N.D	(2) (3) (4)	Att Fig As	empt any four questions out of remaining six questions. gures to the right indicate full marks. sume suitable data if necessary .	· · ·
1.	Just	ify th	e following statements :-	20
		(a)	Laplacian is not a good edge detector.	
		(b)	Poorly illuminated images connot be easily segmented.	
		(c)	Median filtering perform well in images corrupted by impulse noise.	
		(d)	First derivate of a chain code normalizes it to rotation.	
		(e)	The entropy of an image is maximized by histogram equalization.	
2.	(a)	Def is a	ine and explain Dilation and Erosion operations. Explain how boundary extractions chieved using these operations.	10
	(b)	Wh	at is the most typical problem of edge based segmentation ?	5
	(C)	Exp	lain why a prior information about edge detection may increase the speed of Hough	5
0		Tran	nsform based image segmentation.	
3.	(a)	Wri Ima	te expression for 1–D and 2–D. Discrete Cosine Transform. State its usefullness in ge Processing.	8
	(b)	Usi	ng the above diagram compute Haar Cofficidents of following sequences. $f(n) = \{1 \ 2 \ 3 \ 4 \ 4 \ 3 \ 2 \ 1\}$	12

Evaluate the Energy in each of the Transform Cofficidents.

4.	(a)	What is image compression ? Explain different types of redundancies.	8
	(b)	Explain in detail different types of image compression methods.	12

- Explain operation and application of each of following filter. Give 3 × 3 mask wherever 9 5. (a) applicable :
 - (i) Low pass filter
 - (ii) Median filter
 - (iii) Laplacian of a Gaussian.
 - Given below is 5 × 5 image. Operate on the central 3 × 3 pixels by low pass and high 11 (b) pass filter masks and obtain 3 × 3 images as outputs :

6	5	12	12	3
14	12	13	10	. 9
10	15	4	10	6
8	3	7	4	7
8	3	10	8	5

Using these outputs verify that original image = Low pass output + High pass output. In case of discrepancy explain the reasons.

(b) K-L Transform

6. Write short notes on :-

- (a) Moments
- (c) Fourier Descriptors
 - (d) Signature
- (e) Chain Codes.

Write short notes :-7.

- (a) Hit or Miss transform
- (c) Discrete Cosine Transform
- (b) Image compression standard
- (d) Compression using Transform method

20