$$S_{n} \in S \in M \text{ III} \quad GRGS$$

$$ETRX, EXTC \qquad GP \text{ Code : 5350}$$

$$A M - TV$$

[TURN OVER

MD-Con. 8620-15.

Care and

QP Code : 5350

(8)

b) If $W = \{ \alpha : \alpha \in \mathbb{R}^n \text{ and } a_1 \ge 0 \}$ a subset of $V = \mathbb{R}^n$ with $\alpha = (a_1, a_2, \dots, a_n)$ in \mathbb{R}^n $(n \ge 3)$. Show that W is not a subspace of V by giving suitable counter example. (6)

c) Show that the matrix
$$A = \begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$$
 is similar to diagonal matrix. Find the diagonalsing

matrix and diagonal form.

╅╄┼╋╊╈┧╅╇┆╋╈╋╋╋┙┙╎┨┢╊┥╋╋╋╋╋╋┥┙╸╋╋┿┿╋╀╋

Q6: a) State and prove Cauchy's Integral Formula for the simply connected region and hence evaluate $\int \frac{z+6}{z^2-4} dz, \quad |z-2| = 5$ (6)

b) Show that
$$\int_0^{2\pi} \frac{\sin^2\theta}{a+b\cos\theta} d\theta = \frac{2\pi}{b^2} \left(a - \sqrt{a^2 - b^2}\right), \ 0 < b < a.$$
(6)

c) Find the Singular value decomposition of the following matrix $A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$ (8)

SARDAR PATEMD-Con. 8620-15.

00

2

SE rem IV (BFS Control system

EXTE 22/12 115

QP Code : 5535

(3 Hours)

JH OF TECHNOLOGY, AT [Total Marks :80

5

5

5

- (1) Question No.1 is compulsory **N.B.**:
 - (2) Attempt any three questions out of the remaining questions.
 - (3) Assume data whenever necessary.
 - (4) Figures to the right indicate full marks.
- Define rise time. 1. (a)
 - Define gain margin and phase margin, (b)
 - What are the difficulities encountered in applying Routh stability criterion? (c)
 - Find out response of give system for a unit step I/P (d)

Obtain the transfer function of the mechanical systems shown in Fig. 11a (i). 10 2. (a)

Draw a signal flow graph for the system shown in fig 11a (ii) and hence 10 (b) obtain the transfer function using Mason's gain formula.

TURN OVER

MD-Con.-12234 -15

10

10

- 3. (a) Derive the expression for step response of second-order under damped system.
 - (b) Find the impulse response of the second order system whose transfer function

$$G(s) = \frac{9}{(s^2 + 4s + 9)}$$

4. (a) A unity feedback system is characterized by an open loop transfer function

 $G(s) = \frac{K}{s(s+10)}$ Determine the gain K so that the system will have a

damping ratio of 0.5. For this value of K determine settling time peak over shoot and time to peak over shoot for a unit step input.

b) An unity feedback system is given as $G(s) = \frac{1}{s(s \Rightarrow 1)}$. The input to the 10

system is described by $r(t) = 4 + 6t + 2t^2$. Find the generalized error coefficients and the steady state error.

 $G(s) = \frac{10}{s(1+0.5s)(1+0.1s)}$ and hence determine the gain margin and the

phase margin of the system

(b) Sketch the root locus for unity feedback system with open loop transfer

function
$$G(s) = \underbrace{\searrow \mathbb{K}}_{s(s^2 + 8s + 32)}$$

6. (a) Using Routh Hurwitz criterion for the unity feedback system with open 10

loop transfer function
$$G(s) = \frac{R}{s(s+1)(s+2)(s+5)}$$
 find

Q(i) the range of k for stability

- (ii) the value of k for marginally stable
- (iii) the actual location of the closed loop poles when the system is marginally stable.
- Explain controllably and observably.

10

10

MD-Con.-12234 -15

2

QP Code : 5497

(5)

(5)

(10)

(10)

AND OC'

b) Using the z transform, solve the difference equation and find out impulse response. (10)

$$y[n] - 2y[n-1] + y[n-2] = x[n] + 3x[n-3]$$

4.

5,

6

a) State and explain different properties of ROC of Z transform.

c) A continuos time signal is shown below. Sketch the following transformed versions of the signal.

i)
$$x(t-3)$$
 ii) $-2x(t)$ iii) $x(t-3)-2x(t)$ iv) $\frac{dx(t)}{dt}$

a) Convolve $x[n] = \left(\frac{1}{3}\right)^n u[n]$ with $h[n] = \left(\frac{1}{2}\right)^n u[n]$ using convolution integral. (10) b) A second order LTI system is described by $\frac{d^2 y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 6y(t) = x(t)$. Determine the transfer function and the value of function and the poles and zeros of the systems. Evaluate zero-state response to x(t)=u(t) (10)

a) For the periodic signal x[n] given below find out Fourier series coefficient.

$$x[\pi 1] = 1 + \sin\left(\frac{2\pi}{N}\right)n + 3\cos\left(\frac{2\pi}{N}\right)n + \cos\left(\frac{4\pi}{N}n + \frac{\pi}{2}\right)$$

b) The input and impulse responses of continuous time system are given below. Find out output of the continuous time systems using appropriate method. (10)

$$x(t) = u(t)$$
 $h(t) = e^{-2t}u(t)$

MD-Con. 11587-15.

2

10/12/15

S.E. EXTC (D) (CBGI) wave theory and propagation

Q.P. Code : 5455

(3 Hours)

Total Marks :80

20

5

5

5

- N.B.: (1) Question No.1 is compulsory.
 - (2) Answer any three questions from the remaining five questions.
 - (3) Assume any suitable data wherever required.
 - (4) Figures to the right indicate full marks.
- Answer any four of the following. 1.
 - (a) With regard to ionosphere discuss the following
 - i) E layer
 - ii) Sporadic E layer
 - (b) Give significance of boundary conditions for electric field.
 - (c) Write integral form of Ampere's law and interpret the same.
 - (d) What do you mean by depth of penetration?
 - (e) Derive the boundary conditions for electric and magnetic field.

		The sector of potion on horizontally and vertically polarized wave.	
2.	(a)	Explain earth reflection on nonzontany and integral form	10
	(b)	Derive Maxwell's equation in point and integral form.	

- (a) Compare scalar and vector potential. 3.
 - (b) Derive wave equation for good dielectric medium.
 - (c) A media has the following properties $\mu r = 8$, $\epsilon r = 2$, $\sigma = 10^{-4}$ mho/m at 10 2GHz. Determine-
 - (i) Attenuation Constant
 - (ii) Attenuation Constant in dB
 - (iii) Phase Constant
 - (iv) Propagation Constant
 - (v) Wavelength
 - (vi) Phase Velocity
 - (vii) Intrinsic Impedance
 - (viii)Refractive Index
 - (ix) Loss Tangent
 - $(x)_{x}$ is the medium behaving like conductor or dielectric
 - (a) Derive an expression for magnetic field intensity due to finite long straight 10 4. element. (b) State the Poynting Theorem and explain meaning of each term. 5
 - (c) Derive wave equation in free space.

TURN OVER

MD-Con. 10798-15.

Q.P. Code : 5455

- 2
- (a) Obtain the reflection and transmission coefficient of a parallel polarized wave 105. incident between a dielectric-dielectric boundary with an oblique incidence. 10
 - (b) Explain Super refraction and Tropospheric fading.
- (a) What is virtual height of a layer? Why is it called so? Is it more than or less 356. than the actual height of the layer?
 - (b) What is ionosphere? Which layers are peresent during day and night? Define 5 critical frequency.
 - (c) Prove that static electric field is irrotational and static magnetic field is solenoidal.

10

			QP	Code : 5413
			(3 Hours) Tota	l Marks: 80
	Note:	Q. 1 is	compulsory and answer any 3 out of remaining question	DS.
	Q1.	A)	Explain the function of following pins of microprocessor	8085. (5 Marks)
			a) SOD/SID b) ALE c) HOLD	
		B)	What are features of 80386 microprocessor?	(5 Marks)
		C)	Explain interrupt pin of 8085 microprocessor.	(5 Marks)
		D)	Differentiate between memory mapped I/O and I/O mapp	ped I/O (5 Marks)
	Q 2	a)	Explain different addressing modes of 8086 microprocess	ors. (10 Marks)
		b)	What is 8087 math coprocessor? Explain method of its immicroprocessor.	terfacing with 8086 (10 Marks)
	Q 3)	a)	Describe the importance of DMA controller. Explain mether DMA controller with 8086 microprocessor	hod of interfacing 8057 (10 Marks)
		b)	What is data acquisition system? Explain 8086 based 48	acquisition system.
	Q4.		Design 8086 microprocessor based system using minimum specifications.	n mode with the following
		I) ID	8086 microprocessor working at 10 MHz	
		ĬII)	32kb SRAM using 16k devices	
			Clearly show memory map with address range. Draw a ne	at schematic (20 Marks)
	Q5.a)		Write a program for 8085 microprocessor for arranging gi order and store the results in memory location from 08000	iven numbers in ascending OH onwards (10 Marks)
		b)	Explain interrupt surveture of 8086.	(10 Marks)
	Q 6	a)	Explain the architecture of Pentium microprocessor.	(10 Marks)
		b)	Explain the function of analog to digital converter 0809 as	nd describe its interfacing
			meunia with 8080 microprocessor.	(IU Marks)
- i -		Å		
		A.		
	S	2		
- 4	N. T.			
QF	_ M	D-Co	n. 9928-15.	1

S.E Som IV (CBGS) EXTC. AE-II

Q.P. Code: 5328

(3 Hours)

[Total Marks :80

20

23/11/15

N.B.: (1) Question No.1 is compulsory

- (2) Solve any three from remaining five questions.
- (3) Figure to the right indicates full marks.
- (4) Assume suitable data if necessary.
- 1 Solve Any four:-
 - (a) In case of CE amplifier, Why does the bandwidth of amplifier decrease with increase in gain? Support the answer with relevent mathematical equation.
 - (b) Instead of single Power Supply, why we use Dual power supply biasing for differential amplifier?
 - (c) Why Efficiency of class A power Amplifier is less than class B.
 - (d) What is the drawback of current mirror circuit using MOSFET? How it is overcome?
 - (e) Why we prefer series voltage Regulator over shunt voltage Regulator?
- The Parameters of transistor are $V_{BE} = 0.7V$ and $\beta = 100$, $V_A = 0V$, Determine 10 2. (a) (a) Q point of BJT

 - (b) Time constant associated with C_{c1} and C_{c2}
 - (c) Lower cut-off freq. due to C_{c1} and C_{c2}

[TURN OVER

MD-Con. 8178-15.

5

1.0

For the PMOS CS amplifier, transistor parameters are $V_{TP} = -2V$, Kp = 1(b) 10 JTHO FTHE CHINOLOCT mA/V^2 , $\lambda = 0$, Cgs = 15pf, Cgd = 3pf Determine (a) Equivalent Miller capacitance (b) upper 3dB frequency

- 3. (a) For the given circuit, Determine
 - (i) Differential mode gain Ad
 - (ii) Common mode gain Ac
 - (iii) CMRR

e given circuit, Determine
Differential mode gain Ad
Common mode gain Ac
CMRR
For BJT
$$\beta = 100$$
 V_{BE} = 0.7V_DV_A = 100V.

[TURN OVER

Q.P. Code: 5328

- Draw and explain the working of class A power amplifier (Transformer (b) coupled). Derive the expression for efficiency.
- Draw and explain current mirror circuit using MOSFET, for the given 4 (a) circuit determine the value of I_{ref} and I_0 .

- Draw the circuit diagram of dailington pair using BJT, and derive the 10 (b) expression for Av, Ai, Zi and Zo.
- For the given circuit, derive the equation for voltage gain A_f and find V_o 10 5. (a) for given cor

*

TURN OVER

- 4
- 20 months and a second and a se