(3 Hours)

| Total Marks: 80

5

8

N.B.: (1) Question No. one is compulsory.

- (2) Answer any three questions from Q.2 to Q.6
- (3) Use of stastical Tables permitted.
- (4) Figures to the right indicate full marks
- (5) Assume suitable data wherever applicable.
- (a) Find the Eigenvalues and eigenvectors of the matrix.

5 $A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$

- (b) Evaluate the line integral $\int_0^{1+i} (x^2 + iy) dz$ along the path y = x5
- Find k and then E(x) for the p.d.f.

 $f(x) = \begin{cases} k(x-x^2), 0 \le x \le 1, k > 0 \\ 0, \text{ otherwise} \end{cases}$

5 (d) Calculate Karl pearson's coefficient of correlation from the following data.

X	100	200	300	400	500
У	30	40	50	60	70

- 2. (a) Show that the matrix $A = \begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$ is non-derogatory. 6
 - 6 (b) Evaluate $\int \frac{e^{2z}}{(z+1)^4} dz$ where C is the circle |z-1|=3
 - If x is a normal variate with mean 10 and standard deviation 4 find
 - P(|x-14|<1) (ii) $P(5 \le x \le 18)$ (ii) $P(x \le 12)$

Find the relative maximum or minimum (if any) of the function $Z = x_1^2 + x_2^2 + x_3^2 - 4x_1 - 8x_2 - 12x_3 + 100$

(b) If x is Binomial distributed with E (x) = 2 and V (x) = 4/3, find the probability distribution of x.

(c) If $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, find A^{50} .

8

(a) Solve the following L.P.P. by simplex method

6

- $z = 3x_1 + 2x_2$ $3x_1 + 2x_2 \le 18$ Minimize Subject to $0 \le x_1 \le 4$
 - $0 \le x_2 \le 6$
 - $x_1, x_2 > 0.$

(b) The average of marks scored by 32 boys is 72 with standard deviation 8 while that of 36 girls is 70 with standard deviation 6. Test at 1% level of significance whether the boys perform better than the girls.

Find Laurent's series which represents the function $f(z) = \frac{2}{(z-1)(z-2)}$

When (i)

|z| < 1, (ii) 1 < |z| < 2 (iii) |z| > 2

5. (a) Evaluate $\int_{C} \frac{z^2}{(z-1)^2(z+1)} dz$ where C is |z|=2 using residue theorem

6

(b) The regression lines of a sample are x+6y=6 and 3x+2y=10 Find

6

Sample means \bar{x} and \bar{y} (i)

- Correlation coefficient between x and y. Also estimate y When x = 12
- A die was thrown 132 times and the following frequencies were observed

No.obtained	1	2	3	4	5	6	Total
Frequency	15	20	25	15	29	28	132

Using χ^2 -test examine the hypothesis that the die is unbiased.

QP Code: 541304

3

- 6. (a) Evaluate $\int_{-\infty}^{\infty} \frac{x^2 + x + 2}{x^4 + 10x^2 + 9} dx using contour integration.$
 - (b) If a random variable x follows Poisson distribution such that P(x=1) = 2 P(x=2) Find the mean and the variance of the distribution. Also find P(x=3).
 - (c) Use Penalty method to solve the following L.P.P. Minimize $z = 2x_1 + 3x_2$ Subject to $x_1 + x_2 \ge 5$ $x_1 + 2x_2 \ge 6$ $x_1, x_2 \ge 0$.

8

21/12/2010

QP Code:541703

[Total Marks: 80

N.B.: (1) Question No. 1 is compulsory

- (2) Attempt any three questions from remaining questions
- (3) Draw suitable diagrams wherever necessary
- (4) Assume suitable data, if necessary.
- 1. (a) Design a DFA over an alphabet $\Sigma = \{a, b\}$ to recognize a language in which 5 every 'a' is followed by 'b'.
 - (b) Give formal definition of a Push Down Automata.
 - (c) State and explain the power and limitations of a Turing machine 5
 - (d) Design a mealy machine to determine the residue mod 3 of a binary number. 5
- 2. (a) Convert the following NFA to an equivalent DFA

State	a	b	3
$\rightarrow q_0$	$\{q_0, q_1\}$	q_1	{}
q_1	$\{q_2\}$	$\{q_{1},q_{2}\}$	{}
*q ₂	$\{q_0\}$	$\{q_2\}$	{q,}

- (b) State and explain pumping lemma for regular languages. Using pumping lemma 10 prove that the language $L = \{0^n 1^n \mid n \ge 0\}$ is not regular.
- 3. (a) Design a Turing machine that computes a function f(m,n) = m + n i.e. addition 10 of two integers
 - (b) Design a Turing machine to accept the language 0ⁿ1ⁿ2ⁿ
- (a) Draw a state diagram and construct a regular expression corresponding to 10 the following state transition table.

State	0	1
\rightarrow * q_1	q_1	q_2
q_2	q_3	q_2
q_3	q_1	q_2

(b) State and explain decision properties of regular languages

10

10