronics

QP Code : 5174

		(3 Hours) To	tal Marks: 80
			0°
NR	ന	Question No. Lin Comment	CHE
11111	(1)	Out of remaining and the	
	(2)	Assume mitchle d to is	Š.
	(3)	Figures to the might in Ward of U	
	(4)	rightes to the right indicate full marks	2
1.	(a)	Compare SRAM and DRAM	151
	(b)	Compare Mealy and Moore machine	()
	(c)	Compare TTL and CMOS Logic	[5]
	(d)	Design a full adder using 3:8 decoder	[5] (6)
			(5)
2.	(a)	State and Prove DeMorgan's Laws	1101
	(b)	Explain carry look ahead adder. What is its advantage over a simple add	ler [10]
3	(9)	Design a 4 bit Gran to Diana t	[~~]
•••	() (h)	Implement the given function with a 1 State	[10]
	()	F(A, B, C, D) = $\sum_{n=1}^{\infty} (0.1.4.6 \le 0.10.10)$ K	[10]
	10.2	2(1, D, C, D) = 2m(0, 1, 4, 5, 6, 8, 10, 12, 13)	
4.	(a)	Explain the working of Bidiroctional Stie	
	(b)	Write a VHDL program to design a 1.8 Demonstration D	agram [10]
	``	program to design a 1:8 Demux using Data flow modelin	ig [10]
5.	(a)	Minimize the following expression using Quine Mc Quel The	1
	``	$F(A.B.C.D) = \sum m(15257915) + 4 (0.3.11)$	[10]
	(Ե)	Convert D FF to FFF and SR FF to IK FF	
			[10]
6.	(a)	Design synchronous counter to count the sequence 0-1-2-2-4-5-0	14.0-
	(b)	Compare PAL with PLA with suitable examples of logic expressions	[10]
			[10]
	,	선생님 그는 것은 것이 같은 것이 같이 많이 많이 많이 많이 많이 많이 했다.	
	0	+	
Ś	S.		
AN CON			
5 M			

MD-Con. 9620-15.

S.E. ENTC (III) (CBGS)

EIM

Time: 3 Hours

MM: 80 Marks

9/12/15

Note: 1. Attempt four questions, question no 1 is compulsory.

- 2. Assume suitable data where ever required.
- 3. Answers to the questions should be grouped together.
- 4. Figure to the right of question indicates full marks.

Q1) Attempt any four:

- a) Significance of four and half digit display
- b) Discuss Megger for measurement of very high resistance.
- (20) of the child of the state c) Explain working of strain gauge and its application in load measurement
- d) Explain working of thermocouple and mention its range
- e) Explain error in measurement and methods of error minimization
- f) A galvanometer, with a 1 mA full scale deflection and an internal resistance of 500 Ω , is to be used as voltmeter, find series resistance for \mathfrak{W} and 10 v ranges.

Q2 a) Draw and explain working of capacitive transducer for level measurement. (10) b) Draw neat block diagram of CRO and explain its functioning, comment on role of delay line in CRO. (10)84

Q3 a) Discuss DSO with the help of block diagram along with various mode	s of
operation also explain its applications.	(10)
b) Explain LVDT and define its application in displacement measurement.	(10)

Q4 a) Explain Hetrodyne type waves analyser and its applications. (10)b) Draw and explain Weighted resistor network type DAC for 3 bits input taking suitable example. (10)

Q5 a) Draw and explain Schering bridge and drive expression for measurement of capacitance. (10)

b) Define power and energy and explain working of a single phase energy meter. (10) Q6 a) Draw and explain Wheatstone bridge and drive expression for measurement

of resistance. (10)

b) Explain Flash type 3 bit ADC with the help of block diagram and comment on its (10)

SARDARRAILIM MD-Con. 10472-15.

20/11/15

S.E. Sem III (CBQS) (EXTC) AE-I

Q.P. Code: 5079

(3 Hours)

[Total Marks : 80

N.B.: (1) Question No. 1 is compulsory.

- (2) Attempt any three questions out of the remaining five questions.
- (3) Assume suitable data wherever required
- 1. Attempt any four.
 - (a) Draw Input and Output characteristics of BJT in common emitter configuration.
 - (b) Draw small signal hybrid π equivalent circuit for npn transistor.
 - (c) Explain effect of temperature on JFET and derive equation for zero current drift.
 - (d) Calculate I_B , $I_C & V_{CE}$ for common emitter circuit.

(e) Find I_B , $I_C \& V_{CE}$ for following circuit.

[TURN OVER

MD-Con. 7529-15.

10

2. (a) Draw output waveform for clamper and clipper circuits.

2V

(i)

00

3. (a) For JFET amplifier shown below, Calculate Av, Zi, Zo

(b) For the circuit shown below, calculate $I_{DQ} \& V_{DSQ}$. It is given that 10 $I_{D(ON)} = 6 \text{ mA}, V_{GS(ON)} = 8V$. Vth = 3V

[TURN OVER

MD-Con. 7529-15.

- Explain the working of Wein Bridge Oscillator. Derive the expression for 4. (a) 10 frequency of oscillation for sustained oscillations. 10
 - (b) Calculate voltage gain of FET amplifier.

 $Y_{os} = 40 \mu s$ $l_{DSS} = 8 \text{ mA}$ $V_{OS} \text{ off} = -4 \text{ V}$

Draw & explain energy band diagram of MOS capacitor operating in 5 (a) 10 (i) Accumulation (ii) Depletion (iii) Inversion mode (b) Draw emitter follower circuit and derive an expression for voltage gain Av. 10 6. (a) Draw circuit diagram for phase shift oscillator & derive an expression for 10 frequency of oscillation. (b) Write short notes on any two. 10 (i) Photodiodes (ii) LC oscillators (iii) Transistor as a switch

(iv) Schottky diode.

MD-Con. 7529-15.