F.F. (Sem I (Rev) All Branches 5109 moths-TI 11 cm to 2pm VR-1020 (REVISED COURSE) Con. 2507-09. 16. (3 Hours) [Total Marks: 100 N.B.: (1) Question No. 1 is compulsory. (2) Attempt any four questions from remaining six questions. (3) Figures to the right indicates full marks. (a) Prove that $\int (x \log x)^4 dx = \frac{4!}{5^5}$ 20 Evaluate $\iint xy(x-1) dxdy$, where R is the region bounded by xy = 4, y = 0, x = 1(b) and x = 4(c) Find the volume bounded by the cylinder $y^2 = x$, $x^2 = y$ and the planes z = 0 and x + y + z = 2(d) Solve $\frac{dy}{dx} = \frac{-(x^2y^3 + 2y)}{(2x - 2x^3y^2)}$. Solve the following differential equations -20 2. $\frac{dy}{dx} = \frac{\tan y - 2xy - y}{x^2 - x \tan^2 y + \sec^2 y}$ (a) (b) $\frac{d^2y}{dx^2} + y = \sin x \sin 2x$ (c) $\frac{d^2y}{dx^2} - (a+b)\frac{dy}{dx} + aby = e^{ax} + e^{bx}$ (d) (d) $dr + (2rcot\theta + sin2\theta)d\theta = 0.$ (a) Show that $\int_{0}^{a} \frac{dx}{\sqrt[n]{(a^{n} - x^{n})}} = \frac{\pi}{n} \csc\left(\frac{\pi}{n}\right), \text{ Where } n > 1.$ 6 3. (b) Change the order of integration -6 et toto $\int_{0}^{1} \int_{\sqrt{2x - x^2}}^{1 + \sqrt{1 - x^2}} dy dx$ and not constable to ensure out of landhogong $\sqrt{2x - x^2}$ (c) Use the method of variation of parameters to solve -8 $y'' + 3y' + 2y = e^{e^x}$

Con. 2507-VR-1020-09.

4. (a) Assuming the validity of DUIS, prove that

$$\int_{0}^{\infty} \left(\frac{e^{-ax} - e^{-bx}}{x} \right) \operatorname{sinmxdx} = \tan^{-1} \left(\frac{m}{a} \right) - \tan^{-1} \left(\frac{m}{b} \right)$$

(b) Use spherical polar co-ordinates to evaluate ∭xyz (x² + y² + z²) dxdydz over the first 6 octant of the sphere x² + y² + z² = a².

REVISED COURSEN

- (c) Solve using Taylor's series method, the differential equation $\frac{dy}{dx} = x + y$ numerically. 8 Start from x =1, y = 0 and carry to x = 1.2 with h = 0.1. Compare the final result with the value of the exact solution.
- 5. (a) In a single closed circuit, the current 'i' at any time 't' is given by $Ri + L \frac{dI}{dt} = E$, find **6** the current i at any time t, given that t = 0, i = 0 and L, R and E are constants.
 - (b) Find the length of the arc of the cardiode $r = a (1 \cos\theta)$, which lies outside the circle $r = a\cos\theta$.
 - (c) Use Euler's modified method to find the values of y satisfying the equation 8 $\frac{dy}{dx} = \log(x+y)$, for x = 1.2 and x = 1.4 correct to three decimals by taking h = 0.2 and y(1) = 2.
- 6. (a) Using Runge-Kutta's fourth order method, find the numerical solution at x = 0.6 for **6** $\frac{dy}{dx} = \sqrt{x + y}, y(0.4) = 0.41$ assume step length, h = 0.2.

(b) Solve
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = xe^{-x}\cos x$$

- (c) Transform to polar co-ordinates and evaluate $\iint \sqrt{\left(\frac{a^2b^2 b^2x^2 a^2y^2}{a^2b^2 + b^2x^2 + a^2y^2}\right)} dxdy$ where
 - R is the region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 7. (a) Find the mass of the leminiscate $r^2 = a^2 \cos 2\theta$, if the density at any point is **6** proportional to the square of its distance from the pole.

(b) Solve
$$(2x+1)^2 \frac{d^2y}{dx^2} - 2(2x+1)\frac{dy}{dx} - 12y = 6x.$$
 6

(c) Sketch the region bounded by the curves $y = x^2$ and x + y = 2. Express area of this **8** region as a double integral in two ways and evaluate.

6

6